Compare commits
87 Commits
feature-ac
...
feature/ve
| Author | SHA1 | Date | |
|---|---|---|---|
| dc46ab2b49 | |||
| 9e7d974ebd | |||
| 66a4cb5d7c | |||
| 0bf9aadb0c | |||
| 81ca678f55 | |||
| 96c7f7207f | |||
| 26b72763da | |||
| adc7c3c1b6 | |||
| a6343abe88 | |||
| 075984fcff | |||
| 5fce627fe3 | |||
| 8de1356aa8 | |||
| 7f47890cad | |||
| 8cf1aea2a8 | |||
| 9231c1d273 | |||
| 9391d89aab | |||
| 9cff5fe6a1 | |||
| 0e5cf5f3e0 | |||
| 90c33c0528 | |||
| e9e6534d2b | |||
| 5874528d23 | |||
| 985445d814 | |||
| 6c1f7f0e2e | |||
| 20aaa2ac23 | |||
| 691514b102 | |||
| 84903aff77 | |||
| 4887e32665 | |||
| ce99448a48 | |||
| 887ea0ef00 | |||
| af7b678699 | |||
| 04c63df045 | |||
| ebac207489 | |||
| 9f99ddc86a | |||
| e75fbc7194 | |||
| c4d05f47ff | |||
| f6e31f45f9 | |||
| c42b1c4e1e | |||
| 1bf11d0dc4 | |||
| 1abbb07390 | |||
| b58639454b | |||
| a7e83fe051 | |||
| 6795338eba | |||
| 9aa8b58877 | |||
| eff78e8157 | |||
| d8bcc4bb8f | |||
| 7abdf47545 | |||
| 1f8afef042 | |||
| df60d16eb4 | |||
| 535c2824b0 | |||
| 9cf936672d | |||
| c1ad713a12 | |||
| e9bb8b84ec | |||
| 603736d441 | |||
| 8456e6d739 | |||
| 2c968691d1 | |||
| 435b4d899a | |||
| c1145fec5b | |||
| 5d47a7ac58 | |||
| cd461c701e | |||
| a7df38c61b | |||
| b21bd9487a | |||
| c3b466c4c0 | |||
| 0909fa947f | |||
| 77faa919c0 | |||
| 17b9859a73 | |||
| 85d4916320 | |||
| a70e2adf45 | |||
| 527c3139f2 | |||
| 5bbb95eeac | |||
| 3158cdb68b | |||
| 5cc3a1c318 | |||
| 232f32467e | |||
| 523905ece6 | |||
| ac11c37e77 | |||
| 90b202cfdd | |||
| 8abebcc910 | |||
| 5a5e94eeb5 | |||
| 01ff23907f | |||
| 6cdc0a45c5 | |||
| d38bf0600f | |||
| 0f0b816c7a | |||
| 7344e49591 | |||
| 116700f3e4 | |||
| d06faa4c9b | |||
| 95cd7ead8a | |||
| 8e1fa604a5 | |||
| db210e6be7 |
1
CODEOWNERS
Normal file
1
CODEOWNERS
Normal file
@ -0,0 +1 @@
|
||||
* @drew2323
|
||||
53
README.md
Normal file
53
README.md
Normal file
@ -0,0 +1,53 @@
|
||||
**README - V2TRADING - Advanced Algorithmic Trading Platform**
|
||||
|
||||
**Overview**
|
||||
Custom-built algorithmic trading platform for research, backtesting and automated trading. Trading engine capable of processing tick data, managing trades, and supporting backtesting in a highly accurate and efficient manner.
|
||||
|
||||
**Key Features**
|
||||
- **Trading Engine**: At the core of the platform is a trading engine that processes tick data in real time. This engine is responsible for aggregating data and managing the execution of trades, ensuring precision and speed in trade placement and execution.
|
||||
|
||||
- **High-Fidelity Backtesting Environment**: ability to backtest strategies with 1:1 precision - meaning a tick-by-tick backtesting. This level of precision in backtesting, down to millisecond accuracy, mirrors live trading environments and is vital for developing and testing high-frequency trading strategies.
|
||||
|
||||
- **Custom Data Aggregation:** The platform includes a data aggregator that allows for custom aggregation rules. This flexibility supports a variety of data analysis approaches, including non-time based bars and other unique criteria.
|
||||
|
||||
- **Indicators** Contains inbuild [tulipy](https://tulipindicators.org/list) [ta-lib](https://ta-lib.github.io/ta-lib-python/) and templates for custom build multioutputs stateful indicators.
|
||||
|
||||
- **Machine Learning Integration:** Recently, the platform has expanded to incorporate machine learning capabilities. This includes modules for both training and inference, supporting the complete ML lifecycle. These ML models can be utilized within trading strategies for classification and exploiting statistical advantages.
|
||||
|
||||
**Technology Stack**
|
||||
**Backend and API:** The backbone of the platform is built with Python, utilizing libraries such as FastAPI, NumPy, Keras, and JAX, ensuring high performance and scalability.
|
||||
**Frontend:** The client-side is developed with Vanilla JavaScript and jQuery, employing LightweightCharts for charting purposes. Additional modules enhance the platform's functionality. The frontend is slated for a future refactoring to modern frameworks like Vue.js and Vuetify for a more robust user interface.
|
||||
|
||||
While the platform is fully functional and growing, ongoing development is planned, particularly in the realm of frontend enhancements and further integration of advanced machine learning techniques.
|
||||
|
||||
**Contributions**
|
||||
Contributions to this project are welcome. Whether it's improving the frontend, enhancing the backend capabilities, or experimenting with new trading strategies and machine learning models, your input can help take this platform to the next level.
|
||||
|
||||
This repository represents a sophisticated and evolving tool for algorithmic traders, offering precision, speed, and a level of customization that is unparalleled in open-source systems. Join us in shaping the future of algorithmic trading.
|
||||
|
||||
<p align="center">
|
||||
Main screen with entry/exit points and stoploss lines<br>
|
||||
<img width="700" alt="Main screen with entry/exit points and stoploss lines" src="https://github.com/drew2323/v2trading/assets/28433232/751d5b0e-ef64-453f-8e76-89a39db679c5">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
Main screen with tick based indicators<br>
|
||||
<img width="700" alt="Main screen with tick based indicators" src="https://github.com/drew2323/v2trading/assets/28433232/4bf6128c-9b36-4e88-9da1-5a33319976a1">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
Indicator editor<br>
|
||||
<img width="700" alt="Indicator editor" src="https://github.com/drew2323/v2trading/assets/28433232/cc417393-7b88-4eea-afcb-3a00402d0a8d">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
Strategy editor<br>
|
||||
<img width="700" alt="Strategy editor" src="https://github.com/drew2323/v2trading/assets/28433232/74f67e7a-1efc-4f63-b763-7827b2337b6a">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
Strategy analytical tools<br>
|
||||
<img width="700" alt="Strategy analytical tools" src="https://github.com/drew2323/v2trading/assets/28433232/4bf8b3c3-e430-4250-831a-e5876bb6b743">
|
||||
</p>
|
||||
|
||||
|
||||
51
_run_scheduler.sh
Executable file
51
_run_scheduler.sh
Executable file
@ -0,0 +1,51 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Approach: (https://chat.openai.com/c/43be8685-b27b-4e3b-bd18-0856f8d23d7e)
|
||||
# cron runs this script every minute New York in range of 9:20 - 16:20 US time
|
||||
# Also this scripts writes the "heartbeat" message to log file, so the user knows
|
||||
#that cron is running
|
||||
|
||||
# Installation steps required:
|
||||
#chmod +x run_scheduler.sh
|
||||
#install tzdata package: sudo apt-get install tzdata
|
||||
#crontab -e
|
||||
#CRON_TZ=America/New_York
|
||||
# * 9-16 * * 1-5 /home/david/v2trading/run_scheduler.sh
|
||||
#
|
||||
# (Runs every minute of every hour on every day-of-week from Monday to Friday) US East time
|
||||
|
||||
# Path to the Python script
|
||||
PYTHON_SCRIPT="v2realbot/scheduler/scheduler.py"
|
||||
|
||||
# Log file path
|
||||
LOG_FILE="job.log"
|
||||
|
||||
# Timezone for New York
|
||||
TZ='America/New_York'
|
||||
NY_DATE_TIME=$(TZ=$TZ date +'%Y-%m-%d %H:%M:%S')
|
||||
echo "NY_DATE_TIME: $NY_DATE_TIME"
|
||||
|
||||
# Check if log file exists, create it if it doesn't
|
||||
if [ ! -f "$LOG_FILE" ]; then
|
||||
touch "$LOG_FILE"
|
||||
fi
|
||||
|
||||
# Check the last line of the log file
|
||||
LAST_LINE=$(tail -n 1 "$LOG_FILE")
|
||||
|
||||
# Cron trigger message
|
||||
CRON_TRIGGER="Cron trigger: $NY_DATE_TIME"
|
||||
|
||||
# Update the log
|
||||
if [[ "$LAST_LINE" =~ "Cron trigger:".* ]]; then
|
||||
# Replace the last line with the new trigger message
|
||||
sed -i '' '$ d' "$LOG_FILE"
|
||||
echo "$CRON_TRIGGER" >> "$LOG_FILE"
|
||||
else
|
||||
# Append a new cron trigger message
|
||||
echo "$CRON_TRIGGER" >> "$LOG_FILE"
|
||||
fi
|
||||
|
||||
|
||||
# FOR DEBUG - Run the Python script and append output to log file
|
||||
python3 "$PYTHON_SCRIPT" >> "$LOG_FILE" 2>&1
|
||||
7
deployall.sh
Executable file
7
deployall.sh
Executable file
@ -0,0 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Navigate to your git repository directory
|
||||
|
||||
# Execute git commands
|
||||
git push deploytest master
|
||||
git push deploy master
|
||||
@ -1,18 +1,24 @@
|
||||
absl-py==2.0.0
|
||||
alpaca==1.0.0
|
||||
alpaca-py==0.7.1
|
||||
altair==4.2.2
|
||||
anyio==3.6.2
|
||||
appdirs==1.4.4
|
||||
appnope==0.1.3
|
||||
asttokens==2.2.1
|
||||
astunparse==1.6.3
|
||||
attrs==22.2.0
|
||||
better-exceptions==0.3.3
|
||||
bleach==6.0.0
|
||||
blinker==1.5
|
||||
cachetools==5.3.0
|
||||
CD==1.1.0
|
||||
certifi==2022.12.7
|
||||
chardet==5.1.0
|
||||
charset-normalizer==3.0.1
|
||||
click==8.1.3
|
||||
colorama==0.4.6
|
||||
comm==0.1.4
|
||||
contourpy==1.0.7
|
||||
cycler==0.11.0
|
||||
dash==2.9.1
|
||||
@ -20,35 +26,82 @@ dash-bootstrap-components==1.4.1
|
||||
dash-core-components==2.0.0
|
||||
dash-html-components==2.0.0
|
||||
dash-table==5.0.0
|
||||
dateparser==1.1.8
|
||||
decorator==5.1.1
|
||||
defusedxml==0.7.1
|
||||
dill==0.3.7
|
||||
dm-tree==0.1.8
|
||||
entrypoints==0.4
|
||||
exceptiongroup==1.1.3
|
||||
executing==1.2.0
|
||||
fastapi==0.95.0
|
||||
filelock==3.13.1
|
||||
Flask==2.2.3
|
||||
flatbuffers==23.5.26
|
||||
fonttools==4.39.0
|
||||
fpdf2==2.7.6
|
||||
gast==0.4.0
|
||||
gitdb==4.0.10
|
||||
GitPython==3.1.31
|
||||
google-auth==2.23.0
|
||||
google-auth-oauthlib==1.0.0
|
||||
google-pasta==0.2.0
|
||||
grpcio==1.58.0
|
||||
h11==0.14.0
|
||||
h5py==3.10.0
|
||||
icecream==2.1.3
|
||||
idna==3.4
|
||||
imageio==2.31.6
|
||||
importlib-metadata==6.1.0
|
||||
ipython==8.17.2
|
||||
ipywidgets==8.1.1
|
||||
itsdangerous==2.1.2
|
||||
jax==0.4.23
|
||||
jaxlib==0.4.23
|
||||
jedi==0.19.1
|
||||
Jinja2==3.1.2
|
||||
joblib==1.3.2
|
||||
jsonschema==4.17.3
|
||||
jupyterlab-widgets==3.0.9
|
||||
keras==3.0.2
|
||||
keras-core==0.1.7
|
||||
keras-nightly==3.0.3.dev2024010203
|
||||
keras-nlp-nightly==0.7.0.dev2024010203
|
||||
keras-tcn @ git+https://github.com/drew2323/keras-tcn.git@4bddb17a02cb2f31c9fe2e8f616b357b1ddb0e11
|
||||
kiwisolver==1.4.4
|
||||
libclang==16.0.6
|
||||
llvmlite==0.39.1
|
||||
Markdown==3.4.3
|
||||
markdown-it-py==2.2.0
|
||||
MarkupSafe==2.1.2
|
||||
matplotlib==3.8.2
|
||||
matplotlib-inline==0.1.6
|
||||
mdurl==0.1.2
|
||||
ml-dtypes==0.3.1
|
||||
mlroom @ git+https://github.com/drew2323/mlroom.git@692900e274c4e0542d945d231645c270fc508437
|
||||
mplfinance==0.12.10b0
|
||||
msgpack==1.0.4
|
||||
mypy-extensions==1.0.0
|
||||
namex==0.0.7
|
||||
newtulipy==0.4.6
|
||||
numpy==1.24.2
|
||||
numba==0.56.4
|
||||
numpy==1.23.5
|
||||
oauthlib==3.2.2
|
||||
opt-einsum==3.3.0
|
||||
orjson==3.9.10
|
||||
packaging==23.0
|
||||
pandas==1.5.3
|
||||
param==1.13.0
|
||||
parso==0.8.3
|
||||
patsy==0.5.6
|
||||
pexpect==4.8.0
|
||||
Pillow==9.4.0
|
||||
plotly==5.13.1
|
||||
prompt-toolkit==3.0.39
|
||||
proto-plus==1.22.2
|
||||
protobuf==3.20.3
|
||||
ptyprocess==0.7.0
|
||||
pure-eval==0.2.2
|
||||
pyarrow==11.0.0
|
||||
pyasn1==0.4.8
|
||||
pyasn1-modules==0.2.8
|
||||
@ -56,41 +109,72 @@ pyct==0.5.0
|
||||
pydantic==1.10.5
|
||||
pydeck==0.8.0
|
||||
Pygments==2.14.0
|
||||
pyinstrument==4.5.3
|
||||
Pympler==1.0.1
|
||||
pyparsing==3.0.9
|
||||
pyrsistent==0.19.3
|
||||
pysos==1.3.0
|
||||
python-dateutil==2.8.2
|
||||
python-dotenv==1.0.0
|
||||
python-multipart==0.0.6
|
||||
pytz==2022.7.1
|
||||
pytz-deprecation-shim==0.1.0.post0
|
||||
pyviz-comms==2.2.1
|
||||
PyWavelets==1.5.0
|
||||
PyYAML==6.0
|
||||
requests==2.28.2
|
||||
regex==2023.10.3
|
||||
requests==2.31.0
|
||||
requests-oauthlib==1.3.1
|
||||
rich==13.3.1
|
||||
rsa==4.9
|
||||
schedule==1.2.1
|
||||
scikit-learn==1.3.2
|
||||
scipy==1.11.2
|
||||
seaborn==0.12.2
|
||||
semver==2.13.0
|
||||
six==1.16.0
|
||||
smmap==5.0.0
|
||||
sniffio==1.3.0
|
||||
sseclient-py==1.7.2
|
||||
stack-data==0.6.3
|
||||
starlette==0.26.1
|
||||
statsmodels==0.14.1
|
||||
streamlit==1.20.0
|
||||
structlog==23.1.0
|
||||
TA-Lib==0.4.28
|
||||
tb-nightly==2.16.0a20240102
|
||||
tenacity==8.2.2
|
||||
tensorboard==2.15.1
|
||||
tensorboard-data-server==0.7.1
|
||||
tensorflow-addons==0.23.0
|
||||
tensorflow-estimator==2.15.0
|
||||
tensorflow-io-gcs-filesystem==0.34.0
|
||||
termcolor==2.3.0
|
||||
tf-estimator-nightly==2.14.0.dev2023080308
|
||||
tf-nightly==2.16.0.dev20240101
|
||||
tf_keras-nightly==2.16.0.dev2023123010
|
||||
threadpoolctl==3.2.0
|
||||
tinydb==4.7.1
|
||||
tinydb-serialization==2.1.0
|
||||
tinyflux==0.4.0
|
||||
toml==0.10.2
|
||||
tomli==2.0.1
|
||||
toolz==0.12.0
|
||||
tornado==6.2
|
||||
tqdm==4.65.0
|
||||
traitlets==5.13.0
|
||||
typeguard==2.13.3
|
||||
typing_extensions==4.5.0
|
||||
tzdata==2023.2
|
||||
tzlocal==4.3
|
||||
urllib3==1.26.14
|
||||
uvicorn==0.21.1
|
||||
-e git+https://github.com/drew2323/v2trading.git@b58639454be921f9f0c9dd1880491cfcfdfdf3b7#egg=v2realbot
|
||||
validators==0.20.0
|
||||
wcwidth==0.2.9
|
||||
webencodings==0.5.1
|
||||
websockets==10.4
|
||||
Werkzeug==2.2.3
|
||||
widgetsnbextension==4.0.9
|
||||
wrapt==1.14.1
|
||||
zipp==3.15.0
|
||||
|
||||
BIN
res_pred_act.png
Normal file
BIN
res_pred_act.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 26 KiB |
BIN
res_target.png
Normal file
BIN
res_target.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 20 KiB |
104044
research/basic.ipynb
Normal file
104044
research/basic.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
1526
research/indcross_parametrized.ipynb
Normal file
1526
research/indcross_parametrized.ipynb
Normal file
File diff suppressed because one or more lines are too long
316
research/loading_trades_aggregation.ipynb
Normal file
316
research/loading_trades_aggregation.ipynb
Normal file
@ -0,0 +1,316 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Loading trades and vectorized aggregation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from numba import jit\n",
|
||||
"from alpaca.data.historical import StockHistoricalDataClient\n",
|
||||
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
|
||||
"from alpaca.data.requests import StockTradesRequest\n",
|
||||
"from v2realbot.enums.enums import BarType\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from datetime import datetime\n",
|
||||
"from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data\n",
|
||||
"import pyarrow\n",
|
||||
"from v2realbot.loader.aggregator_vectorized import fetch_daily_stock_trades, fetch_trades_parallel, generate_time_bars_nb, aggregate_trades\n",
|
||||
"import vectorbtpro as vbt\n",
|
||||
"\n",
|
||||
"vbt.settings.set_theme(\"dark\")\n",
|
||||
"vbt.settings['plotting']['layout']['width'] = 1280\n",
|
||||
"vbt.settings.plotting.auto_rangebreaks = True\n",
|
||||
"# Set the option to display with pagination\n",
|
||||
"pd.set_option('display.notebook_repr_html', True)\n",
|
||||
"pd.set_option('display.max_rows', 10) # Number of rows per page"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"symbol = \"SPY\"\n",
|
||||
"#datetime in zoneNY \n",
|
||||
"day_start = datetime(2024, 5, 15, 9, 30, 0)\n",
|
||||
"day_stop = datetime(2024, 5, 16, 16, 00, 0)\n",
|
||||
"day_start = zoneNY.localize(day_start)\n",
|
||||
"day_stop = zoneNY.localize(day_stop)\n",
|
||||
"#neslo by zrychlit, kdyz se zobrazuje pomalu Searching cache - nejaky bottle neck?\n",
|
||||
"df = fetch_trades_parallel(symbol, day_start, day_stop, minsize=50) #exclude_conditions=['C','O','4','B','7','V','P','W','U','Z','F'])\n",
|
||||
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=df, resolution=1, type=BarType.TIME)\n",
|
||||
"#df.info()\n",
|
||||
"ohlcv_df\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"basic_data = vbt.Data.from_data(vbt.symbol_dict({symbol: ohlcv_df}), tz_convert=zoneNY)\n",
|
||||
"vbt.settings['plotting']['auto_rangebreaks'] = True\n",
|
||||
"basic_data.ohlcv.plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pickle\n",
|
||||
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
|
||||
"import gzip\n",
|
||||
"\n",
|
||||
"file_path = f\"{DATA_DIR}/tradecache/BAC-1709044200-1709067600.cache.gz\"\n",
|
||||
"\n",
|
||||
"with gzip.open(file_path, 'rb') as fp:\n",
|
||||
" tradesResponse = pickle.load(fp)\n",
|
||||
"\n",
|
||||
"tradesResponse"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def convert_dict_to_multiindex_df(tradesResponse):\n",
|
||||
" # Create a DataFrame for each key and add the key as part of the MultiIndex\n",
|
||||
" dfs = []\n",
