daily update
This commit is contained in:
File diff suppressed because one or more lines are too long
89
to_explore/volume-prfofile-series.py
Normal file
89
to_explore/volume-prfofile-series.py
Normal file
@ -0,0 +1,89 @@
|
||||
symbol='SPY'
|
||||
start_date='one year ago'
|
||||
timeframe='1h'
|
||||
tz='America/New_York'
|
||||
limit=50000
|
||||
|
||||
data = vbt.PolygonData.pull(
|
||||
symbol,
|
||||
start=start_date,
|
||||
timeframe=timeframe,
|
||||
tz=tz,
|
||||
limit=limit,
|
||||
missing_index="drop"
|
||||
).dropna()
|
||||
data = data.get()
|
||||
close = data['Close']
|
||||
high = data['High']
|
||||
low = data['Low']
|
||||
open = data['Open']
|
||||
vwap = data['VWAP']
|
||||
volume = data['Volume']
|
||||
|
||||
@njit
|
||||
def calculate_volume_profile(high_window, low_window, volume_window, num_bins):
|
||||
window_low = np.min(low_window)
|
||||
window_high = np.max(high_window)
|
||||
if window_low == window_high:
|
||||
window_low -= 0.0001
|
||||
window_high += 0.0001
|
||||
bins = np.linspace(window_low, window_high, num_bins + 1)
|
||||
volume_profile = np.zeros(num_bins)
|
||||
for i in range(len(high_window)):
|
||||
bar_low = low_window[i]
|
||||
bar_high = high_window[i]
|
||||
bar_volume = volume_window[i]
|
||||
if bar_low == bar_high:
|
||||
bar_low -= 0.0001
|
||||
bar_high += 0.0001
|
||||
low_idx = np.searchsorted(bins, bar_low, side='left') - 1
|
||||
high_idx = np.searchsorted(bins, bar_high, side='right') - 1
|
||||
if high_idx < low_idx:
|
||||
high_idx = low_idx
|
||||
indices = np.arange(low_idx, high_idx + 1)
|
||||
if len(indices) > 0:
|
||||
volume_per_bin = bar_volume / len(indices)
|
||||
for idx in indices:
|
||||
if 0 <= idx < num_bins:
|
||||
volume_profile[idx] += volume_per_bin
|
||||
return bins[:-1], volume_profile
|
||||
|
||||
@njit
|
||||
def compute_value_area(bins, volume_profile):
|
||||
total_volume = np.sum(volume_profile)
|
||||
if total_volume == 0:
|
||||
return np.nan, np.nan, np.nan
|
||||
poc_idx = np.argmax(volume_profile)
|
||||
poc = bins[poc_idx]
|
||||
sorted_indices = np.argsort(volume_profile)[::-1]
|
||||
cumulative_volume = np.cumsum(volume_profile[sorted_indices])
|
||||
value_area_threshold = 0.7 * total_volume
|
||||
idx = np.searchsorted(cumulative_volume, value_area_threshold)
|
||||
value_area_indices = sorted_indices[:idx + 1]
|
||||
val = np.min(bins[value_area_indices])
|
||||
vah = np.max(bins[value_area_indices])
|
||||
return val, vah, poc
|
||||
|
||||
def calculate_val_vah_poc(high, low, volume, window_size=168, num_bins=1000):
|
||||
n = len(high)
|
||||
vals = np.full(n, np.nan)
|
||||
vahs = np.full(n, np.nan)
|
||||
pocs = np.full(n, np.nan)
|
||||
|
||||
for i in range(n):
|
||||
start_idx = max(0, i - window_size + 1)
|
||||
end_idx = i + 1
|
||||
high_window = high[start_idx:end_idx]
|
||||
low_window = low[start_idx:end_idx]
|
||||
volume_window = volume[start_idx:end_idx]
|
||||
bins, volume_profile = calculate_volume_profile(
|
||||
high_window, low_window, volume_window, num_bins
|
||||
)
|
||||
val, vah, poc = compute_value_area(bins, volume_profile)
|
||||
vals[i] = val
|
||||
vahs[i] = vah
|
||||
pocs[i] = poc
|
||||
|
||||
return vals, vahs, pocs
|
||||
|
||||
vals, vahs, pocs = calculate_val_vah_poc(high.values, low.values, volume.values, window_size=240, num_bins=2000)
|
||||
74
to_explore/volume-profile-scalar.py
Normal file
74
to_explore/volume-profile-scalar.py
Normal file
@ -0,0 +1,74 @@
|
||||
symbol='SPY'
|
||||
start_date='one year ago'
|
||||
timeframe='1h'
|
||||
tz='America/New_York'
|
||||
limit=50000
|
||||
|
||||
data = vbt.PolygonData.pull(
|
||||
symbol,
|
||||
start=start_date,
|
||||
timeframe=timeframe,
|
||||
tz=tz,
|
||||
limit=limit,
|
||||
missing_index="drop"
|
||||
).dropna()
|
||||
data = data.get()
|
||||
close = data['Close']
|
||||
high = data['High']
|
||||
low = data['Low']
|
||||
open = data['Open']
|
||||
vwap = data['VWAP']
|
||||
volume = data['Volume']
|
||||
|
||||
@njit
|
||||
def volume_profile_numba(prices, volumes, bins=100):
|
||||
# Calculate min and max prices
|
||||
price_min, price_max = np.min(prices), np.max(prices)
|
||||
|
||||
# Create price bins
|
||||
price_bins = np.linspace(price_min, price_max, bins)
|
||||
|
||||
# Initialize volume sum array
|
||||
volume_sum = np.zeros(len(price_bins) - 1)
|
||||
|
||||
# Bin volumes into price ranges
|
||||
for i in range(len(prices)):
|
||||
for j in range(len(price_bins) - 1):
|
||||
if price_bins[j] <= prices[i] < price_bins[j + 1]:
|
||||
volume_sum[j] += volumes[i]
|
||||
break
|
||||
|
||||
# Total volume and value area volume (70%)
|
||||
total_volume = np.sum(volume_sum)
|
||||
value_area_volume = 0.7 * total_volume
|
||||
|
||||
# Sort by volume to determine Value Area
|
||||
sorted_indices = np.argsort(volume_sum)[::-1]
|
||||
cum_volume = np.cumsum(volume_sum[sorted_indices])
|
||||
|
||||
# Determine Value Area High (VAH) and Low (VAL)
|
||||
vah_idx = np.argmax(cum_volume >= value_area_volume)
|
||||
vah = price_bins[sorted_indices[:vah_idx + 1]].max()
|
||||
val = price_bins[sorted_indices[:vah_idx + 1]].min()
|
||||
|
||||
# Point of Control (POC) - Highest volume node
|
||||
poc_idx = np.argmax(volume_sum)
|
||||
poc = price_bins[poc_idx]
|
||||
|
||||
return vah, val, poc
|
||||
|
||||
|
||||
def get_volume_profile(data, days=7, bins=2000):
|
||||
# Extract last 'days' worth of data
|
||||
recent_data = data[-days*24:]
|
||||
prices = recent_data['Close'].values
|
||||
volumes = recent_data['Volume'].values
|
||||
|
||||
vah, val, poc = volume_profile_numba(prices, volumes, bins)
|
||||
|
||||
return {'VAH': vah, 'VAL': val, 'POC': poc}
|
||||
|
||||
|
||||
profile_levels = get_volume_profile(data, days=7)
|
||||
print(f"VAH: {profile_levels['VAH']}, VAL: {profile_levels['VAL']}, POC: {profile_levels['POC']}")
|
||||
|
||||
Reference in New Issue
Block a user