|
||||
" for key, values in tradesResponse.items():\n",
|
||||
" df = pd.DataFrame(values)\n",
|
||||
" # Rename columns\n",
|
||||
" # Select and order columns explicitly\n",
|
||||
" #print(df)\n",
|
||||
" df = df[['t', 'x', 'p', 's', 'i', 'c','z']]\n",
|
||||
" df.rename(columns={'t': 'timestamp', 'c': 'conditions', 'p': 'price', 's': 'size', 'x': 'exchange', 'z':'tape', 'i':'id'}, inplace=True)\n",
|
||||
" df['symbol'] = key # Add ticker as a column\n",
|
||||
" df['timestamp'] = pd.to_datetime(df['timestamp']) # Convert 't' from string to datetime before setting it as an index\n",
|
||||
" df.set_index(['symbol', 'timestamp'], inplace=True) # Set the multi-level index using both 'ticker' and 't'\n",
|
||||
" df = df.tz_convert(zoneNY, level='timestamp')\n",
|
||||
" dfs.append(df)\n",
|
||||
"\n",
|
||||
" # Concatenate all DataFrames into a single DataFrame with MultiIndex\n",
|
||||
" final_df = pd.concat(dfs)\n",
|
||||
"\n",
|
||||
" return final_df\n",
|
||||
"\n",
|
||||
"# Convert and print the DataFrame\n",
|
||||
"df = convert_dict_to_multiindex_df(tradesResponse)\n",
|
||||
"df\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=df, resolution=1000, type=\"dollar\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.index.strftime('%Y-%m-%d %H').unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#ohlcv_df.groupby(ohlcv_df.index.date).size()\n",
|
||||
"ohlcv_df.head(100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#access just BCA\n",
|
||||
"df_filtered = df.loc[\"BAC\"]\n",
|
||||
"\n",
|
||||
"df_filtered.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_filtered= df_filtered.reset_index()\n",
|
||||
"ticks = df_filtered[['timestamp', 'price', 'size']].to_numpy()\n",
|
||||
"ticks\n",
|
||||
"timestamps = ticks[:, 0]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_filtered= df_filtered.reset_index()\n",
|
||||
"ticks = df_filtered[['timestamp', 'price', 'size']].to_numpy()\n",
|
||||
"\n",
|
||||
"#timestamp to integer\n",
|
||||
"# Extract the timestamps column (assuming it's the first column)\n",
|
||||
"timestamps = ticks[:, 0]\n",
|
||||
"\n",
|
||||
"# Convert the timestamps to Unix timestamps in seconds with microsecond precision\n",
|
||||
"unix_timestamps_s = np.array([ts.timestamp() for ts in timestamps], dtype='float64')\n",
|
||||
"\n",
|
||||
"# Replace the original timestamps in the NumPy array with the converted Unix timestamps\n",
|
||||
"ticks[:, 0] = unix_timestamps_s\n",
|
||||
"\n",
|
||||
"#ticks[:, 0] = pd.to_datetime(ticks[:, 0]).astype('int64') // 1_000_000_000 # Convert to Unix timestamp\n",
|
||||
"ticks\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ticks = ticks.astype(np.float64)\n",
|
||||
"ticks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"resolution = 1 # Example resolution of 60 seconds\n",
|
||||
"ohlcv_bars = generate_time_bars_nb(ticks, resolution)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_bars"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Convert the resulting array back to a DataFrame\n",
|
||||
"columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'trades']\n",
|
||||
"ohlcv_df = pd.DataFrame(ohlcv_bars, columns=columns)\n",
|
||||
"ohlcv_df['time'] = pd.to_datetime(ohlcv_df['time'], unit='s')\n",
|
||||
"ohlcv_df.set_index('time', inplace=True)\n",
|
||||
"ohlcv_df.index = ohlcv_df.index.tz_localize('UTC').tz_convert(zoneNY)\n",
|
||||
"#ohlcv_df = ohlcv_df.loc[\"2024-03-1 15:50:00\":\"2024-03-28 13:40:00\"]\n",
|
||||
"#ohlcv_df.index.strftime('%Y-%m-%d %H').unique()\n",
|
||||
"\n",
|
||||
"ohlcv_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
26673
research/rsi_alpaca.ipynb
Normal file
26673
research/rsi_alpaca.ipynb
Normal file
File diff suppressed because one or more lines are too long
1639
research/strat1/strat1_v1_MULTI.ipynb
Normal file
1639
research/strat1/strat1_v1_MULTI.ipynb
Normal file
File diff suppressed because one or more lines are too long
1526
research/strat1/strat1_v1_SINGLE.ipynb
Normal file
1526
research/strat1/strat1_v1_SINGLE.ipynb
Normal file
File diff suppressed because one or more lines are too long
23637
research/test.ipynb
Normal file
23637
research/test.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
421
research/test1sbars.ipynb
Normal file
421
research/test1sbars.ipynb
Normal file
@ -0,0 +1,421 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from v2realbot.tools.loadbatch import load_batch\n",
|
||||
"from v2realbot.utils.utils import zoneNY\n",
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import vectorbtpro as vbt\n",
|
||||
"from itables import init_notebook_mode, show\n",
|
||||
"\n",
|
||||
"init_notebook_mode(all_interactive=True)\n",
|
||||
"\n",
|
||||
"vbt.settings.set_theme(\"dark\")\n",
|
||||
"vbt.settings['plotting']['layout']['width'] = 1280\n",
|
||||
"vbt.settings.plotting.auto_rangebreaks = True\n",
|
||||
"# Set the option to display with pagination\n",
|
||||
"pd.set_option('display.notebook_repr_html', True)\n",
|
||||
"pd.set_option('display.max_rows', 10) # Number of rows per page\n",
|
||||
"\n",
|
||||
"res, df = load_batch(batch_id=\"0fb5043a\", #46 days 1.3 - 6.5.\n",
|
||||
" space_resolution_evenly=False,\n",
|
||||
" indicators_columns=[\"Rsi14\"],\n",
|
||||
" main_session_only=True,\n",
|
||||
" verbose = False)\n",
|
||||
"if res < 0:\n",
|
||||
" print(\"Error\" + str(res) + str(df))\n",
|
||||
"df = df[\"bars\"]\n",
|
||||
"\n",
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# filter dates"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#filter na dny\n",
|
||||
"# dates_of_interest = pd.to_datetime(['2024-04-22', '2024-04-23']).tz_localize('US/Eastern')\n",
|
||||
"# filtered_df = df.loc[df.index.normalize().isin(dates_of_interest)]\n",
|
||||
"\n",
|
||||
"# df = filtered_df\n",
|
||||
"# df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import plotly.io as pio\n",
|
||||
"pio.renderers.default = 'notebook'\n",
|
||||
"\n",
|
||||
"#naloadujeme do vbt symbol as column\n",
|
||||
"basic_data = vbt.Data.from_data({\"BAC\": df}, tz_convert=zoneNY)\n",
|
||||
"start_date = pd.Timestamp('2024-03-12 09:30', tz=zoneNY)\n",
|
||||
"end_date = pd.Timestamp('2024-03-13 16:00', tz=zoneNY)\n",
|
||||
"\n",
|
||||
"#basic_data = basic_data.transform(lambda df: df[df.index.date == start_date.date()])\n",
|
||||
"#basic_data = basic_data.transform(lambda df: df[(df.index >= start_date) & (df.index <= end_date)])\n",
|
||||
"#basic_data.data[\"BAC\"].info()\n",
|
||||
"\n",
|
||||
"# fig = basic_data.plot(plot_volume=False)\n",
|
||||
"# pivot_info = basic_data.run(\"pivotinfo\", up_th=0.003, down_th=0.002)\n",
|
||||
"# #pivot_info.plot()\n",
|
||||
"# pivot_info.plot(fig=fig, conf_value_trace_kwargs=dict(visible=True))\n",
|
||||
"# fig.show()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# rsi14 = basic_data.data[\"BAC\"][\"Rsi14\"].rename(\"Rsi14\")\n",
|
||||
"\n",
|
||||
"# rsi14.vbt.plot().show()\n",
|
||||
"#basic_data.xloc[\"09:30\":\"10:00\"].data[\"BAC\"].vbt.ohlcv.plot().show()\n",
|
||||
"\n",
|
||||
"vbt.settings.plotting.auto_rangebreaks = True\n",
|
||||
"#basic_data.data[\"BAC\"].vbt.ohlcv.plot()\n",
|
||||
"\n",
|
||||
"#basic_data.data[\"BAC\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"m1_data = basic_data[['Open', 'High', 'Low', 'Close', 'Volume']]\n",
|
||||
"\n",
|
||||
"m1_data.data[\"BAC\"]\n",
|
||||
"#m5_data = m1_data.resample(\"5T\")\n",
|
||||
"\n",
|
||||
"#m5_data.data[\"BAC\"].head(10)\n",
|
||||
"\n",
|
||||
"# m15_data = m1_data.resample(\"15T\")\n",
|
||||
"\n",
|
||||
"# m15 = m15_data.data[\"BAC\"]\n",
|
||||
"\n",
|
||||
"# m15.vbt.ohlcv.plot()\n",
|
||||
"\n",
|
||||
"# m1_data.wrapper.index\n",
|
||||
"\n",
|
||||
"# m1_resampler = m1_data.wrapper.get_resampler(\"1T\")\n",
|
||||
"# m1_resampler.index_difference(reverse=True)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# m5_resampler.prettify()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# defining ENTRY WINDOW and forced EXIT window"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#m1_data.data[\"BAC\"].info()\n",
|
||||
"import datetime\n",
|
||||
"# Define the market open and close times\n",
|
||||
"market_open = datetime.time(9, 30)\n",
|
||||
"market_close = datetime.time(16, 0)\n",
|
||||
"entry_window_opens = 1\n",
|
||||
"entry_window_closes = 350\n",
|
||||
"\n",
|
||||
"forced_exit_start = 380\n",
|
||||
"forced_exit_end = 390\n",
|
||||
"\n",
|
||||
"forced_exit = m1_data.symbol_wrapper.fill(False)\n",
|
||||
"entry_window_open= m1_data.symbol_wrapper.fill(False)\n",
|
||||
"\n",
|
||||
"# Calculate the time difference in minutes from market open for each timestamp\n",
|
||||
"elapsed_min_from_open = (forced_exit.index.hour - market_open.hour) * 60 + (forced_exit.index.minute - market_open.minute)\n",
|
||||
"\n",
|
||||
"entry_window_open[(elapsed_min_from_open >= entry_window_opens) & (elapsed_min_from_open < entry_window_closes)] = True\n",
|
||||
"forced_exit[(elapsed_min_from_open >= forced_exit_start) & (elapsed_min_from_open < forced_exit_end)] = True\n",
|
||||
"\n",
|
||||
"#entry_window_open.info()\n",
|
||||
"# forced_exit.tail(100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"close = m1_data.close\n",
|
||||
"\n",
|
||||
"rsi = vbt.RSI.run(close, window=14)\n",
|
||||
"\n",
|
||||
"long_entries = (rsi.rsi.vbt.crossed_below(20) & entry_window_open)\n",
|
||||
"long_exits = (rsi.rsi.vbt.crossed_above(70) | forced_exit)\n",
|
||||
"#long_entries.info()\n",
|
||||
"#number of trues and falses in long_entries\n",
|
||||
"long_entries.value_counts()\n",
|
||||
"#long_exits.value_counts()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def plot_rsi(rsi, close, entries, exits):\n",
|
||||
" fig = vbt.make_subplots(rows=1, cols=1, shared_xaxes=True, specs=[[{\"secondary_y\": True}]], vertical_spacing=0.02, subplot_titles=(\"RSI\", \"Price\" ))\n",
|
||||
" close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True))\n",
|
||||
" rsi.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False))\n",
|
||||
" entries.vbt.signals.plot_as_entries(rsi.rsi, fig=fig, add_trace_kwargs=dict(secondary_y=False)) \n",
|
||||
" exits.vbt.signals.plot_as_exits(rsi.rsi, fig=fig, add_trace_kwargs=dict(secondary_y=False)) \n",
|
||||
" return fig\n",
|
||||
"\n",
|
||||
"plot_rsi(rsi, close, long_entries, long_exits)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vbt.phelp(vbt.Portfolio.from_signals)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sl_stop = np.arange(0.03/100, 0.2/100, 0.02/100).tolist()\n",
|
||||
"# Using the round function\n",
|
||||
"sl_stop = [round(val, 4) for val in sl_stop]\n",
|
||||
"print(sl_stop)\n",
|
||||
"sl_stop = vbt.Param(sl_stop) #np.nan mean s no stoploss\n",
|
||||
"\n",
|
||||
"pf = vbt.Portfolio.from_signals(close=close, entries=long_entries, sl_stop=sl_stop, tp_stop = sl_stop, exits=long_exits,fees=0.0167/100, freq=\"1s\") #sl_stop=sl_stop, tp_stop = sl_stop, \n",
|
||||
"\n",
|
||||
"#pf.stats()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pf.plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pf[(0.0015,0.0013)].plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pf[0.03].plot_trade_signals()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# pristup k pf jako multi index"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#pf[0.03].plot()\n",
|
||||
"#pf.order_records\n",
|
||||
"pf[(0.03)].stats()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#zgrupovane statistiky\n",
|
||||
"stats_df = pf.stats([\n",
|
||||
" 'total_return',\n",
|
||||
" 'total_trades',\n",
|
||||
" 'win_rate',\n",
|
||||
" 'expectancy'\n",
|
||||
"], agg_func=None)\n",
|
||||
"stats_df\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"stats_df.nlargest(50, 'Total Return [%]')\n",
|
||||
"#stats_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"pf[(0.0011,0.0013)].plot()\n",
|
||||
"\n",
|
||||
"#pf[(0.0011,0.0013000000000000002)].plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from pandas.tseries.offsets import DateOffset\n",
|
||||
"\n",
|
||||
"temp_data = basic_data['2024-4-22']\n",
|
||||
"temp_data\n",
|
||||
"res1m = temp_data[[\"Open\", \"High\", \"Low\", \"Close\", \"Volume\"]]\n",
|
||||
"\n",
|
||||
"# Define a custom date offset that starts at 9:30 AM and spans 4 hours\n",
|
||||
"custom_offset = DateOffset(hours=4, minutes=30)\n",
|
||||
"\n",
|
||||
"# res1m = res1m.get().resample(\"4H\").agg({ \n",
|
||||
"# \"Open\": \"first\",\n",
|
||||
"# \"High\": \"max\",\n",
|
||||
"# \"Low\": \"min\",\n",
|
||||
"# \"Close\": \"last\",\n",
|
||||
"# \"Volume\": \"sum\"\n",
|
||||
"# })\n",
|
||||
"\n",
|
||||
"res4h = res1m.resample(\"1h\", resample_kwargs=dict(origin=\"start\"))\n",
|
||||
"\n",
|
||||
"res4h.data\n",
|
||||
"\n",
|
||||
"res15m = res1m.resample(\"15T\", resample_kwargs=dict(origin=\"start\"))\n",
|
||||
"\n",
|
||||
"res15m.data[\"BAC\"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"@vbt.njit\n",
|
||||
"def long_entry_place_func_nb(c, low, close, time_in_ns, rsi14, window_open, window_close):\n",
|
||||
" market_open_minutes = 570 # 9 hours * 60 minutes + 30 minutes\n",
|
||||
"\n",
|
||||
" for out_i in range(len(c.out)):\n",
|
||||
" i = c.from_i + out_i\n",
|
||||
"\n",
|
||||
" current_minutes = vbt.dt_nb.hour_nb(time_in_ns[i]) * 60 + vbt.dt_nb.minute_nb(time_in_ns[i])\n",
|
||||
" #print(\"current_minutes\", current_minutes)\n",
|
||||
" # Calculate elapsed minutes since market open at 9:30 AM\n",
|
||||
" elapsed_from_open = current_minutes - market_open_minutes\n",
|
||||
" elapsed_from_open = elapsed_from_open if elapsed_from_open >= 0 else 0\n",
|
||||
" #print( \"elapsed_from_open\", elapsed_from_open)\n",
|
||||
"\n",
|
||||
" #elapsed_from_open = elapsed_minutes_from_open_nb(time_in_ns) \n",
|
||||
" in_window = elapsed_from_open > window_open and elapsed_from_open < window_close\n",
|
||||
" #print(\"in_window\", in_window)\n",
|
||||
" # if in_window:\n",
|
||||
" # print(\"in window\")\n",
|
||||
"\n",
|
||||
" if in_window and rsi14[i] > 60: # and low[i, c.col] <= hit_price: # and hour == 9: # (4)!\n",
|
||||
" return out_i\n",
|
||||
" return -1\n",
|
||||
"\n",
|
||||
"@vbt.njit\n",
|
||||
"def long_exit_place_func_nb(c, high, close, time_index, tp, sl): # (5)!\n",
|
||||
" entry_i = c.from_i - c.wait\n",
|
||||
" entry_price = close[entry_i, c.col]\n",
|
||||
" hit_price = entry_price * (1 + tp)\n",
|
||||
" stop_price = entry_price * (1 - sl)\n",
|
||||
" for out_i in range(len(c.out)):\n",
|
||||
" i = c.from_i + out_i\n",
|
||||
" last_bar_of_day = vbt.dt_nb.day_changed_nb(time_index[i], time_index[i + 1])\n",
|
||||
"\n",
|
||||
" #print(next_day)\n",
|
||||
" if last_bar_of_day: #pokud je dalsi next day, tak zavirame posledni\n",
|
||||
" print(\"ted\",out_i)\n",
|
||||
" return out_i\n",
|
||||
" if close[i, c.col] >= hit_price or close[i, c.col] <= stop_price :\n",
|
||||
" return out_i\n",
|
||||
" return -1\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(np.random.random(size=(5, 10)), columns=list('abcdefghij'))\n",
|
||||
"\n",
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.sum()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
1639
research/test1sbars_roc.ipynb
Normal file
1639
research/test1sbars_roc.ipynb
Normal file
File diff suppressed because one or more lines are too long
45
restart.sh
Executable file
45
restart.sh
Executable file
@ -0,0 +1,45 @@
|
||||
#!/bin/bash
|
||||
|
||||
# file: restart.sh
|
||||
|
||||
# Usage: ./restart.sh [test|prod|all]
|
||||
|
||||
# Define server addresses
|
||||
TEST_SERVER="david@142.132.188.109"
|
||||
PROD_SERVER="david@5.161.179.223"
|
||||
|
||||
# Define the remote directory where the script is located
|
||||
REMOTE_DIR="v2trading"
|
||||
|
||||
# Check for argument
|
||||
if [ "$#" -ne 1 ]; then
|
||||
echo "Usage: $0 [test|prod|all]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Function to restart a server
|
||||
restart_server() {
|
||||
local server=$1
|
||||
echo "Connecting to $server to restart the Python app..."
|
||||
ssh -t $server "cd $REMOTE_DIR && . ~/.bashrc && ./run.sh restart" # Sourcing .bashrc here
|
||||
echo "Operation completed on $server."
|
||||
}
|
||||
|
||||
# Select the server based on the input argument
|
||||
case $1 in
|
||||
test)
|
||||
restart_server $TEST_SERVER
|
||||
;;
|
||||
prod)
|
||||
restart_server $PROD_SERVER
|
||||
;;
|
||||
all)
|
||||
restart_server $TEST_SERVER
|
||||
restart_server $PROD_SERVER
|
||||
;;
|
||||
*)
|
||||
echo "Invalid argument: $1. Use 'test', 'prod', or 'all'."
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
|
||||
15
run.sh
15
run.sh
@ -26,12 +26,27 @@ PYTHON_TO_USE="python3"
|
||||
|
||||
#----END EDITABLE VARS-------
|
||||
|
||||
# Additions for handling strat.log backup
|
||||
HISTORY_DIR="$HOME/stratlogs"
|
||||
TIMESTAMP=$(date +"%Y%m%d-%H%M%S")
|
||||
LOG_FILE="strat.log"
|
||||
BACKUP_LOG_FILE="$HISTORY_DIR/${TIMESTAMP}_$LOG_FILE"
|
||||
|
||||
# If virtualenv specified & exists, using that version of python instead.
|
||||
if [ -d "$VIRTUAL_ENV_DIR" ]; then
|
||||
PYTHON_TO_USE="$VIRTUAL_ENV_DIR/bin/python"
|
||||
fi
|
||||
|
||||
start() {
|
||||
# Check and create history directory if it doesn't exist
|
||||
[ ! -d "$HISTORY_DIR" ] && mkdir -p "$HISTORY_DIR"
|
||||
|
||||
# Check if strat.log exists and back it up
|
||||
if [ -f "$LOG_FILE" ]; then
|
||||
mv "$LOG_FILE" "$BACKUP_LOG_FILE"
|
||||
echo "Backed up log to $BACKUP_LOG_FILE"
|
||||
fi
|
||||
|
||||
if [ ! -e "$OUTPUT_PID_PATH/$OUTPUT_PID_FILE" ]; then
|
||||
nohup "$PYTHON_TO_USE" ./$SCRIPT_TO_EXECUTE_PLUS_ARGS > strat.log 2>&1 & echo $! > "$OUTPUT_PID_PATH/$OUTPUT_PID_FILE"
|
||||
echo "Started $SCRIPT_TO_EXECUTE_PLUS_ARGS @ Process: $!"
|
||||
|
||||
2
setup.py
2
setup.py
@ -1,7 +1,7 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
setup(name='v2realbot',
|
||||
version='0.9',
|
||||
version='0.91',
|
||||
description='Realbot trader',
|
||||
author='David Brazda',
|
||||
author_email='davidbrazda61@gmail.com',
|
||||
|
||||
BIN
tested_runner.png
Normal file
BIN
tested_runner.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 21 KiB |
@ -23,12 +23,12 @@ clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY,
|
||||
|
||||
#get previous days bar
|
||||
|
||||
datetime_object_from = datetime.datetime(2023, 10, 11, 4, 0, 00, tzinfo=datetime.timezone.utc)
|
||||
datetime_object_to = datetime.datetime(2023, 10, 16, 16, 1, 00, tzinfo=datetime.timezone.utc)
|
||||
calendar_request = GetCalendarRequest(start=datetime_object_from,end=datetime_object_to)
|
||||
cal_dates = clientTrading.get_calendar(calendar_request)
|
||||
print(cal_dates)
|
||||
bar_request = StockBarsRequest(symbol_or_symbols="BAC",timeframe=TimeFrame.Day, start=datetime_object_from, end=datetime_object_to, feed=DataFeed.SIP)
|
||||
datetime_object_from = datetime.datetime(2024, 3, 9, 13, 29, 00, tzinfo=datetime.timezone.utc)
|
||||
datetime_object_to = datetime.datetime(2024, 3, 11, 20, 1, 00, tzinfo=datetime.timezone.utc)
|
||||
# calendar_request = GetCalendarRequest(start=datetime_object_from,end=datetime_object_to)
|
||||
# cal_dates = clientTrading.get_calendar(calendar_request)
|
||||
# print(cal_dates)
|
||||
bar_request = StockBarsRequest(symbol_or_symbols="BAC",timeframe=TimeFrame.Minute, start=datetime_object_from, end=datetime_object_to, feed=DataFeed.SIP)
|
||||
|
||||
# bars = client.get_stock_bars(bar_request).df
|
||||
|
||||
|
||||
@ -23,7 +23,7 @@ from rich import print
|
||||
from collections import defaultdict
|
||||
from pandas import to_datetime
|
||||
from msgpack.ext import Timestamp
|
||||
from v2realbot.utils.historicals import convert_daily_bars
|
||||
from v2realbot.utils.historicals import convert_historical_bars
|
||||
|
||||
def get_last_close():
|
||||
pass
|
||||
@ -38,7 +38,7 @@ def get_historical_bars(symbol: str, time_from: datetime, time_to: datetime, tim
|
||||
bars: BarSet = stock_client.get_stock_bars(bar_request)
|
||||
print("puvodni bars", bars["BAC"])
|
||||
print(bars)
|
||||
return convert_daily_bars(bars[symbol])
|
||||
return convert_historical_bars(bars[symbol])
|
||||
|
||||
|
||||
#v initu plnime pozadovana historicka data do historicals[]
|
||||
|
||||
@ -1,12 +1,14 @@
|
||||
import scipy.interpolate as spi
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# x = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
|
||||
# y = [4, 7, 11, 16, 22, 29, 38, 49, 63, 80]
|
||||
|
||||
x = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
|
||||
y = [4, 7, 11, 16, 22, 29, 38, 49, 63, 80]
|
||||
|
||||
|
||||
y_interp = spi.interp1d(x, y)
|
||||
val = 10
|
||||
new = np.interp(val, [0, 50, 100], [0, 1, 2])
|
||||
print(new)
|
||||
# y_interp = spi.interp1d(x, y)
|
||||
|
||||
#find y-value associated with x-value of 13
|
||||
#print(y_interp(13))
|
||||
|
||||
File diff suppressed because one or more lines are too long
18
testy/createbatchimage.py
Normal file
18
testy/createbatchimage.py
Normal file
@ -0,0 +1,18 @@
|
||||
import argparse
|
||||
import v2realbot.reporting.metricstoolsimage as mt
|
||||
|
||||
# Parse the command-line arguments
|
||||
# parser = argparse.ArgumentParser(description="Generate trading report image with batch ID")
|
||||
# parser.add_argument("batch_id", type=str, help="The batch ID for the report")
|
||||
# args = parser.parse_args()
|
||||
|
||||
# batch_id = args.batch_id
|
||||
|
||||
# Generate the report image
|
||||
res, val = mt.generate_trading_report_image(batch_id="4d7dc163")
|
||||
|
||||
# Print the result
|
||||
if res == 0:
|
||||
print("BATCH REPORT CREATED")
|
||||
else:
|
||||
print(f"BATCH REPORT ERROR - {val}")
|
||||
89
testy/getrunnerdetail.py
Normal file
89
testy/getrunnerdetail.py
Normal file
@ -0,0 +1,89 @@
|
||||
|
||||
from v2realbot.common.model import RunDay, StrategyInstance, Runner, RunRequest, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, RunArchiveChange, Bar, TradeEvent, TestList, Intervals, ConfigItem, InstantIndicator, DataTablesRequest
|
||||
import v2realbot.controller.services as cs
|
||||
from v2realbot.utils.utils import slice_dict_lists,zoneUTC,safe_get, AttributeDict
|
||||
id = "b11c66d9-a9b6-475a-9ac1-28b11e1b4edf"
|
||||
state = AttributeDict(vars={})
|
||||
|
||||
##základ pro init_attached_data in strategy.init
|
||||
|
||||
# def get_previous_runner(state):
|
||||
# runner : Runner
|
||||
# res, runner = cs.get_runner(state.runner_id)
|
||||
# if res < 0:
|
||||
# print(f"Not running {id}")
|
||||
# return 0, None
|
||||
|
||||
# return 0, runner.batch_id
|
||||
|
||||
def attach_previous_data(state):
|
||||
runner : Runner
|
||||
#get batch_id of current runer
|
||||
res, runner = cs.get_runner(state.runner_id)
|
||||
if res < 0 or runner.batch_id is None:
|
||||
print(f"Couldnt get previous runner {val}")
|
||||
return None
|
||||
|
||||
batch_id = runner.batch_id
|
||||
#batch_id = "6a6b0bcf"
|
||||
|
||||
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id, "desc")
|
||||
if res < 0:
|
||||
msg = f"error whne fetching runners of batch {batch_id} {runner_ids}"
|
||||
print(msg)
|
||||
return None
|
||||
|
||||
if runner_ids is None or len(runner_ids) == 0:
|
||||
print(f"no runners found for batch {batch_id} {runner_ids}")
|
||||
return None
|
||||
|
||||
last_runner = runner_ids[0]
|
||||
print("Previous runner identified:", last_runner)
|
||||
|
||||
#get details from the runner
|
||||
res, val = cs.get_archived_runner_details_byID(last_runner)
|
||||
if res < 0:
|
||||
print(f"no archived runner {last_runner}")
|
||||
|
||||
detail = RunArchiveDetail(**val)
|
||||
#print("toto jsme si dotahnuli", detail.bars)
|
||||
|
||||
# from stratvars directives
|
||||
attach_previous_bars_indicators = safe_get(state.vars, "attach_previous_bars_indicators", 50)
|
||||
attach_previous_cbar_indicators = safe_get(state.vars, "attach_previous_cbar_indicators", 50)
|
||||
# [stratvars]
|
||||
# attach_previous_bars_indicators = 50
|
||||
# attach_previous_cbar_indicators = 50
|
||||
|
||||
#indicators datetime utc
|
||||
indicators = slice_dict_lists(d=detail.indicators[0],last_item=attach_previous_bars_indicators, time_to_datetime=True)
|
||||
|
||||
#time -datetime utc, updated - timestamp float
|
||||
bars = slice_dict_lists(d=detail.bars, last_item=attach_previous_bars_indicators, time_to_datetime=True)
|
||||
|
||||
#cbar_indicatzors #float
|
||||
cbar_inds = slice_dict_lists(d=detail.indicators[1],last_item=attach_previous_cbar_indicators)
|
||||
|
||||
#USE these as INITs - TADY SI TO JESTE ZASTAVIT a POROVNAT
|
||||
print(f"{state.indicators=} NEW:{indicators=}")
|
||||
state.indicators = indicators
|
||||
print(f"{state.bars=} NEW:{bars=}")
|
||||
state.bars = bars
|
||||
print(f"{state.cbar_indicators=} NEW:{cbar_inds=}")
|
||||
state.cbar_indicators = cbar_inds
|
||||
|
||||
print("BARS and INDS INITIALIZED")
|
||||
#bars
|
||||
|
||||
|
||||
#tady budou pripadne dalsi inicializace, z ext_data
|
||||
print("EXT_DATA", detail.ext_data)
|
||||
#podle urciteho nastaveni napr.v konfiguraci se pouziji urcite promenne
|
||||
|
||||
#pridavame dailyBars z extData
|
||||
# if hasattr(detail, "ext_data") and "dailyBars" in detail.ext_data:
|
||||
# state.dailyBars = detail.ext_data["dailyBars"]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
attach_previous_data(state)
|
||||
@ -2,7 +2,7 @@ import sqlite3
|
||||
from v2realbot.config import DATA_DIR
|
||||
from v2realbot.utils.utils import json_serial
|
||||
from uuid import UUID, uuid4
|
||||
import json
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
|
||||
from v2realbot.common.model import RunArchiveDetail, RunArchive, RunArchiveView
|
||||
@ -35,14 +35,14 @@ def row_to_object(row: dict) -> RunArchive:
|
||||
end_positions=row.get('end_positions'),
|
||||
end_positions_avgp=row.get('end_positions_avgp'),
|
||||
metrics=row.get('open_orders'),
|
||||
#metrics=json.loads(row.get('metrics')) if row.get('metrics') else None,
|
||||
#metrics=orjson.loads(row.get('metrics')) if row.get('metrics') else None,
|
||||
stratvars_toml=row.get('stratvars_toml')
|
||||
)
|
||||
|
||||
def get_all_archived_runners():
|
||||
conn = pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_header")
|
||||
finally:
|
||||
@ -54,7 +54,7 @@ def insert_archive_header(archeader: RunArchive):
|
||||
conn = pool.get_connection()
|
||||
try:
|
||||
c = conn.cursor()
|
||||
json_string = json.dumps(archeader, default=json_serial)
|
||||
json_string = orjson.dumps(archeader, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
if archeader.batch_id is not None:
|
||||
statement = f"INSERT INTO runner_header (runner_id, batch_id, ra) VALUES ('{str(archeader.id)}','{str(archeader.batch_id)}','{json_string}')"
|
||||
else:
|
||||
@ -103,7 +103,7 @@ def migrate_to_columns(ra: RunArchive):
|
||||
SET strat_id=?, batch_id=?, symbol=?, name=?, note=?, started=?, stopped=?, mode=?, account=?, bt_from=?, bt_to=?, strat_json=?, settings=?, ilog_save=?, profit=?, trade_count=?, end_positions=?, end_positions_avgp=?, metrics=?, stratvars_toml=?
|
||||
WHERE runner_id=?
|
||||
''',
|
||||
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, json.dumps(ra.strat_json), json.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, json.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
|
||||
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, orjson.dumps(ra.strat_json), orjson.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, orjson.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
|
||||
|
||||
conn.commit()
|
||||
finally:
|
||||
|
||||
@ -2,7 +2,7 @@ import sqlite3
|
||||
from v2realbot.config import DATA_DIR
|
||||
from v2realbot.utils.utils import json_serial
|
||||
from uuid import UUID, uuid4
|
||||
import json
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
|
||||
from v2realbot.common.model import RunArchiveDetail
|
||||
@ -11,7 +11,7 @@ from tinydb import TinyDB, Query, where
|
||||
sqlite_db_file = DATA_DIR + "/v2trading.db"
|
||||
conn = sqlite3.connect(sqlite_db_file)
|
||||
#standardne vraci pole tuplů, kde clen tuplu jsou sloupce
|
||||
#conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
#conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
#conn.row_factory = lambda c, r: r[0]
|
||||
#conn.row_factory = sqlite3.Row
|
||||
|
||||
@ -28,7 +28,7 @@ insert_list = [dict(time=datetime.now().timestamp(), side="ddd", rectype=RecordT
|
||||
|
||||
def insert_log(runner_id: UUID, time: float, logdict: dict):
|
||||
c = conn.cursor()
|
||||
json_string = json.dumps(logdict, default=json_serial)
|
||||
json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
|
||||
conn.commit()
|
||||
return res.rowcount
|
||||
@ -37,14 +37,14 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
|
||||
c = conn.cursor()
|
||||
insert_data = []
|
||||
for i in loglist:
|
||||
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
|
||||
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME))
|
||||
insert_data.append(row)
|
||||
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
|
||||
conn.commit()
|
||||
return c.rowcount
|
||||
|
||||
# c = conn.cursor()
|
||||
# json_string = json.dumps(logdict, default=json_serial)
|
||||
# json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
# res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
|
||||
# print(res)
|
||||
# conn.commit()
|
||||
@ -52,7 +52,7 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
|
||||
|
||||
#returns list of ilog jsons
|
||||
def read_log_window(runner_id: UUID, timestamp_from: float, timestamp_to: float):
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_logs WHERE runner_id='{str(runner_id)}' AND time >={ts_from} AND time <={ts_to}")
|
||||
return res.fetchall()
|
||||
@ -94,21 +94,21 @@ def delete_logs(runner_id: UUID):
|
||||
|
||||
def insert_archive_detail(archdetail: RunArchiveDetail):
|
||||
c = conn.cursor()
|
||||
json_string = json.dumps(archdetail, default=json_serial)
|
||||
json_string = orjson.dumps(archdetail, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = c.execute("INSERT INTO runner_detail VALUES (?,?)",[str(archdetail["id"]), json_string])
|
||||
conn.commit()
|
||||
return res.rowcount
|
||||
|
||||
#returns list of details
|
||||
def get_all_archive_detail():
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_detail")
|
||||
return res.fetchall()
|
||||
|
||||
#vrátí konkrétní
|
||||
def get_archive_detail_byID(runner_id: UUID):
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_detail WHERE runner_id='{str(runner_id)}'")
|
||||
return res.fetchone()
|
||||
@ -123,7 +123,7 @@ def delete_archive_detail(runner_id: UUID):
|
||||
|
||||
def get_all_archived_runners_detail():
|
||||
arch_detail_file = DATA_DIR + "/arch_detail.json"
|
||||
db_arch_d = TinyDB(arch_detail_file, default=json_serial)
|
||||
db_arch_d = TinyDB(arch_detail_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = db_arch_d.all()
|
||||
return 0, res
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@ from keras.models import Sequential
|
||||
from keras.layers import LSTM, Dense
|
||||
from v2realbot.controller.services import get_archived_runner_details_byID
|
||||
from v2realbot.common.model import RunArchiveDetail
|
||||
import json
|
||||
import orjson
|
||||
|
||||
runner_id = "838e918e-9be0-4251-a968-c13c83f3f173"
|
||||
result = None
|
||||
|
||||
39
testy/pickle.py
Normal file
39
testy/pickle.py
Normal file
@ -0,0 +1,39 @@
|
||||
import pickle
|
||||
import os
|
||||
from v2realbot.config import STRATVARS_UNCHANGEABLES, ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_LIVE_API_KEY, ACCOUNT1_LIVE_SECRET_KEY, DATA_DIR,BT_FILL_CONS_TRADES_REQUIRED,BT_FILL_LOG_SURROUNDING_TRADES,BT_FILL_CONDITION_BUY_LIMIT,BT_FILL_CONDITION_SELL_LIMIT, GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN, MEDIA_DIRECTORY, RUNNER_DETAIL_DIRECTORY
|
||||
|
||||
# #class to persist
|
||||
# class Store:
|
||||
# stratins : List[StrategyInstance] = []
|
||||
# runners: List[Runner] = []
|
||||
# def __init__(self) -> None:
|
||||
# self.db_file = DATA_DIR + "/strategyinstances.cache"
|
||||
# if os.path.exists(self.db_file):
|
||||
# with open (self.db_file, 'rb') as fp:
|
||||
# self.stratins = pickle.load(fp)
|
||||
|
||||
# def save(self):
|
||||
# with open(self.db_file, 'wb') as fp:
|
||||
# pickle.dump(self.stratins, fp)
|
||||
|
||||
|
||||
#db = Store()
|
||||
|
||||
def try_reading_after_skipping_bytes(file_path, skip_bytes, chunk_size=1024):
|
||||
with open(file_path, 'rb') as file:
|
||||
file.seek(skip_bytes) # Skip initial bytes
|
||||
while True:
|
||||
try:
|
||||
data = pickle.load(file)
|
||||
print("Recovered data:", data)
|
||||
break # Exit loop if successful
|
||||
except EOFError:
|
||||
print("Reached end of file without recovering data.")
|
||||
break
|
||||
except pickle.UnpicklingError:
|
||||
# Move ahead in file by chunk_size bytes and try again
|
||||
file.seek(file.tell() + chunk_size, os.SEEK_SET)
|
||||
|
||||
|
||||
file_path = DATA_DIR + "/strategyinstances.cache"
|
||||
try_reading_after_skipping_bytes(file_path,1)
|
||||
74
testy/tablesizes.py
Normal file
74
testy/tablesizes.py
Normal file
@ -0,0 +1,74 @@
|
||||
import queue
|
||||
import sqlite3
|
||||
import threading
|
||||
from appdirs import user_data_dir
|
||||
|
||||
DATA_DIR = user_data_dir("v2realbot")
|
||||
sqlite_db_file = DATA_DIR + "/v2trading.db"
|
||||
|
||||
class ConnectionPool:
|
||||
def __init__(self, max_connections):
|
||||
self.max_connections = max_connections
|
||||
self.connections = queue.Queue(max_connections)
|
||||
self.lock = threading.Lock()
|
||||
|
||||
def get_connection(self):
|
||||
with self.lock:
|
||||
if self.connections.empty():
|
||||
return self.create_connection()
|
||||
else:
|
||||
return self.connections.get()
|
||||
|
||||
def release_connection(self, connection):
|
||||
with self.lock:
|
||||
self.connections.put(connection)
|
||||
|
||||
def create_connection(self):
|
||||
connection = sqlite3.connect(sqlite_db_file, check_same_thread=False)
|
||||
return connection
|
||||
|
||||
|
||||
pool = ConnectionPool(10)
|
||||
|
||||
def get_table_sizes_in_mb():
|
||||
# Connect to the SQLite database
|
||||
conn = pool.get_connection()
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Get the list of tables
|
||||
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
|
||||
tables = cursor.fetchall()
|
||||
|
||||
# Dictionary to store table sizes
|
||||
table_sizes = {}
|
||||
|
||||
for table in tables:
|
||||
table_name = table[0]
|
||||
|
||||
# Get total number of rows in the table
|
||||
cursor.execute(f"SELECT COUNT(*) FROM {table_name};")
|
||||
row_count = cursor.fetchone()[0]
|
||||
|
||||
if row_count > 0:
|
||||
# Sample a few rows (e.g., 10 rows) and calculate average row size
|
||||
cursor.execute(f"SELECT * FROM {table_name} LIMIT 10;")
|
||||
sample_rows = cursor.fetchall()
|
||||
total_sample_size = sum(sum(len(str(cell)) for cell in row) for row in sample_rows)
|
||||
avg_row_size = total_sample_size / len(sample_rows)
|
||||
|
||||
# Estimate table size in megabytes
|
||||
size_in_mb = (avg_row_size * row_count) / (1024 * 1024)
|
||||
else:
|
||||
size_in_mb = 0
|
||||
|
||||
table_sizes[table_name] = {'size_mb': size_in_mb, 'rows': row_count}
|
||||
|
||||
conn.close()
|
||||
return table_sizes
|
||||
|
||||
# Usage example
|
||||
db_path = 'path_to_your_database.db'
|
||||
table_sizes = get_table_sizes_in_mb()
|
||||
for table, info in table_sizes.items():
|
||||
print(f"Table: {table}, Size: {info['size_mb']} MB, Rows: {info['rows']}")
|
||||
|
||||
@ -2,7 +2,7 @@ import sqlite3
|
||||
from v2realbot.config import DATA_DIR
|
||||
from v2realbot.utils.utils import json_serial
|
||||
from uuid import UUID, uuid4
|
||||
import json
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
|
||||
from v2realbot.common.model import RunArchiveDetail
|
||||
@ -11,7 +11,7 @@ from tinydb import TinyDB, Query, where
|
||||
sqlite_db_file = DATA_DIR + "/v2trading.db"
|
||||
conn = sqlite3.connect(sqlite_db_file)
|
||||
#standardne vraci pole tuplů, kde clen tuplu jsou sloupce
|
||||
#conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
#conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
#conn.row_factory = lambda c, r: r[0]
|
||||
#conn.row_factory = sqlite3.Row
|
||||
|
||||
@ -28,7 +28,7 @@ insert_list = [dict(time=datetime.now().timestamp(), side="ddd", rectype=RecordT
|
||||
|
||||
def insert_log(runner_id: UUID, time: float, logdict: dict):
|
||||
c = conn.cursor()
|
||||
json_string = json.dumps(logdict, default=json_serial)
|
||||
json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
|
||||
conn.commit()
|
||||
return res.rowcount
|
||||
@ -37,14 +37,14 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
|
||||
c = conn.cursor()
|
||||
insert_data = []
|
||||
for i in loglist:
|
||||
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
|
||||
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME))
|
||||
insert_data.append(row)
|
||||
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
|
||||
conn.commit()
|
||||
return c.rowcount
|
||||
|
||||
# c = conn.cursor()
|
||||
# json_string = json.dumps(logdict, default=json_serial)
|
||||
# json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
# res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
|
||||
# print(res)
|
||||
# conn.commit()
|
||||
@ -52,7 +52,7 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
|
||||
|
||||
#returns list of ilog jsons
|
||||
def read_log_window(runner_id: UUID, timestamp_from: float, timestamp_to: float):
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_logs WHERE runner_id='{str(runner_id)}' AND time >={ts_from} AND time <={ts_to}")
|
||||
return res.fetchall()
|
||||
@ -94,21 +94,21 @@ def delete_logs(runner_id: UUID):
|
||||
|
||||
def insert_archive_detail(archdetail: RunArchiveDetail):
|
||||
c = conn.cursor()
|
||||
json_string = json.dumps(archdetail, default=json_serial)
|
||||
json_string = orjson.dumps(archdetail, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = c.execute("INSERT INTO runner_detail VALUES (?,?)",[str(archdetail["id"]), json_string])
|
||||
conn.commit()
|
||||
return res.rowcount
|
||||
|
||||
#returns list of details
|
||||
def get_all_archive_detail():
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_detail")
|
||||
return res.fetchall()
|
||||
|
||||
#vrátí konkrétní
|
||||
def get_archive_detail_byID(runner_id: UUID):
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_detail WHERE runner_id='{str(runner_id)}'")
|
||||
return res.fetchone()
|
||||
@ -123,7 +123,7 @@ def delete_archive_detail(runner_id: UUID):
|
||||
|
||||
def get_all_archived_runners_detail():
|
||||
arch_detail_file = DATA_DIR + "/arch_detail.json"
|
||||
db_arch_d = TinyDB(arch_detail_file, default=json_serial)
|
||||
db_arch_d = TinyDB(arch_detail_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
res = db_arch_d.all()
|
||||
return 0, res
|
||||
|
||||
|
||||
@ -46,7 +46,7 @@ db.save()
|
||||
# b = 2
|
||||
|
||||
# def toJson(self):
|
||||
# return json.dumps(self, default=lambda o: o.__dict__)
|
||||
# return orjson.dumps(self, default=lambda o: o.__dict__)
|
||||
|
||||
# db.append(Neco.a)
|
||||
|
||||
|
||||
@ -1,12 +1,12 @@
|
||||
import timeit
|
||||
setup = '''
|
||||
import msgpack
|
||||
import json
|
||||
import orjson
|
||||
from copy import deepcopy
|
||||
data = {'name':'John Doe','ranks':{'sports':13,'edu':34,'arts':45},'grade':5}'''
|
||||
print(timeit.timeit('deepcopy(data)', setup=setup))
|
||||
# 12.0860249996
|
||||
print(timeit.timeit('json.loads(json.dumps(data))', setup=setup))
|
||||
print(timeit.timeit('orjson.loads(orjson.dumps(data))', setup=setup))
|
||||
# 9.07182312012
|
||||
print(timeit.timeit('msgpack.unpackb(msgpack.packb(data))', setup=setup))
|
||||
# 1.42743492126
|
||||
@ -16,7 +16,7 @@ import importlib
|
||||
from queue import Queue
|
||||
from tinydb import TinyDB, Query, where
|
||||
from tinydb.operations import set
|
||||
import json
|
||||
import orjson
|
||||
from rich import print
|
||||
|
||||
|
||||
@ -29,7 +29,7 @@ class RunnerLogger:
|
||||
def __init__(self, runner_id: UUID) -> None:
|
||||
self.runner_id = runner_id
|
||||
runner_log_file = DATA_DIR + "/runner_log.json"
|
||||
db_runner_log = TinyDB(runner_log_file, default=json_serial)
|
||||
db_runner_log = TinyDB(runner_log_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
|
||||
def insert_log_multiple(runner_id: UUID, logList: list):
|
||||
runner_table = db_runner_log.table(str(runner_id))
|
||||
|
||||
@ -16,7 +16,7 @@ import importlib
|
||||
from queue import Queue
|
||||
#from tinydb import TinyDB, Query, where
|
||||
#from tinydb.operations import set
|
||||
import json
|
||||
import orjson
|
||||
from rich import print
|
||||
from tinyflux import Point, TinyFlux
|
||||
|
||||
@ -26,7 +26,7 @@ runner_log_file = DATA_DIR + "/runner_flux__log.json"
|
||||
db_runner_log = TinyFlux(runner_log_file)
|
||||
|
||||
insert_dict = {'datum': datetime.now(), 'side': "dd", 'name': 'david','id': uuid4(), 'order': "neco"}
|
||||
#json.dumps(insert_dict, default=json_serial)
|
||||
#orjson.dumps(insert_dict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
p1 = Point(time=datetime.now(), tags=insert_dict)
|
||||
|
||||
db_runner_log.insert(p1)
|
||||
|
||||
@ -13,7 +13,7 @@ from v2realbot.common.model import Order, TradeUpdate as btTradeUpdate
|
||||
from alpaca.trading.models import TradeUpdate
|
||||
from alpaca.trading.enums import TradeEvent, OrderType, OrderSide, OrderType, OrderStatus
|
||||
from rich import print
|
||||
import json
|
||||
import orjson
|
||||
|
||||
#storage_with_injected_serialization = JSONStorage()
|
||||
|
||||
@ -110,7 +110,7 @@ a = Order(id=uuid4(),
|
||||
limit_price=22.4)
|
||||
|
||||
db_file = DATA_DIR + "/db.json"
|
||||
db = TinyDB(db_file, default=json_serial)
|
||||
db = TinyDB(db_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
|
||||
db.truncate()
|
||||
insert = {'datum': datetime.now(), 'side': OrderSide.BUY, 'name': 'david','id': uuid4(), 'order': orderList}
|
||||
|
||||
|
||||
@ -6,7 +6,7 @@ import secrets
|
||||
from typing import Annotated
|
||||
import os
|
||||
import uvicorn
|
||||
import json
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from v2realbot.utils.utils import zoneNY
|
||||
|
||||
@ -103,7 +103,7 @@ async def websocket_endpoint(
|
||||
'vwap': 123,
|
||||
'updated': 123,
|
||||
'index': 123}
|
||||
await websocket.send_text(json.dumps(data))
|
||||
await websocket.send_text(orjson.dumps(data))
|
||||
except WebSocketDisconnect:
|
||||
print("CLIENT DISCONNECTED for", runner_id)
|
||||
|
||||
|
||||
@ -6,7 +6,7 @@ import secrets
|
||||
from typing import Annotated
|
||||
import os
|
||||
import uvicorn
|
||||
import json
|
||||
import orjson
|
||||
from datetime import datetime
|
||||
from v2realbot.utils.utils import zoneNY
|
||||
|
||||
@ -101,7 +101,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: int):
|
||||
# 'close': 123,
|
||||
# 'open': 123,
|
||||
# 'time': "2019-05-25"}
|
||||
await manager.send_personal_message(json.dumps(data), websocket)
|
||||
await manager.send_personal_message(orjson.dumps(data), websocket)
|
||||
#await manager.broadcast(f"Client #{client_id} says: {data}")
|
||||
except WebSocketDisconnect:
|
||||
manager.disconnect(websocket)
|
||||
|
||||
@ -3,7 +3,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from v2realbot.strategy.base import StrategyState
|
||||
from v2realbot.strategy.StrategyOrderLimitVykladaciNormalizedMYSELL import StrategyOrderLimitVykladaciNormalizedMYSELL
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
|
||||
from v2realbot.utils.utils import zoneNY, print
|
||||
from v2realbot.utils.utils import zoneNY, print, fetch_calendar_data, send_to_telegram
|
||||
from v2realbot.utils.historicals import get_historical_bars
|
||||
from datetime import datetime, timedelta
|
||||
from rich import print as printanyway
|
||||
@ -16,10 +16,13 @@ from v2realbot.strategyblocks.newtrade.signals import signal_search
|
||||
from v2realbot.strategyblocks.activetrade.activetrade_hub import manage_active_trade
|
||||
from v2realbot.strategyblocks.inits.init_indicators import initialize_dynamic_indicators
|
||||
from v2realbot.strategyblocks.inits.init_directives import intialize_directive_conditions
|
||||
from alpaca.trading.requests import GetCalendarRequest
|
||||
from v2realbot.strategyblocks.inits.init_attached_data import attach_previous_data
|
||||
from alpaca.trading.client import TradingClient
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR, OFFLINE_MODE
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
|
||||
from alpaca.trading.models import Calendar
|
||||
from v2realbot.indicators.oscillators import rsi
|
||||
from v2realbot.indicators.moving_averages import sma
|
||||
import numpy as np
|
||||
|
||||
print(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
""""
|
||||
@ -97,9 +100,7 @@ def init(state: StrategyState):
|
||||
#pripadne udelat refresh kazdych x-iterací
|
||||
state.vars['sell_in_progress'] = False
|
||||
state.vars.mode = None
|
||||
state.vars.last_tick_price = 0
|
||||
state.vars.last_50_deltas = []
|
||||
state.vars.last_tick_volume = 0
|
||||
state.vars.next_new = 0
|
||||
state.vars.last_buy_index = None
|
||||
state.vars.last_exit_index = None
|
||||
@ -114,19 +115,33 @@ def init(state: StrategyState):
|
||||
state.vars.blockbuy = 0
|
||||
#models
|
||||
state.vars.loaded_models = {}
|
||||
|
||||
#state attributes for martingale sizing mngmt
|
||||
state.vars["transferables"] = {}
|
||||
state.vars["transferables"]["martingale"] = dict(cont_loss_series_cnt=0)
|
||||
|
||||
#INITIALIZE CBAR INDICATORS - do vlastni funkce
|
||||
#state.cbar_indicators['ivwap'] = []
|
||||
state.vars.last_tick_price = 0
|
||||
state.vars.last_tick_volume = 0
|
||||
state.vars.last_tick_trades = 0
|
||||
state.cbar_indicators['tick_price'] = []
|
||||
state.cbar_indicators['tick_volume'] = []
|
||||
state.cbar_indicators['tick_trades'] = []
|
||||
state.cbar_indicators['CRSI'] = []
|
||||
|
||||
initialize_dynamic_indicators(state)
|
||||
intialize_directive_conditions(state)
|
||||
|
||||
#attach part of yesterdays data, bars, indicators, cbar_indicators
|
||||
attach_previous_data(state)
|
||||
|
||||
#intitialize indicator mapping (for use in operation) - mozna presunout do samostatne funkce prip dat do base kdyz se osvedci
|
||||
local_dict_cbar_inds = {key: state.cbar_indicators[key] for key in state.cbar_indicators.keys() if key != "time"}
|
||||
local_dict_inds = {key: state.indicators[key] for key in state.indicators.keys() if key != "time"}
|
||||
local_dict_bars = {key: state.bars[key] for key in state.bars.keys() if key != "time"}
|
||||
|
||||
state.ind_mapping = {**local_dict_inds, **local_dict_bars}
|
||||
state.ind_mapping = {**local_dict_inds, **local_dict_bars, **local_dict_cbar_inds}
|
||||
print("IND MAPPING DONE:", state.ind_mapping)
|
||||
|
||||
#30 DAYS historicall data fill - pridat do base pokud se osvedci
|
||||
@ -144,7 +159,8 @@ def init(state: StrategyState):
|
||||
time_to = state.bt.bp_from
|
||||
|
||||
|
||||
#TBD pridat i hour data - pro pocitani RSI na hodine
|
||||
#TBD NASLEDUJICI SEKCE BUDE PREDELANA, ABY UMOZNOVALA LIBOVOLNE ROZLISENI
|
||||
#INDIKATORY SE BUDOU TAKE BRAT Z KONFIGURACE
|
||||
#get 30 days (history_datetime_from musí být alespoň -2 aby to bralo i vcerejsek)
|
||||
#history_datetime_from = time_to - timedelta(days=40)
|
||||
#get previous market day
|
||||
@ -156,17 +172,25 @@ def init(state: StrategyState):
|
||||
#time_to = time_to.date()
|
||||
|
||||
today = time_to.date()
|
||||
several_days_ago = today - timedelta(days=40)
|
||||
several_days_ago = today - timedelta(days=60)
|
||||
#printanyway(f"{today=}",f"{several_days_ago=}")
|
||||
clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
|
||||
#clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
|
||||
#get all market days from here to 40days ago
|
||||
calendar_request = GetCalendarRequest(start=several_days_ago,end=today)
|
||||
cal_dates = clientTrading.get_calendar(calendar_request)
|
||||
|
||||
#calendar_request = GetCalendarRequest(start=several_days_ago,end=today)
|
||||
|
||||
cal_dates = fetch_calendar_data(several_days_ago, today)
|
||||
#cal_dates = clientTrading.get_calendar(calendar_request)
|
||||
|
||||
#find the first market day - 40days ago
|
||||
#history_datetime_from = zoneNY.localize(cal_dates[0].open)
|
||||
history_datetime_from = cal_dates[0].open
|
||||
|
||||
#ulozime si dnesni market close
|
||||
#pro automaticke ukonceni
|
||||
#TODO pripadne enablovat na parametr
|
||||
state.today_market_close = zoneNY.localize(cal_dates[-1].close)
|
||||
|
||||
# Find the previous market day
|
||||
history_datetime_to = None
|
||||
for session in reversed(cal_dates):
|
||||
@ -180,6 +204,74 @@ def init(state: StrategyState):
|
||||
#printanyway(history_datetime_from, history_datetime_to)
|
||||
#az do predchziho market dne dne
|
||||
state.dailyBars = get_historical_bars(state.symbol, history_datetime_from, history_datetime_to, TimeFrame.Day)
|
||||
|
||||
#NOTE zatim pridano takto do baru dalsi indikatory
|
||||
#BUDE PREDELANO - v rámci custom rozliseni a static indikátoru
|
||||
if state.dailyBars is None:
|
||||
print("Nepodařilo se načíst denní bary")
|
||||
err_msg = f"Nepodařilo se načíst denní bary (get_historical_bars) pro {state.symbol} od {history_datetime_from} do {history_datetime_to} ve strat.init. Probably wrong symbol?"
|
||||
send_to_telegram(err_msg)
|
||||
raise Exception(err_msg)
|
||||
|
||||
#RSI vraci pouze pro vsechny + prepend with zeros nepocita prvnich N (dle rsi length)
|
||||
rsi_calculated = rsi(state.dailyBars["vwap"], 14).tolist()
|
||||
num_zeros_to_prepend = len(state.dailyBars["vwap"]) - len(rsi_calculated)
|
||||
state.dailyBars["rsi"] = [0]*num_zeros_to_prepend + rsi_calculated
|
||||
|
||||
#VOLUME
|
||||
volume_sma = sma(state.dailyBars["volume"], 10) #vraci celkovy pocet - 10
|
||||
items_to_prepend = len(state.dailyBars["volume"]) - len(volume_sma)
|
||||
|
||||
volume_sma = np.hstack((np.full(items_to_prepend, np.nan), volume_sma))
|
||||
|
||||
#normalized divergence currvol-smavolume/currvol+smavolume
|
||||
volume_data = np.array(state.dailyBars["volume"])
|
||||
normalized_divergence = (volume_data - volume_sma) / (volume_data + volume_sma)
|
||||
# Replace NaN values with 0 or some other placeholder if needed
|
||||
normalized_divergence = np.nan_to_num(normalized_divergence)
|
||||
volume_sma = np.nan_to_num(volume_sma)
|
||||
state.dailyBars["volume_sma_divergence"] = normalized_divergence.tolist()
|
||||
state.dailyBars["volume_sma"] = volume_sma.tolist()
|
||||
|
||||
#vwap_cum and divergence
|
||||
volume_np = np.array(state.dailyBars["volume"])
|
||||
close_np = np.array(state.dailyBars["close"])
|
||||
high_np = np.array(state.dailyBars["high"])
|
||||
low_np = np.array(state.dailyBars["low"])
|
||||
vwap_cum_np = np.cumsum(((high_np + low_np + close_np) / 3) * volume_np) / np.cumsum(volume_np)
|
||||
state.dailyBars["vwap_cum"] = vwap_cum_np.tolist()
|
||||
normalized_divergence = (close_np - vwap_cum_np) / (close_np + vwap_cum_np)
|
||||
#divergence close ceny a cumulativniho vwapu
|
||||
state.dailyBars["div_vwap_cum"] = normalized_divergence.tolist()
|
||||
|
||||
#creates log returns for open, close, high and lows
|
||||
open_np = np.array(state.dailyBars["open"])
|
||||
state.dailyBars["open_log_return"] = np.log(open_np[1:] / open_np[:-1]).tolist()
|
||||
state.dailyBars["close_log_return"] = np.log(close_np[1:] / close_np[:-1]).tolist()
|
||||
state.dailyBars["high_log_return"] = np.log(high_np[1:] / high_np[:-1]).tolist()
|
||||
state.dailyBars["low_log_return"] = np.log(low_np[1:] / low_np[:-1]).tolist()
|
||||
|
||||
|
||||
#Features to emphasize the shape characteristics of each candlestick. For use in ML https://chat.openai.com/c/c1a22550-643b-4037-bace-3e810dbce087
|
||||
# Calculate the ratios of
|
||||
total_range = high_np - low_np
|
||||
upper_shadow = (high_np - np.maximum(open_np, close_np)) / total_range
|
||||
lower_shadow = (np.minimum(open_np, close_np) - low_np) / total_range
|
||||
body_size = np.abs(close_np - open_np) / total_range
|
||||
body_position = np.where(close_np >= open_np,
|
||||
(close_np - low_np) / total_range,
|
||||
(open_np - low_np) / total_range)
|
||||
|
||||
#other possibilities
|
||||
# Open to Close Change: (close[-1] - open[-1]) / open[-1]
|
||||
# High to Low Range: (high[-1] - low[-1]) / low[-1]
|
||||
|
||||
# Store the ratios in the bars dictionary
|
||||
state.dailyBars['upper_shadow_ratio'] = upper_shadow.tolist()
|
||||
state.dailyBars['lower_shadow_ratio'] = lower_shadow.tolist()
|
||||
state.dailyBars['body_size_ratio'] = body_size.tolist()
|
||||
state.dailyBars['body_position_ratio'] = body_position.tolist()
|
||||
|
||||
#printanyway("daily bars FILLED", state.dailyBars)
|
||||
#zatim ukladame do extData - pro instant indicatory a gui
|
||||
state.extData["dailyBars"] = state.dailyBars
|
||||
|
||||
@ -1,102 +0,0 @@
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
import v2realbot.ml.mlutils as mu
|
||||
from keras.layers import LSTM, Dense
|
||||
import matplotlib.pyplot as plt
|
||||
from v2realbot.ml.ml import ModelML
|
||||
from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
|
||||
from v2realbot.controller.services import get_archived_runner_details_byID, update_archive_detail
|
||||
# from collections import defaultdict
|
||||
# from operator import itemgetter
|
||||
from joblib import load
|
||||
|
||||
#TODO - DO API
|
||||
# v ml atomicke api pro evaluaci (runneru, batche)
|
||||
# v services: model.add_vector_prediction_to_archrunner_as_new_indicator (vrátí v podstate obohacený archDetail) - nebo i ukládat do db? uvidime
|
||||
# v rest api prevolani
|
||||
# db support: zatim jen ciselnik modelu + jeho zakladni nastaveni, obrabeci api, load modelu zatim z file
|
||||
|
||||
cfg: ModelML = mu.load_model("model1", "0.1")
|
||||
|
||||
|
||||
#EVALUATE SPECIFIC RUNNER - VECTOR BASED (toto dat do samostatne API pripadne pak udelat nadstavnu na batch a runners)
|
||||
#otestuje model na neznamem runnerovi, seznamu runneru nebo batch_id
|
||||
|
||||
|
||||
|
||||
runner_id = "a38fc269-8df3-4374-9506-f0280d798854"
|
||||
save_new_ind = True
|
||||
source_data, target_data, rows_in_day = cfg.load_data(runners_ids=[runner_id])
|
||||
|
||||
if len(rows_in_day) > 1:
|
||||
#pro vis se cela tato sluzba volat v loopu
|
||||
raise Exception("Vytvareni indikatoru dostupne zatim jen pro jeden runner")
|
||||
|
||||
#scalujeme X
|
||||
source_data = cfg.scalerX.fit_transform(source_data)
|
||||
|
||||
#tady si vyzkousim i skrz vice runneru
|
||||
X_eval, y_eval, y_eval_ref = cfg.create_sequences(combined_data=source_data, target_data=target_data,remove_cross_sequences=True, rows_in_day=rows_in_day)
|
||||
|
||||
#toto nutne?
|
||||
X_eval = np.array(X_eval)
|
||||
y_eval = np.array(y_eval)
|
||||
y_eval_ref = np.array(y_eval_ref)
|
||||
#scaluji target - nemusis
|
||||
#y_eval = cfg.scalerY.fit_transform(y_eval)
|
||||
|
||||
X_eval = cfg.model.predict(X_eval)
|
||||
X_eval = cfg.scalerY.inverse_transform(X_eval)
|
||||
print("po predikci x_eval shape", X_eval.shape)
|
||||
|
||||
#pokud mame dostupnou i target v runneru, pak pridame porovnavaci indikator
|
||||
difference_mse = None
|
||||
if len(y_eval) > 0:
|
||||
#TODO porad to pliva 1 hodnotu
|
||||
difference_mse = mean_squared_error(y_eval, X_eval,multioutput="raw_values")
|
||||
|
||||
print("ted mam tedy dva nove sloupce")
|
||||
print("X_eval", X_eval.shape)
|
||||
if difference_mse is not None:
|
||||
print("difference_mse", difference_mse.shape)
|
||||
print(f"zplostime je, dopredu pridame {cfg.input_sequences-1} a dozadu nic")
|
||||
#print(f"a melo by nam to celkem dat {len(bars['time'])}")
|
||||
#tohle pak nejak doladit, ale vypada to good
|
||||
#plus do druheho indikatoru pridat ten difference_mse
|
||||
|
||||
#TODO jeste je posledni hodnota predikce nejak OFF (2.52... ) - podivat se na to
|
||||
#TODO na produkci srovnat se skutecnym BT predictem (mozna zde bude treba seq-1) -
|
||||
# prvni predikce nejspis uz bude na desítce
|
||||
ind_pred = list(np.concatenate([np.zeros(cfg.input_sequences-1), X_eval.ravel()]))
|
||||
print(ind_pred)
|
||||
print(len(ind_pred))
|
||||
print("tada")
|
||||
#ted k nim pridame
|
||||
|
||||
if save_new_ind:
|
||||
#novy ind ulozime do archrunnera (na produkci nejspis jen show)
|
||||
res, sada = get_archived_runner_details_byID(runner_id)
|
||||
if res == 0:
|
||||
print("ok")
|
||||
else:
|
||||
print("error",res,sada)
|
||||
raise Exception(f"error loading runner {runner_id} : {res} {sada}")
|
||||
|
||||
sada["indicators"][0]["pred_added"] = ind_pred
|
||||
|
||||
req, res = update_archive_detail(runner_id, sada)
|
||||
print(f"indicator pred_added was ADDED to {runner_id}")
|
||||
|
||||
|
||||
# Plot the predicted vs. actual
|
||||
plt.plot(y_eval, label='Target')
|
||||
plt.plot(X_eval, label='Predicted')
|
||||
#TODO zde nejak vymyslet jinou pricelinu - jako lightweight chart
|
||||
if difference_mse is not None:
|
||||
plt.plot(difference_mse, label='diference')
|
||||
plt.plot(y_eval_ref, label='reference column - vwap')
|
||||
plt.plot()
|
||||
plt.legend()
|
||||
plt.show()
|
||||
@ -1,278 +0,0 @@
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
import v2realbot.ml.mlutils as mu
|
||||
from keras.layers import LSTM, Dense
|
||||
import matplotlib.pyplot as plt
|
||||
from v2realbot.ml.ml import ModelML
|
||||
from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
|
||||
# from collections import defaultdict
|
||||
# from operator import itemgetter
|
||||
from joblib import load
|
||||
|
||||
# region Notes
|
||||
|
||||
#ZAKLAD PRO TRAINING SCRIPT na vytvareni model u
|
||||
# TODO
|
||||
# podpora pro BINARY TARGET
|
||||
# podpora hyperpamaetru (activ.funkce sigmoid atp.)
|
||||
# vyuzit distribuovane prostredi - nebo aspon vlastni VM
|
||||
# dopracovat denni identifikatory typu lastday close, todays open atp.
|
||||
# random SEARCH a grid search
|
||||
# udelat nejaka model metadata (napr, trenovano na (runners+obdobi), nastaveni treningovych dat, počet epoch, hyperparametry, config atribu atp.) - mozna persistovat v db
|
||||
# udelat nejake verzovani
|
||||
# predelat do GUI a modulu
|
||||
# vyuzit VectorBT na dohledani optimalizovanych parametru napr. pro buy,sell atp. Vyuzit podobne API na pripravu dat jako model.
|
||||
# EVAL MODEL - umoznit vektorové přidání indikátoru do runneru (např. predikce v modulu, vectorBT, optimalizace atp) - vytvorit si na to API, podobne co mam, nacte runner, transformuje, sekvencuje, provede a pak zpetne transformuje a prida jako dalsi indikator. Lze pak použít i v gui.
|
||||
# nove tlacitko "Display model prediction" na urovni archrunnera, které
|
||||
# - má volbu model + jestli zobrazit jen predictionu jako novy indikator nebo i mse from ytarget (nutny i target)
|
||||
# po spusteni pak:
|
||||
# - zkonztoluje jestli runner ma indikatory,ktere odpovidaji features modelu (bar_ftrs, ind_ftrs, optional i target)
|
||||
# - vektorově doplní predictionu (transformuje data, udela predictionu a Y transformuje zpet)
|
||||
# - vysledek (jako nove indikatory) implantuje do runnerdetailu a zobrazi
|
||||
# podivat se na dalsi parametry kerasu, napr. false positive atp.
|
||||
# podivat se jeste na rozdil mezi vectorovou predikci a skalarni - proc je nekdy rozdil, odtrasovat - pripadne pogooglit
|
||||
# odtrasovat, nekde je sum (zkusit si oboji v jednom skriptu a porovnat)
|
||||
|
||||
#TODO NAPADY Na modely
|
||||
#1.binary identifikace trendu napr. pokud nasledujici 3 bary rostou (0-1) nebo nasledujici bary roste momentum
|
||||
#2.soustredit se na modely s vystupem 0-1 nebo -1 až 1
|
||||
#3.Vyzkouset jeden model, ktery by identifikoval trendy v obou smerech - -1 pro klesani a 1 pro stoupání.
|
||||
#4.vyzkouset zda model vytvoreny z casti dne nebude funkcni na druhe casti (on the fly daily models)
|
||||
#5.zkusit modely s a bez time (prizpusobit tomu kod v ModelML - zejmena jak na crossday sekvence) - mozna ze zecatku dat aspon pryc z indikatoru?
|
||||
# Dat vsechny zbytecne features pryc, nechat tam jen ty podstatne - attention, tak cílím.
|
||||
#6. zkusit vyuzit tickprice v nejaekm modelu, pripadne pak dalsi CBAR indikatory . vymslet tickbased features
|
||||
#7. zkusit jako features nevyuzit standardni ceny, ale pouze indikatory reprezentujici chovani (fastslope,samebarslope,volume,tradencnt)
|
||||
#8. relativni OHLC - model pouzivajici (jen) bary, ale misto hodnot ohlc udelat features reprezentujici vztahy(pomery) mezi temito velicinami. tzn. relativni ohlc
|
||||
#9. jiny pristup by byl ucit model na konkretnich chunkach, ktere chci aby mi identifikoval. Např. určité úseky. Vymyslet. Buď nyni jako test intervaly, ale v budoucnu to treba jen nejak oznacit a poslat k nauceni. Pripadne pak udelat nejaky vycuc.
|
||||
#10. mozna správným výběrem targetu, můžu taky naučit jen určité věci. Specializace. Stačí když se jednou dvakrát denně aktivuje.
|
||||
# 11. udelat si go IN model, ktery pomuze strategii generovat vstup - staci jen aby mel trochu lepsi edge nez conditiony, o zbytek se postara logika strategie
|
||||
# 12. model pro neagregované nebo jen filtroné či velmi lehce agregované trady? - tickprice
|
||||
# 13. jako featury pouzit Fourierovo transformaci, na sekundovem baru nebo tickprice
|
||||
|
||||
#DULEZITE
|
||||
# soustredit se v modelech na predikci nasledujici hodnoty, ideálně nějaký vektor ukazující směr (např. 0 - 1, kde nula nebude růst, 1 - bude růst strmě)
|
||||
# pro predikcí nějakého většího trendu, zkusti více modelů na různých rozlišení, každý ukazuje
|
||||
# hodnotu na svém rozlišení a jeho kombinace mi může určit vstup. Zkusit zda by nešel i jeden model.
|
||||
# Každopádně se soustředit
|
||||
# 1) na další hodnotu (tzn. vstupy musí být bezprostředně ovlivňující tuto (samebasrlope, atp.))
|
||||
# 2) její výše ukazuje směr na tomto rozlišení
|
||||
# 3) ideálně se učit z každého baru, tzn. cílová hodnota musí být známá u každého baru
|
||||
# (binary ne, potřebuju linární vektor) - i když 1 a 0 target v závislosti na stoupání a klesání by mohla být ok,
|
||||
# ale asi příliš restriktivní, spíš bych tam mohl dát jak moc. Tzn. +0.32, -0.04. Učilo by se to míru stoupání.
|
||||
# Tu míru tam potřebuju zachovanou.
|
||||
# pak si muzu rict, když je urcite pravdepodobnost, ze to bude stoupat (tzn. dalsi hodnota) na urovni 1,2,3 - tak jduvstup
|
||||
# zkusit na nejnižší úrovni i předvídat CBARy, směr dalšího ticku. Vyzkoušet.
|
||||
|
||||
##TODO - doma
|
||||
#bar_features a ind_features do dokumentace SL classic, stejne tak conditional indikator a mathop indikator
|
||||
#TODO - co je třeba vyvinout
|
||||
# GENERATOR test intervalu (vstup name, note, od,do,step)
|
||||
# napsat API, doma pak simple GUI
|
||||
# vyuziti ATR (jako hranice historickeho rozsahu) - atr-up, atr-down
|
||||
# nakreslit v grafu atru = close+atr, atrd = close-atr
|
||||
# pripadne si vypocet atr nejak customizovat, prip. ruzne multiplikatory pro high low, pripadne si to vypocist podle sebe
|
||||
# vyuziti:
|
||||
# pro prekroceni nejake lajny, napr. ema nebo yesterdayclose
|
||||
# - k identifikaci ze se pohybuje v jejim rozsahu
|
||||
# - proste je to buffer, ktery musi byt prekonan, aby byla urcita akce
|
||||
# pro learning pro vypocet conditional parametru (1,0,-1) prekroceni napr. dailyopen, yesterdayclose, gapclose
|
||||
# kde 1 prekroceno, 0 v rozsahu (atr), -1 prekroceno dolu - to pomuze uceni
|
||||
# vlastni supertrend strateige
|
||||
# zaroven moznost vyuzit klouzave či parametrizovane atr, které se na základě
|
||||
# určitých parametrů bude samo upravovat a cíleně vybočovat z KONTRA frekvencí, např. randomizovaný multiplier nebo nejak jinak ovlivneny minulým
|
||||
# v indikatorech vsude kde je odkaz ma source jako hodnotu tak defaultne mit moznost uvest lookback, napr. bude treba porovnavat nejak cenu vs predposledni hodnotu ATRka (nechat az vyvstane pozadavek)
|
||||
# zacit doma na ATRku si postavit supertrend, viz pinescript na ploše
|
||||
|
||||
|
||||
#TODO - obecne vylepsovaky
|
||||
# 1. v GUI graf container do n-TABů, mozna i draggable order, zaviratelne na Xko (innerContainer)
|
||||
# 2. mit mozna specialni mod na pripravu dat (agreg+indikator, tzn. vse jen bez vstupů) - můžu pak zapracovat víc vectorové doplňování dat
|
||||
# TOTO:: mozna by postacil vypnout backtester (tzn. no trades) - a projet jen indikatory. mozna by slo i vectorove optimalizovat.
|
||||
# indikatory by se mohli predsunout pred next a next by se vubec nemusel volat (jen nekompatibilita s predch.strategiemi)
|
||||
# 3. kombinace fastslope na fibonacci delkach (1,2,3,5..) jako dobry vstup pro ML
|
||||
# 4. podivat se na attention based LSTM zda je v kerasu implementace
|
||||
# do grafu přidat togglovatelné hranice barů určitých rozlišení - což mi jen udělá čáry Xs od sebe (dobré pro navrhování)
|
||||
# 5. vymyslet optimalizovane vyuziti modelu na produkci (nejak mit zkompilovane, aby to bylo raketově pro skalár) - nyní to backtest zpomalí 4x
|
||||
# 6. CONVNETS for time series forecasting - small 1D convnets can offer a fast alternative to RNNs for simple tasks such as text classification and timeseries forecasting.
|
||||
# zkusit small conv1D pro identifikaci víření před trendem, např. jen 6 barů - identifikovat dobře target, musí jít o tutovku na targetu
|
||||
# pro covnet zkusit cbar price, volume a time. Třeba to zachytí víření (ripples)
|
||||
# Další oblasti k predikci jsou ripples, vlnky - předzvěst nějakého mocnějšího pohybu. A je pravda, že předtím se mohou objevit nějaké indicie. Ty zkus zachytit.
|
||||
# Do runner_headers pridat bt_from, bt_to - pro razeni order_by, aby se runnery vzdy vraceli vzestupne dle data (pro machine l)
|
||||
|
||||
#TODO
|
||||
# vyvoj modelů workflow s LSTMtrain.py
|
||||
# 1) POC - pouze zde ve skriptu, nad 1-2 runnery, okamžité zobrazení v plotu,
|
||||
# optimalizace zakl. features a hyperparams. Zobrazit i u binary nejak cenu.
|
||||
# 2) REALITY CHECK - trening modelu na batchi test intervalu, overeni ve strategii v BT, zobrazeni predikce v RT chartu
|
||||
# 3) FINAL TRAINING
|
||||
# testovani predikce
|
||||
|
||||
|
||||
#TODO tady
|
||||
# train model
|
||||
# - train data- batch nebo runners
|
||||
# - test data - batch or runners (s cim porovnavat/validovat)
|
||||
# - vyber architektury
|
||||
# - soucast skriptu muze byt i porovnavacka pripadne nejaky search optimalnich parametru
|
||||
|
||||
#lstmtrain - podporit jednotlive kroky vyse
|
||||
#modelML - udelat lepsi PODMINKY
|
||||
#frontend? ma cenu? asi ano - GUI na model - new - train/retrain-change
|
||||
# (vymyslet jak v gui chytře vybírat arch modelu a hyperparams, loss, optim - treba nejaka templata?)
|
||||
# mozna ciselnik architektur s editačním polem pro kód -jen pár řádků(.add, .compile) přidat v editoru
|
||||
# vymyslet jak to udělat pythonově
|
||||
#testlist generator api
|
||||
|
||||
# endregion
|
||||
|
||||
#if null,the validation is made on 10% of train data
|
||||
#runnery pro testovani
|
||||
validation_runners = ["a38fc269-8df3-4374-9506-f0280d798854"]
|
||||
|
||||
#u binary bude target bud hotovy indikator a nebo jej vytvorit on the fly
|
||||
cfg = ModelML(name="model1",
|
||||
version = "0.1",
|
||||
note = None,
|
||||
pred_output=PredOutput.LINEAR,
|
||||
input_sequences = 10,
|
||||
use_bars = True,
|
||||
bar_features = ["volume","trades"],
|
||||
ind_features = ["slope20", "ema20","emaFast","samebarslope","fastslope","fastslope4"],
|
||||
target='target', #referencni hodnota pro target - napr pro graf
|
||||
target_reference='vwap',
|
||||
train_target_steps=3,
|
||||
train_target_transformation=TargetTRFM.KEEPVAL,
|
||||
train_runner_ids = ["08b7f96e-79bc-4849-9142-19d5b28775a8"],
|
||||
train_batch_id = None,
|
||||
train_epochs = 10,
|
||||
train_remove_cross_sequences = True,
|
||||
)
|
||||
|
||||
#TODO toto cele dat do TRAIN metody - vcetne pripadneho loopu a podpory API
|
||||
|
||||
test_size = None
|
||||
|
||||
#kdyz neplnime vstup, automaticky se loaduje training data z nastaveni classy
|
||||
source_data, target_data, rows_in_day = cfg.load_data()
|
||||
|
||||
if len(target_data) == 0:
|
||||
raise Exception("target is empty - required for TRAINING - check target column name")
|
||||
|
||||
np.set_printoptions(threshold=10,edgeitems=5)
|
||||
#print("source_data", source_data)
|
||||
#print("target_data", target_data)
|
||||
print("rows_in_day", rows_in_day)
|
||||
source_data = cfg.scalerX.fit_transform(source_data)
|
||||
|
||||
#TODO mozna vyhodit to UNTR
|
||||
#TODO asi vyhodit i target reference a vymyslet jinak
|
||||
|
||||
#vytvořeni sekvenci po vstupních sadách (např. 10 barů) - výstup 3D např. #X_train (6205, 10, 14)
|
||||
#doplneni transformace target data
|
||||
X_train, y_train, y_train_ref = cfg.create_sequences(combined_data=source_data,
|
||||
target_data=target_data,
|
||||
remove_cross_sequences=cfg.train_remove_cross_sequences,
|
||||
rows_in_day=rows_in_day)
|
||||
|
||||
#zobrazime si transformovany target a jeho referncni sloupec
|
||||
#ZHOMOGENIZOVAT OSY
|
||||
plt.plot(y_train, label='Transf target')
|
||||
plt.plot(y_train_ref, label='Ref target')
|
||||
plt.plot()
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
print("After sequencing")
|
||||
print("source:X_train", np.shape(X_train))
|
||||
print("target:y_train", np.shape(y_train))
|
||||
print("target:", y_train)
|
||||
y_train = y_train.reshape(-1, 1)
|
||||
|
||||
X_complete = np.array(X_train.copy())
|
||||
Y_complete = np.array(y_train.copy())
|
||||
X_train = np.array(X_train)
|
||||
y_train = np.array(y_train)
|
||||
|
||||
#target scaluji az po transformaci v create sequence -narozdil od X je stejny shape
|
||||
y_train = cfg.scalerY.fit_transform(y_train)
|
||||
|
||||
|
||||
if len(validation_runners) == 0:
|
||||
test_size = 0.10
|
||||
# Split the data into training and test sets - kazdy vstupni pole rozdeli na dve
|
||||
#nechame si takhle rozdelit i referencni sloupec
|
||||
X_train, X_test, y_train, y_test, y_train_ref, y_test_ref = train_test_split(X_train, y_train, y_train_ref, test_size=test_size, shuffle=False) #random_state=42)
|
||||
|
||||
print("Splittig the data")
|
||||
|
||||
print("X_train", np.shape(X_train))
|
||||
print("X_test", np.shape(X_test))
|
||||
print("y_train", np.shape(y_train))
|
||||
print("y_test", np.shape(y_test))
|
||||
print("y_test_ref", np.shape(y_test_ref))
|
||||
print("y_train_ref", np.shape(y_train_ref))
|
||||
|
||||
#print(np.shape(X_train))
|
||||
# Define the input shape of the LSTM layer dynamically based on the reshaped X_train value
|
||||
input_shape = (X_train.shape[1], X_train.shape[2])
|
||||
|
||||
# Build the LSTM model
|
||||
#cfg.model = Sequential()
|
||||
cfg.model.add(LSTM(128, input_shape=input_shape))
|
||||
cfg.model.add(Dense(1, activation="relu"))
|
||||
#activation: Gelu, relu, elu, sigmoid...
|
||||
# Compile the model
|
||||
cfg.model.compile(loss='mse', optimizer='adam')
|
||||
#loss: mse, binary_crossentropy
|
||||
|
||||
# Train the model
|
||||
cfg.model.fit(X_train, y_train, epochs=cfg.train_epochs)
|
||||
|
||||
#save the model
|
||||
cfg.save()
|
||||
|
||||
#TBD db layer
|
||||
cfg: ModelML = mu.load_model(cfg.name, cfg.version)
|
||||
|
||||
# region Live predict
|
||||
#EVALUATE SIM LIVE - PREDICT SCALAR - based on last X items
|
||||
barslist, indicatorslist = cfg.load_runners_as_list(runner_id_list=["67b51211-d353-44d7-a58a-5ae298436da7"])
|
||||
#zmergujeme vsechny data dohromady
|
||||
bars = mu.merge_dicts(barslist)
|
||||
indicators = mu.merge_dicts(indicatorslist)
|
||||
cfg.validate_available_features(bars, indicators)
|
||||
#VSTUPEM JE standardni pole v strategii
|
||||
value = cfg.predict(bars, indicators)
|
||||
print("prediction for LIVE SIM:", value)
|
||||
# endregion
|
||||
|
||||
#EVALUATE TEST DATA - VECTOR BASED
|
||||
#pokud mame eval runners pouzijeme ty, jinak bereme cast z testovacich dat
|
||||
if len(validation_runners) > 0:
|
||||
source_data, target_data, rows_in_day = cfg.load_data(runners_ids=validation_runners)
|
||||
source_data = cfg.scalerX.fit_transform(source_data)
|
||||
X_test, y_test, y_test_ref = cfg.create_sequences(combined_data=source_data, target_data=target_data,remove_cross_sequences=True, rows_in_day=rows_in_day)
|
||||
|
||||
#prepnout ZDE pokud testovat cely bundle - jinak testujeme jen neznama
|
||||
#X_test = X_complete
|
||||
#y_test = Y_complete
|
||||
|
||||
X_test = cfg.model.predict(X_test)
|
||||
X_test = cfg.scalerY.inverse_transform(X_test)
|
||||
|
||||
#target testovacim dat proc tu je reshape? y_test.reshape(-1, 1)
|
||||
y_test = cfg.scalerY.inverse_transform(y_test)
|
||||
#celkovy mean? nebo spis vector pro graf?
|
||||
mse = mean_squared_error(y_test, X_test)
|
||||
print('Test MSE:', mse)
|
||||
|
||||
# Plot the predicted vs. actual
|
||||
plt.plot(y_test, label='Actual')
|
||||
plt.plot(X_test, label='Predicted')
|
||||
#TODO zde nejak vymyslet jinou pricelinu - jako lightweight chart
|
||||
plt.plot(y_test_ref, label='reference column - price')
|
||||
plt.plot()
|
||||
plt.legend()
|
||||
plt.show()
|
||||
@ -40,10 +40,10 @@
|
||||
from uuid import UUID, uuid4
|
||||
from alpaca.trading.enums import OrderSide, OrderStatus, TradeEvent, OrderType
|
||||
from v2realbot.common.model import TradeUpdate, Order
|
||||
#from rich import print
|
||||
from rich import print as printanyway
|
||||
import threading
|
||||
import asyncio
|
||||
from v2realbot.config import BT_DELAYS, DATA_DIR, BT_FILL_CONDITION_BUY_LIMIT, BT_FILL_CONDITION_SELL_LIMIT, BT_FILL_LOG_SURROUNDING_TRADES, BT_FILL_CONS_TRADES_REQUIRED,BT_FILL_PRICE_MARKET_ORDER_PREMIUM
|
||||
from v2realbot.config import DATA_DIR
|
||||
from v2realbot.utils.utils import AttributeDict, ltp, zoneNY, trunc, count_decimals, print
|
||||
from v2realbot.utils.tlog import tlog
|
||||
from v2realbot.enums.enums import FillCondition
|
||||
@ -60,6 +60,7 @@ from v2realbot.utils.dash_save_html import make_static
|
||||
import dash_bootstrap_components as dbc
|
||||
from dash.dependencies import Input, Output
|
||||
from dash import dcc, html, dash_table, Dash
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
""""
|
||||
LATENCY DELAYS
|
||||
.000 trigger - last_trade_time (.4246266)
|
||||
@ -171,7 +172,7 @@ class Backtester:
|
||||
todel.append(order)
|
||||
elif not self.symbol or order.symbol == self.symbol:
|
||||
#pricteme mininimalni latency od submittu k fillu
|
||||
if order.submitted_at.timestamp() + BT_DELAYS.sub_to_fill > float(intime):
|
||||
if order.submitted_at.timestamp() + cfh.config_handler.get_val('BT_DELAYS','sub_to_fill') > float(intime):
|
||||
print(f"too soon for {order.id}")
|
||||
#try to execute
|
||||
else:
|
||||
@ -196,7 +197,10 @@ class Backtester:
|
||||
#TEST zkusime to nemazat, jak ovlivni performance
|
||||
#Mazeme, jinak je to hruza
|
||||
#nechavame na konci trady, které muzeme potrebovat pro consekutivni pravidlo
|
||||
del self.btdata[0:index_end-2-BT_FILL_CONS_TRADES_REQUIRED]
|
||||
#osetrujeme, kdy je malo tradu a oriznuti by slo do zaporu
|
||||
del_to_index = index_end-2-cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED')
|
||||
del_to_index = del_to_index if del_to_index > 0 else 0
|
||||
del self.btdata[0:del_to_index]
|
||||
##ic("after delete",len(self.btdata[0:index_end]))
|
||||
|
||||
if changes: return 1
|
||||
@ -215,7 +219,7 @@ class Backtester:
|
||||
|
||||
fill_time = None
|
||||
fill_price = None
|
||||
order_min_fill_time = o.submitted_at.timestamp() + BT_DELAYS.sub_to_fill
|
||||
order_min_fill_time = o.submitted_at.timestamp() + cfh.config_handler.get_val('BT_DELAYS','sub_to_fill')
|
||||
#ic(order_min_fill_time)
|
||||
#ic(len(work_range))
|
||||
|
||||
@ -237,17 +241,18 @@ class Backtester:
|
||||
#NASTVENI PODMINEK PLNENI
|
||||
fast_fill_condition = i[1] <= o.limit_price
|
||||
slow_fill_condition = i[1] < o.limit_price
|
||||
if BT_FILL_CONDITION_BUY_LIMIT == FillCondition.FAST:
|
||||
fill_cond_buy_limit = cfh.config_handler.get_val('BT_FILL_CONDITION_BUY_LIMIT')
|
||||
if fill_cond_buy_limit == FillCondition.FAST:
|
||||
fill_condition = fast_fill_condition
|
||||
elif BT_FILL_CONDITION_BUY_LIMIT == FillCondition.SLOW:
|
||||
elif fill_cond_buy_limit == FillCondition.SLOW:
|
||||
fill_condition = slow_fill_condition
|
||||
else:
|
||||
print("unknow fill condition")
|
||||
return -1
|
||||
|
||||
if float(i[0]) > float(order_min_fill_time+BT_DELAYS.limit_order_offset) and fill_condition:
|
||||
if float(i[0]) > float(order_min_fill_time+cfh.config_handler.get_val('BT_DELAYS','limit_order_offset')) and fill_condition:
|
||||
consec_cnt += 1
|
||||
if consec_cnt == BT_FILL_CONS_TRADES_REQUIRED:
|
||||
if consec_cnt == cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED'):
|
||||
|
||||
#(1679081919.381649, 27.88)
|
||||
#ic(i)
|
||||
@ -258,10 +263,10 @@ class Backtester:
|
||||
#fill_price = i[1]
|
||||
|
||||
print("FILL LIMIT BUY at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "at",i[1])
|
||||
if BT_FILL_LOG_SURROUNDING_TRADES != 0:
|
||||
if cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES') != 0:
|
||||
#TODO loguru
|
||||
print("FILL SURR TRADES: before",work_range[index-BT_FILL_LOG_SURROUNDING_TRADES:index])
|
||||
print("FILL SURR TRADES: fill and after",work_range[index:index+BT_FILL_LOG_SURROUNDING_TRADES])
|
||||
print("FILL SURR TRADES: before",work_range[index-cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES'):index])
|
||||
print("FILL SURR TRADES: fill and after",work_range[index:index+cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')])
|
||||
break
|
||||
else:
|
||||
consec_cnt = 0
|
||||
@ -272,17 +277,18 @@ class Backtester:
|
||||
#NASTVENI PODMINEK PLNENI
|
||||
fast_fill_condition = i[1] >= o.limit_price
|
||||
slow_fill_condition = i[1] > o.limit_price
|
||||
if BT_FILL_CONDITION_SELL_LIMIT == FillCondition.FAST:
|
||||
fill_conf_sell_cfg = cfh.config_handler.get_val('BT_FILL_CONDITION_SELL_LIMIT')
|
||||
if fill_conf_sell_cfg == FillCondition.FAST:
|
||||
fill_condition = fast_fill_condition
|
||||
elif BT_FILL_CONDITION_SELL_LIMIT == FillCondition.SLOW:
|
||||
elif fill_conf_sell_cfg == FillCondition.SLOW:
|
||||
fill_condition = slow_fill_condition
|
||||
else:
|
||||
print("unknown fill condition")
|
||||
return -1
|
||||
|
||||
if float(i[0]) > float(order_min_fill_time+BT_DELAYS.limit_order_offset) and fill_condition:
|
||||
if float(i[0]) > float(order_min_fill_time+cfh.config_handler.get_val('BT_DELAYS','limit_order_offset')) and fill_condition:
|
||||
consec_cnt += 1
|
||||
if consec_cnt == BT_FILL_CONS_TRADES_REQUIRED:
|
||||
if consec_cnt == cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED'):
|
||||
#(1679081919.381649, 27.88)
|
||||
#ic(i)
|
||||
fill_time = i[0]
|
||||
@ -294,10 +300,11 @@ class Backtester:
|
||||
|
||||
#fill_price = i[1]
|
||||
print("FILL LIMIT SELL at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "at",i[1])
|
||||
if BT_FILL_LOG_SURROUNDING_TRADES != 0:
|
||||
surr_trades_cfg = cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')
|
||||
if surr_trades_cfg != 0:
|
||||
#TODO loguru
|
||||
print("FILL SELL SURR TRADES: before",work_range[index-BT_FILL_LOG_SURROUNDING_TRADES:index])
|
||||
print("FILL SELL SURR TRADES: fill and after",work_range[index:index+BT_FILL_LOG_SURROUNDING_TRADES])
|
||||
print("FILL SELL SURR TRADES: before",work_range[index-surr_trades_cfg:index])
|
||||
print("FILL SELL SURR TRADES: fill and after",work_range[index:index+surr_trades_cfg])
|
||||
break
|
||||
else:
|
||||
consec_cnt = 0
|
||||
@ -311,11 +318,16 @@ class Backtester:
|
||||
#ic(i)
|
||||
fill_time = i[0]
|
||||
fill_price = i[1]
|
||||
#přičteme MARKET PREMIUM z konfigurace (do budoucna mozna rozdilne pro BUY/SELL a nebo mozna z konfigurace pro dany itutl)
|
||||
#přičteme MARKET PREMIUM z konfigurace (je v pct nebo abs) (do budoucna mozna rozdilne pro BUY/SELL a nebo mozna z konfigurace pro dany titul)
|
||||
cfg_premium = cfh.config_handler.get_val('BT_FILL_PRICE_MARKET_ORDER_PREMIUM')
|
||||
if cfg_premium < 0: #configured as percentage
|
||||
premium = abs(cfg_premium) * fill_price / 100.0
|
||||
else: #configured as absolute value
|
||||
premium = cfg_premium
|
||||
if o.side == OrderSide.BUY:
|
||||
fill_price = fill_price + BT_FILL_PRICE_MARKET_ORDER_PREMIUM
|
||||
fill_price = fill_price + premium
|
||||
elif o.side == OrderSide.SELL:
|
||||
fill_price = fill_price - BT_FILL_PRICE_MARKET_ORDER_PREMIUM
|
||||
fill_price = fill_price - premium
|
||||
|
||||
print("FILL ",o.side,"MARKET at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "cena", i[1])
|
||||
break
|
||||
@ -364,7 +376,7 @@ class Backtester:
|
||||
def _do_notification_with_callbacks(self, tradeupdate: TradeUpdate, time: float):
|
||||
|
||||
#do callbacku je třeba zpropagovat filltime čas (včetně latency pro notifikaci), aby se pripadne akce v callbacku udály s tímto časem
|
||||
self.time = time + float(BT_DELAYS.fill_to_not)
|
||||
self.time = time + float(cfh.config_handler.get_val('BT_DELAYS','fill_to_not'))
|
||||
print("current bt.time",self.time)
|
||||
#print("FILL NOTIFICATION: ", tradeupdate)
|
||||
res = asyncio.run(self.order_fill_callback(tradeupdate))
|
||||
@ -467,11 +479,11 @@ class Backtester:
|
||||
print("BT: submit order entry")
|
||||
|
||||
if not time or time < 0:
|
||||
print("time musi byt vyplneny")
|
||||
printanyway("time musi byt vyplneny")
|
||||
return -1
|
||||
|
||||
if not size or int(size) < 0:
|
||||
print("size musi byt vetsi nez 0")
|
||||
printanyway("size musi byt vetsi nez 0")
|
||||
return -1
|
||||
|
||||
if (order_type != OrderType.MARKET) and (order_type != OrderType.LIMIT):
|
||||
@ -479,11 +491,11 @@ class Backtester:
|
||||
return -1
|
||||
|
||||
if not side == OrderSide.BUY and not side == OrderSide.SELL:
|
||||
print("side buy/sell required")
|
||||
printanyway("side buy/sell required")
|
||||
return -1
|
||||
|
||||
if order_type == OrderType.LIMIT and count_decimals(price) > 2:
|
||||
print("only 2 decimals supported", price)
|
||||
printanyway("only 2 decimals supported", price)
|
||||
return -1
|
||||
|
||||
#pokud neexistuje klic v accountu vytvorime si ho
|
||||
@ -505,14 +517,14 @@ class Backtester:
|
||||
|
||||
actual_minus_reserved = int(self.account[symbol][0]) - reserved
|
||||
if actual_minus_reserved > 0 and actual_minus_reserved - int(size) < 0:
|
||||
print("not enough shares available to sell or shorting while long position",self.account[symbol][0],"reserved",reserved,"available",int(self.account[symbol][0]) - reserved,"selling",size)
|
||||
printanyway("not enough shares available to sell or shorting while long position",self.account[symbol][0],"reserved",reserved,"available",int(self.account[symbol][0]) - reserved,"selling",size)
|
||||
return -1
|
||||
|
||||
#if is shorting - check available cash to short
|
||||
if actual_minus_reserved <= 0:
|
||||
cena = price if price else self.get_last_price(time, self.symbol)
|
||||
if (self.cash - reserved_price - float(int(size)*float(cena))) < 0:
|
||||
print("not enough cash for shorting. cash",self.cash,"reserved",reserved,"available",self.cash-reserved,"needed",float(int(size)*float(cena)))
|
||||
printanyway("ERROR: not enough cash for shorting. cash",self.cash,"reserved",reserved,"available",self.cash-reserved,"needed",float(int(size)*float(cena)))
|
||||
return -1
|
||||
|
||||
#check for available cash
|
||||
@ -531,14 +543,14 @@ class Backtester:
|
||||
|
||||
#jde o uzavreni shortu
|
||||
if actual_plus_reserved_qty < 0 and (actual_plus_reserved_qty + int(size)) > 0:
|
||||
print("nejprve je treba uzavrit short pozici pro buy res_qty, size", actual_plus_reserved_qty, size)
|
||||
printanyway("nejprve je treba uzavrit short pozici pro buy res_qty, size", actual_plus_reserved_qty, size)
|
||||
return -1
|
||||
|
||||
#jde o standardni long, kontroluju cash
|
||||
if actual_plus_reserved_qty >= 0:
|
||||
cena = price if price else self.get_last_price(time, self.symbol)
|
||||
if (self.cash - reserved_price - float(int(size)*float(cena))) < 0:
|
||||
print("not enough cash to buy long. cash",self.cash,"reserved_qty",reserved_qty,"reserved_price",reserved_price, "available",self.cash-reserved_price,"needed",float(int(size)*float(cena)))
|
||||
printanyway("ERROR: not enough cash to buy long. cash",self.cash,"reserved_qty",reserved_qty,"reserved_price",reserved_price, "available",self.cash-reserved_price,"needed",float(int(size)*float(cena)))
|
||||
return -1
|
||||
|
||||
id = str(uuid4())
|
||||
@ -565,11 +577,11 @@ class Backtester:
|
||||
print("BT: replace order entry",id,size,price)
|
||||
|
||||
if not price and not size:
|
||||
print("size or price required")
|
||||
printanyway("size or price required")
|
||||
return -1
|
||||
|
||||
if len(self.open_orders) == 0:
|
||||
print("BT: order doesnt exist")
|
||||
printanyway("BT: order doesnt exist")
|
||||
return 0
|
||||
#with lock:
|
||||
for o in self.open_orders:
|
||||
@ -597,7 +609,7 @@ class Backtester:
|
||||
"""
|
||||
print("BT: cancel order entry",id)
|
||||
if len(self.open_orders) == 0:
|
||||
print("BTC: order doesnt exist")
|
||||
printanyway("BTC: order doesnt exist")
|
||||
return 0
|
||||
#with lock:
|
||||
for o in self.open_orders:
|
||||
@ -817,10 +829,10 @@ class Backtester:
|
||||
Trades:''' + str(len(self.trades)))
|
||||
textik8 = html.Div('''
|
||||
Profit:''' + str(state.profit))
|
||||
textik9 = html.Div(f"{BT_FILL_CONS_TRADES_REQUIRED=}")
|
||||
textik10 = html.Div(f"{BT_FILL_LOG_SURROUNDING_TRADES=}")
|
||||
textik11 = html.Div(f"{BT_FILL_CONDITION_BUY_LIMIT=}")
|
||||
textik12 = html.Div(f"{BT_FILL_CONDITION_SELL_LIMIT=}")
|
||||
textik9 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED')=}")
|
||||
textik10 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')=}")
|
||||
textik11 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONDITION_BUY_LIMIT')=}")
|
||||
textik12 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONDITION_SELL_LIMIT')=}")
|
||||
|
||||
orders_title = dcc.Markdown('## Open orders')
|
||||
trades_title = dcc.Markdown('## Trades')
|
||||
|
||||
@ -1,11 +1,8 @@
|
||||
from v2realbot.config import DATA_DIR
|
||||
import sqlite3
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from v2realbot.common.model import RunArchive, RunArchiveView
|
||||
from datetime import datetime
|
||||
import json
|
||||
from v2realbot.config import DATA_DIR
|
||||
|
||||
sqlite_db_file = DATA_DIR + "/v2trading.db"
|
||||
# Define the connection pool
|
||||
@ -31,7 +28,7 @@ class ConnectionPool:
|
||||
return connection
|
||||
|
||||
|
||||
def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, retry_interval: int = 1) -> sqlite3.Cursor:
|
||||
def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, retry_interval: int = 2) -> sqlite3.Cursor:
|
||||
"""get connection from pool and execute SQL statement with retry logic if required.
|
||||
|
||||
Args:
|
||||
@ -60,53 +57,4 @@ def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, re
|
||||
pool = ConnectionPool(10)
|
||||
#for one shared connection (used for writes only in WAL mode)
|
||||
insert_conn = sqlite3.connect(sqlite_db_file, check_same_thread=False)
|
||||
insert_queue = queue.Queue()
|
||||
|
||||
#prevede dict radku zpatky na objekt vcetme retypizace
|
||||
def row_to_runarchiveview(row: dict) -> RunArchiveView:
|
||||
return RunArchive(
|
||||
id=row['runner_id'],
|
||||
strat_id=row['strat_id'],
|
||||
batch_id=row['batch_id'],
|
||||
symbol=row['symbol'],
|
||||
name=row['name'],
|
||||
note=row['note'],
|
||||
started=datetime.fromisoformat(row['started']) if row['started'] else None,
|
||||
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
|
||||
mode=row['mode'],
|
||||
account=row['account'],
|
||||
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
|
||||
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
|
||||
ilog_save=bool(row['ilog_save']),
|
||||
profit=float(row['profit']),
|
||||
trade_count=int(row['trade_count']),
|
||||
end_positions=int(row['end_positions']),
|
||||
end_positions_avgp=float(row['end_positions_avgp']),
|
||||
metrics=json.loads(row['metrics']) if row['metrics'] else None
|
||||
)
|
||||
|
||||
#prevede dict radku zpatky na objekt vcetme retypizace
|
||||
def row_to_runarchive(row: dict) -> RunArchive:
|
||||
return RunArchive(
|
||||
id=row['runner_id'],
|
||||
strat_id=row['strat_id'],
|
||||
batch_id=row['batch_id'],
|
||||
symbol=row['symbol'],
|
||||
name=row['name'],
|
||||
note=row['note'],
|
||||
started=datetime.fromisoformat(row['started']) if row['started'] else None,
|
||||
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
|
||||
mode=row['mode'],
|
||||
account=row['account'],
|
||||
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
|
||||
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
|
||||
strat_json=json.loads(row['strat_json']),
|
||||
settings=json.loads(row['settings']),
|
||||
ilog_save=bool(row['ilog_save']),
|
||||
profit=float(row['profit']),
|
||||
trade_count=int(row['trade_count']),
|
||||
end_positions=int(row['end_positions']),
|
||||
end_positions_avgp=float(row['end_positions_avgp']),
|
||||
metrics=json.loads(row['metrics']),
|
||||
stratvars_toml=row['stratvars_toml']
|
||||
)
|
||||
insert_queue = queue.Queue()
|
||||
@ -1,13 +1,16 @@
|
||||
from uuid import UUID
|
||||
from uuid import UUID, uuid4
|
||||
from alpaca.trading.enums import OrderSide, OrderStatus, TradeEvent,OrderType
|
||||
#from utils import AttributeDict
|
||||
from rich import print
|
||||
from typing import Any, Optional, List, Union
|
||||
from datetime import datetime, date
|
||||
from pydantic import BaseModel
|
||||
from v2realbot.enums.enums import Mode, Account
|
||||
from pydantic import BaseModel, Field
|
||||
from v2realbot.enums.enums import Mode, Account, SchedulerStatus, Moddus, Market
|
||||
from alpaca.data.enums import Exchange
|
||||
|
||||
|
||||
|
||||
|
||||
#models for server side datatables
|
||||
# Model for individual column data
|
||||
class ColumnData(BaseModel):
|
||||
@ -91,12 +94,12 @@ class TestList(BaseModel):
|
||||
class Trade(BaseModel):
|
||||
symbol: str
|
||||
timestamp: datetime
|
||||
exchange: Optional[Union[Exchange, str]]
|
||||
exchange: Optional[Union[Exchange, str]] = None
|
||||
price: float
|
||||
size: float
|
||||
id: int
|
||||
conditions: Optional[List[str]]
|
||||
tape: Optional[str]
|
||||
conditions: Optional[List[str]] = None
|
||||
tape: Optional[str] = None
|
||||
|
||||
|
||||
#persisted object in pickle
|
||||
@ -111,8 +114,20 @@ class StrategyInstance(BaseModel):
|
||||
close_rush: int = 0
|
||||
stratvars_conf: str
|
||||
add_data_conf: str
|
||||
note: Optional[str]
|
||||
history: Optional[str]
|
||||
note: Optional[str] = None
|
||||
history: Optional[str] = None
|
||||
|
||||
def __setstate__(self, state: dict[Any, Any]) -> None:
|
||||
"""
|
||||
Hack to allow unpickling models stored from pydantic V1
|
||||
"""
|
||||
state.setdefault("__pydantic_extra__", {})
|
||||
state.setdefault("__pydantic_private__", {})
|
||||
|
||||
if "__pydantic_fields_set__" not in state:
|
||||
state["__pydantic_fields_set__"] = state.get("__fields_set__")
|
||||
|
||||
super().__setstate__(state)
|
||||
|
||||
class RunRequest(BaseModel):
|
||||
id: UUID
|
||||
@ -122,8 +137,8 @@ class RunRequest(BaseModel):
|
||||
debug: bool = False
|
||||
strat_json: Optional[str] = None
|
||||
ilog_save: bool = False
|
||||
bt_from: datetime = None
|
||||
bt_to: datetime = None
|
||||
bt_from: Optional[datetime] = None
|
||||
bt_to: Optional[datetime] = None
|
||||
#weekdays filter
|
||||
#pokud je uvedeny filtrujeme tyto dny
|
||||
weekdays_filter: Optional[list] = None
|
||||
@ -134,7 +149,34 @@ class RunRequest(BaseModel):
|
||||
cash: int = 100000
|
||||
skip_cache: Optional[bool] = False
|
||||
|
||||
|
||||
#Trida, která je nadstavbou runrequestu a pouzivame ji v scheduleru, je zde navic jen par polí
|
||||
class RunManagerRecord(BaseModel):
|
||||
moddus: Moddus
|
||||
id: UUID = Field(default_factory=uuid4)
|
||||
strat_id: UUID
|
||||
symbol: Optional[str] = None
|
||||
account: Account
|
||||
mode: Mode
|
||||
note: Optional[str] = None
|
||||
ilog_save: bool = False
|
||||
market: Optional[Market] = Market.US
|
||||
bt_from: Optional[datetime] = None
|
||||
bt_to: Optional[datetime] = None
|
||||
#weekdays filter
|
||||
#pokud je uvedeny filtrujeme tyto dny
|
||||
weekdays_filter: Optional[list] = None #list of strings 0-6 representing days to run
|
||||
#GENERATED ID v ramci runu, vaze vsechny runnery v batchovem behu
|
||||
batch_id: Optional[str] = None
|
||||
testlist_id: Optional[str] = None
|
||||
start_time: str #time (HH:MM) that start function is called
|
||||
stop_time: Optional[str] = None #time (HH:MM) that stop function is called
|
||||
status: SchedulerStatus
|
||||
last_processed: Optional[datetime] = None
|
||||
history: Optional[str] = None
|
||||
valid_from: Optional[datetime] = None # US East time zone daetime
|
||||
valid_to: Optional[datetime] = None # US East time zone daetime
|
||||
runner_id: Optional[UUID] = None #last runner_id from scheduler after stratefy is started
|
||||
strat_running: Optional[bool] = None #automatically updated field based on status of runner_id above, it is added by row_to_RunManagerRecord
|
||||
class RunnerView(BaseModel):
|
||||
id: UUID
|
||||
strat_id: UUID
|
||||
@ -164,10 +206,10 @@ class Runner(BaseModel):
|
||||
run_name: Optional[str] = None
|
||||
run_note: Optional[str] = None
|
||||
run_ilog_save: Optional[bool] = False
|
||||
run_trade_count: Optional[int]
|
||||
run_profit: Optional[float]
|
||||
run_positions: Optional[int]
|
||||
run_avgp: Optional[float]
|
||||
run_trade_count: Optional[int] = None
|
||||
run_profit: Optional[float] = None
|
||||
run_positions: Optional[int] = None
|
||||
run_avgp: Optional[float] = None
|
||||
run_strat_json: Optional[str] = None
|
||||
run_stopped: Optional[datetime] = None
|
||||
run_paused: Optional[datetime] = None
|
||||
@ -201,41 +243,41 @@ class Bar(BaseModel):
|
||||
low: float
|
||||
close: float
|
||||
volume: float
|
||||
trade_count: Optional[float]
|
||||
vwap: Optional[float]
|
||||
trade_count: Optional[float] = 0
|
||||
vwap: Optional[float] = 0
|
||||
|
||||
class Order(BaseModel):
|
||||
id: UUID
|
||||
submitted_at: datetime
|
||||
filled_at: Optional[datetime]
|
||||
canceled_at: Optional[datetime]
|
||||
filled_at: Optional[datetime] = None
|
||||
canceled_at: Optional[datetime] = None
|
||||
symbol: str
|
||||
qty: int
|
||||
status: OrderStatus
|
||||
order_type: OrderType
|
||||
filled_qty: Optional[int]
|
||||
filled_avg_price: Optional[float]
|
||||
filled_qty: Optional[int] = None
|
||||
filled_avg_price: Optional[float] = None
|
||||
side: OrderSide
|
||||
limit_price: Optional[float]
|
||||
limit_price: Optional[float] = None
|
||||
|
||||
#entita pro kazdy kompletni FILL, je navazana na prescribed_trade
|
||||
class TradeUpdate(BaseModel):
|
||||
event: Union[TradeEvent, str]
|
||||
execution_id: Optional[UUID]
|
||||
execution_id: Optional[UUID] = None
|
||||
order: Order
|
||||
timestamp: datetime
|
||||
position_qty: Optional[float]
|
||||
price: Optional[float]
|
||||
qty: Optional[float]
|
||||
value: Optional[float]
|
||||
cash: Optional[float]
|
||||
pos_avg_price: Optional[float]
|
||||
profit: Optional[float]
|
||||
profit_sum: Optional[float]
|
||||
rel_profit: Optional[float]
|
||||
rel_profit_cum: Optional[float]
|
||||
signal_name: Optional[str]
|
||||
prescribed_trade_id: Optional[str]
|
||||
position_qty: Optional[float] = None
|
||||
price: Optional[float] = None
|
||||
qty: Optional[float] = None
|
||||
value: Optional[float] = None
|
||||
cash: Optional[float] = None
|
||||
pos_avg_price: Optional[float] = None
|
||||
profit: Optional[float] = None
|
||||
profit_sum: Optional[float] = None
|
||||
rel_profit: Optional[float] = None
|
||||
rel_profit_cum: Optional[float] = None
|
||||
signal_name: Optional[str] = None
|
||||
prescribed_trade_id: Optional[str] = None
|
||||
|
||||
|
||||
class RunArchiveChange(BaseModel):
|
||||
@ -260,8 +302,7 @@ class RunArchive(BaseModel):
|
||||
bt_from: Optional[datetime] = None
|
||||
bt_to: Optional[datetime] = None
|
||||
strat_json: Optional[str] = None
|
||||
##bude decomiss, misto toho stratvars_toml
|
||||
stratvars: Optional[dict] = None
|
||||
transferables: Optional[dict] = None #varaibles that are transferrable to next run
|
||||
settings: Optional[dict] = None
|
||||
ilog_save: Optional[bool] = False
|
||||
profit: float = 0
|
||||
@ -291,6 +332,8 @@ class RunArchiveView(BaseModel):
|
||||
end_positions: int = 0
|
||||
end_positions_avgp: float = 0
|
||||
metrics: Union[dict, str] = None
|
||||
batch_profit: float = 0 # Total profit for the batch - now calculated during query
|
||||
batch_count: int = 0 # Count of runs in the batch - now calculated during query
|
||||
|
||||
#same but with pagination
|
||||
class RunArchiveViewPagination(BaseModel):
|
||||
@ -301,7 +344,7 @@ class RunArchiveViewPagination(BaseModel):
|
||||
|
||||
#trida pro ukladani historie stoplossy do ext_data
|
||||
class SLHistory(BaseModel):
|
||||
id: Optional[UUID]
|
||||
id: Optional[UUID] = None
|
||||
time: datetime
|
||||
sl_val: float
|
||||
|
||||
@ -314,7 +357,7 @@ class RunArchiveDetail(BaseModel):
|
||||
indicators: List[dict]
|
||||
statinds: dict
|
||||
trades: List[TradeUpdate]
|
||||
ext_data: Optional[dict]
|
||||
ext_data: Optional[dict] = None
|
||||
|
||||
|
||||
class InstantIndicator(BaseModel):
|
||||
|
||||
87
v2realbot/common/transform.py
Normal file
87
v2realbot/common/transform.py
Normal file
@ -0,0 +1,87 @@
|
||||
from v2realbot.common.model import RunArchive, RunArchiveView, RunManagerRecord
|
||||
from datetime import datetime
|
||||
import orjson
|
||||
import v2realbot.controller.services as cs
|
||||
|
||||
#prevede dict radku zpatky na objekt vcetme retypizace
|
||||
def row_to_runmanager(row: dict) -> RunManagerRecord:
|
||||
is_running = cs.is_runner_running(row['runner_id']) if row['runner_id'] else False
|
||||
res = RunManagerRecord(
|
||||
moddus=row['moddus'],
|
||||
id=row['id'],
|
||||
strat_id=row['strat_id'],
|
||||
symbol=row['symbol'],
|
||||
mode=row['mode'],
|
||||
account=row['account'],
|
||||
note=row['note'],
|
||||
ilog_save=bool(row['ilog_save']),
|
||||
market=row['market'] if row['market'] is not None else None,
|
||||
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
|
||||
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
|
||||
weekdays_filter=[int(x) for x in row['weekdays_filter'].split(',')] if row['weekdays_filter'] else [],
|
||||
batch_id=row['batch_id'],
|
||||
testlist_id=row['testlist_id'],
|
||||
start_time=row['start_time'],
|
||||
stop_time=row['stop_time'],
|
||||
status=row['status'],
|
||||
#last_started=zoneNY.localize(datetime.fromisoformat(row['last_started'])) if row['last_started'] else None,
|
||||
last_processed=datetime.fromisoformat(row['last_processed']) if row['last_processed'] else None,
|
||||
history=row['history'],
|
||||
valid_from=datetime.fromisoformat(row['valid_from']) if row['valid_from'] else None,
|
||||
valid_to=datetime.fromisoformat(row['valid_to']) if row['valid_to'] else None,
|
||||
runner_id = row['runner_id'] if row['runner_id'] and is_running else None, #runner_id is only present if it is running
|
||||
strat_running = is_running) #cant believe this when called from separate process as not current
|
||||
return res
|
||||
|
||||
#prevede dict radku zpatky na objekt vcetme retypizace
|
||||
def row_to_runarchiveview(row: dict) -> RunArchiveView:
|
||||
a = RunArchiveView(
|
||||
id=row['runner_id'],
|
||||
strat_id=row['strat_id'],
|
||||
batch_id=row['batch_id'],
|
||||
symbol=row['symbol'],
|
||||
name=row['name'],
|
||||
note=row['note'],
|
||||
started=datetime.fromisoformat(row['started']) if row['started'] else None,
|
||||
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
|
||||
mode=row['mode'],
|
||||
account=row['account'],
|
||||
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
|
||||
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
|
||||
ilog_save=bool(row['ilog_save']),
|
||||
profit=float(row['profit']),
|
||||
trade_count=int(row['trade_count']),
|
||||
end_positions=int(row['end_positions']),
|
||||
end_positions_avgp=float(row['end_positions_avgp']),
|
||||
metrics=orjson.loads(row['metrics']) if row['metrics'] else None,
|
||||
batch_profit=int(row['batch_profit']) if row['batch_profit'] and row['batch_id'] else 0,
|
||||
batch_count=int(row['batch_count']) if row['batch_count'] and row['batch_id'] else 0,
|
||||
)
|
||||
return a
|
||||
|
||||
#prevede dict radku zpatky na objekt vcetme retypizace
|
||||
def row_to_runarchive(row: dict) -> RunArchive:
|
||||
return RunArchive(
|
||||
id=row['runner_id'],
|
||||
strat_id=row['strat_id'],
|
||||
batch_id=row['batch_id'],
|
||||
symbol=row['symbol'],
|
||||
name=row['name'],
|
||||
note=row['note'],
|
||||
started=datetime.fromisoformat(row['started']) if row['started'] else None,
|
||||
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
|
||||
mode=row['mode'],
|
||||
account=row['account'],
|
||||
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
|
||||
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
|
||||
strat_json=orjson.loads(row['strat_json']),
|
||||
settings=orjson.loads(row['settings']),
|
||||
ilog_save=bool(row['ilog_save']),
|
||||
profit=float(row['profit']),
|
||||
trade_count=int(row['trade_count']),
|
||||
end_positions=int(row['end_positions']),
|
||||
end_positions_avgp=float(row['end_positions_avgp']),
|
||||
metrics=orjson.loads(row['metrics']),
|
||||
stratvars_toml=row['stratvars_toml'],
|
||||
transferables=orjson.loads(row['transferables']) if row['transferables'] else None
|
||||
)
|
||||
@ -2,64 +2,31 @@ from alpaca.data.enums import DataFeed
|
||||
from v2realbot.enums.enums import Mode, Account, FillCondition
|
||||
from appdirs import user_data_dir
|
||||
from pathlib import Path
|
||||
import os
|
||||
from collections import defaultdict
|
||||
# Global flag to track if the ml module has been imported (solution for long import times of tensorflow)
|
||||
#the first occurence of using it will load it globally
|
||||
_ml_module_loaded = False
|
||||
|
||||
#directory for generated images and basic reports
|
||||
MEDIA_DIRECTORY = Path(__file__).parent.parent.parent / "media"
|
||||
RUNNER_DETAIL_DIRECTORY = Path(__file__).parent.parent.parent / "runner_detail"
|
||||
|
||||
#location of strat.log - it is used to fetch by gui
|
||||
LOG_PATH = Path(__file__).parent.parent
|
||||
LOG_FILE = Path(__file__).parent.parent / "strat.log"
|
||||
JOB_LOG_FILE = Path(__file__).parent.parent / "job.log"
|
||||
|
||||
#'0.0.0.0',
|
||||
#currently only prod server has acces to LIVE
|
||||
PROD_SERVER_HOSTNAMES = ['tradingeastcoast','David-MacBook-Pro.local'] #,'David-MacBook-Pro.local'
|
||||
TEST_SERVER_HOSTNAMES = ['tradingtest']
|
||||
|
||||
#TODO vybrane dat do config db a managovat pres GUI
|
||||
|
||||
#AGGREGATOR filter trades
|
||||
#NOTE pridana F - Inter Market Sweep Order - obcas vytvarela spajky
|
||||
AGG_EXCLUDED_TRADES = ['C','O','4','B','7','V','P','W','U','Z','F']
|
||||
|
||||
OFFLINE_MODE = False
|
||||
|
||||
# ilog lvls = 0,1 - 0 debug, 1 info
|
||||
ILOG_SAVE_LEVEL_FROM = 1
|
||||
|
||||
#minimalni vzdalenost mezi trady, kterou agregator pousti pro CBAR(0.001 - blokuje mensi nez 1ms)
|
||||
GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN = 0.003
|
||||
#normalized price for tick 0.01
|
||||
NORMALIZED_TICK_BASE_PRICE = 30.00
|
||||
LOG_RUNNER_EVENTS = False
|
||||
#no print in console
|
||||
QUIET_MODE = True
|
||||
#how many consecutive trades with the fill price are necessary for LIMIT fill to happen in backtesting
|
||||
#0 - optimistic, every knot high will fill the order
|
||||
#N - N consecutive trades required
|
||||
#not impl.yet
|
||||
#minimum is 1, na alpace live to vetsinou vychazi 7-8 u BAC, je to hodne podobne tomu, nez je cena překonaná pul centu. tzn. 7-8 a nebo FillCondition.SLOW
|
||||
BT_FILL_CONS_TRADES_REQUIRED = 2
|
||||
#during bt trade execution logs X-surrounding trades of the one that triggers the fill
|
||||
BT_FILL_LOG_SURROUNDING_TRADES = 10
|
||||
#fill condition for limit order in bt
|
||||
# fast - price has to be equal or bigger <=
|
||||
# slow - price has to be bigger <
|
||||
BT_FILL_CONDITION_BUY_LIMIT = FillCondition.SLOW
|
||||
BT_FILL_CONDITION_SELL_LIMIT = FillCondition.SLOW
|
||||
#TBD TODO not implemented yet
|
||||
BT_FILL_PRICE_MARKET_ORDER_PREMIUM = 0.005
|
||||
#backend counter of api requests
|
||||
COUNT_API_REQUESTS = False
|
||||
#stratvars that cannot be changed in gui
|
||||
STRATVARS_UNCHANGEABLES = ['pendingbuys', 'blockbuy', 'jevylozeno', 'limitka']
|
||||
DATA_DIR = user_data_dir("v2realbot")
|
||||
DATA_DIR = user_data_dir("v2realbot", False)
|
||||
MODEL_DIR = Path(DATA_DIR)/"models"
|
||||
#BT DELAYS
|
||||
#profiling
|
||||
PROFILING_NEXT_ENABLED = False
|
||||
PROFILING_OUTPUT_DIR = DATA_DIR
|
||||
|
||||
#FILL CONFIGURATION CLASS FOR BACKTESTING
|
||||
|
||||
#WIP
|
||||
#WIP - FILL CONFIGURATION CLASS FOR BACKTESTING
|
||||
class BT_FILL_CONF:
|
||||
""""
|
||||
Trida pro konfiguraci backtesting fillu pro dany symbol, pokud neexistuje tak fallback na obecny viz vyse-
|
||||
@ -73,24 +40,6 @@ class BT_FILL_CONF:
|
||||
self.BT_FILL_CONDITION_SELL_LIMIT=BT_FILL_CONDITION_SELL_LIMIT
|
||||
self.BT_FILL_PRICE_MARKET_ORDER_PREMIUM=BT_FILL_PRICE_MARKET_ORDER_PREMIUM
|
||||
|
||||
|
||||
""""
|
||||
LATENCY DELAYS for LIVE eastcoast
|
||||
.000 trigger - last_trade_time (.4246266)
|
||||
+.020 vstup do strategie a BUY (.444606)
|
||||
+.023 submitted (.469198)
|
||||
+.008 filled (.476695552)
|
||||
+.023 fill not(.499888)
|
||||
"""
|
||||
#TODO změnit názvy delay promennych vystizneji a obecneji
|
||||
class BT_DELAYS:
|
||||
trigger_to_strat: float = 0.020
|
||||
strat_to_sub: float = 0.023
|
||||
sub_to_fill: float = 0.008
|
||||
fill_to_not: float = 0.023
|
||||
#doplnit dle live
|
||||
limit_order_offset: float = 0
|
||||
|
||||
class Keys:
|
||||
def __init__(self, api_key, secret_key, paper, feed) -> None:
|
||||
self.API_KEY = api_key
|
||||
@ -99,7 +48,8 @@ class Keys:
|
||||
self.FEED = feed
|
||||
|
||||
# podle modu (PAPER, LIVE) vrati objekt
|
||||
# obsahujici klice pro pripojeni k alpace
|
||||
# obsahujici klice pro pripojeni k alpace - používá se pro Trading API a order updates websockets (pristupy relevantni per strategie)
|
||||
#pro real time data se bere LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, LIVE_DATA_FEED nize - jelikoz jde o server wide nastaveni
|
||||
def get_key(mode: Mode, account: Account):
|
||||
if mode not in [Mode.PAPER, Mode.LIVE]:
|
||||
print("has to be LIVE or PAPER only")
|
||||
@ -121,33 +71,82 @@ HEARTBEAT_TIMEOUT=5
|
||||
WEB_API_KEY="david"
|
||||
|
||||
#PRIMARY PAPER
|
||||
ACCOUNT1_PAPER_API_KEY = 'PKGGEWIEYZOVQFDRY70L'
|
||||
ACCOUNT1_PAPER_SECRET_KEY = 'O5Kt8X4RLceIOvM98i5LdbalItsX7hVZlbPYHy8Y'
|
||||
ACCOUNT1_PAPER_API_KEY = os.environ.get('ACCOUNT1_PAPER_API_KEY')
|
||||
ACCOUNT1_PAPER_SECRET_KEY = os.environ.get('ACCOUNT1_PAPER_SECRET_KEY')
|
||||
ACCOUNT1_PAPER_MAX_BATCH_SIZE = 1
|
||||
ACCOUNT1_PAPER_PAPER = True
|
||||
ACCOUNT1_PAPER_FEED = DataFeed.SIP
|
||||
#ACCOUNT1_PAPER_FEED = DataFeed.SIP
|
||||
|
||||
# Load the data feed type from environment variable
|
||||
data_feed_type_str = os.environ.get('ACCOUNT1_PAPER_FEED', 'iex') # Default to 'sip' if not set
|
||||
|
||||
# Convert the string to DataFeed enum
|
||||
try:
|
||||
ACCOUNT1_PAPER_FEED = DataFeed(data_feed_type_str)
|
||||
except ValueError:
|
||||
# Handle the case where the environment variable does not match any enum member
|
||||
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT1_PAPER_FEED defaulting to 'iex'")
|
||||
ACCOUNT1_PAPER_FEED = DataFeed.SIP
|
||||
|
||||
#PRIMARY LIVE
|
||||
ACCOUNT1_LIVE_API_KEY = 'AKB5HD32LPDZC9TPUWJT'
|
||||
ACCOUNT1_LIVE_SECRET_KEY = 'Xq1wPSNOtwmlMTAd4cEmdKvNDgfcUYfrOaCccaAs'
|
||||
ACCOUNT1_LIVE_API_KEY = os.environ.get('ACCOUNT1_LIVE_API_KEY')
|
||||
ACCOUNT1_LIVE_SECRET_KEY = os.environ.get('ACCOUNT1_LIVE_SECRET_KEY')
|
||||
ACCOUNT1_LIVE_MAX_BATCH_SIZE = 1
|
||||
ACCOUNT1_LIVE_PAPER = False
|
||||
ACCOUNT1_LIVE_FEED = DataFeed.SIP
|
||||
#ACCOUNT1_LIVE_FEED = DataFeed.SIP
|
||||
|
||||
# Load the data feed type from environment variable
|
||||
data_feed_type_str = os.environ.get('ACCOUNT1_LIVE_FEED', 'iex') # Default to 'sip' if not set
|
||||
|
||||
# Convert the string to DataFeed enum
|
||||
try:
|
||||
ACCOUNT1_LIVE_FEED = DataFeed(data_feed_type_str)
|
||||
except ValueError:
|
||||
# Handle the case where the environment variable does not match any enum member
|
||||
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT1_LIVE_FEED defaulting to 'iex'")
|
||||
ACCOUNT1_LIVE_FEED = DataFeed.IEX
|
||||
|
||||
#SECONDARY PAPER - Martin
|
||||
ACCOUNT2_PAPER_API_KEY = 'PKPDTCQLNHCBC2D9GQFB'
|
||||
ACCOUNT2_PAPER_SECRET_KEY = 'c1Z2V0gBleQmwHYCreqqTs45Jy33RqPGrofuSayz'
|
||||
ACCOUNT2_PAPER_API_KEY = os.environ.get('ACCOUNT2_PAPER_API_KEY')
|
||||
ACCOUNT2_PAPER_SECRET_KEY = os.environ.get('ACCOUNT2_PAPER_SECRET_KEY')
|
||||
ACCOUNT2_PAPER_MAX_BATCH_SIZE = 1
|
||||
ACCOUNT2_PAPER_PAPER = True
|
||||
ACCOUNT2_PAPER_FEED = DataFeed.IEX
|
||||
#ACCOUNT2_PAPER_FEED = DataFeed.IEX
|
||||
|
||||
# #SECONDARY PAPER
|
||||
# ACCOUNT2_PAPER_API_KEY = 'PK0OQHZG03PUZ1SC560V'
|
||||
# ACCOUNT2_PAPER_SECRET_KEY = 'cTglhm7kwRcZfFT27fQWz31sXaxadzQApFDW6Lat'
|
||||
# ACCOUNT2_PAPER_MAX_BATCH_SIZE = 1
|
||||
# ACCOUNT2_PAPER_PAPER = True
|
||||
# ACCOUNT2_PAPER_FEED = DataFeed.IEX
|
||||
# Load the data feed type from environment variable
|
||||
data_feed_type_str = os.environ.get('ACCOUNT2_PAPER_FEED', 'iex') # Default to 'sip' if not set
|
||||
|
||||
# Convert the string to DataFeed enum
|
||||
try:
|
||||
ACCOUNT2_PAPER_FEED = DataFeed(data_feed_type_str)
|
||||
except ValueError:
|
||||
# Handle the case where the environment variable does not match any enum member
|
||||
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT2_PAPER_FEED defaulting to 'iex'")
|
||||
ACCOUNT2_PAPER_FEED = DataFeed.IEX
|
||||
|
||||
|
||||
#SECONDARY LIVE - Martin
|
||||
# ACCOUNT2_LIVE_API_KEY = os.environ.get('ACCOUNT2_LIVE_API_KEY')
|
||||
# ACCOUNT2_LIVE_SECRET_KEY = os.environ.get('ACCOUNT2_LIVE_SECRET_KEY')
|
||||
# ACCOUNT2_LIVE_MAX_BATCH_SIZE = 1
|
||||
# ACCOUNT2_LIVE_PAPER = True
|
||||
# #ACCOUNT2_LIVE_FEED = DataFeed.IEX
|
||||
|
||||
# # Load the data feed type from environment variable
|
||||
# data_feed_type_str = os.environ.get('ACCOUNT2_LIVE_FEED', 'iex') # Default to 'sip' if not set
|
||||
|
||||
# # Convert the string to DataFeed enum
|
||||
# try:
|
||||
# ACCOUNT2_LIVE_FEED = DataFeed(data_feed_type_str)
|
||||
# except ValueError:
|
||||
# # Handle the case where the environment variable does not match any enum member
|
||||
# print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT2_LIVE_FEED defaulting to 'iex'")
|
||||
# ACCOUNT2_LIVE_FEED = DataFeed.IEX
|
||||
|
||||
#zatim jsou LIVE_DATA nastaveny jako z account1_paper
|
||||
LIVE_DATA_API_KEY = ACCOUNT1_PAPER_API_KEY
|
||||
LIVE_DATA_SECRET_KEY = ACCOUNT1_PAPER_SECRET_KEY
|
||||
#LIVE_DATA_FEED je nastaveny v config_handleru
|
||||
|
||||
class KW:
|
||||
activate: str = "activate"
|
||||
|
||||
112
v2realbot/controller/configs.py
Normal file
112
v2realbot/controller/configs.py
Normal file
@ -0,0 +1,112 @@
|
||||
|
||||
import v2realbot.common.db as db
|
||||
from v2realbot.common.model import ConfigItem
|
||||
import v2realbot.utils.config_handler as ch
|
||||
|
||||
# region CONFIG db services
|
||||
#TODO vytvorit modul pro dotahovani z pythonu (get_from_config(var_name, def_value) {)- stejne jako v js
|
||||
#TODO zvazit presunuti do TOML z JSONu
|
||||
def get_all_config_items():
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('SELECT id, item_name, json_data FROM config_table')
|
||||
config_items = [{"id": row[0], "item_name": row[1], "json_data": row[2]} for row in cursor.fetchall()]
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
return 0, config_items
|
||||
|
||||
# Function to get a config item by ID
|
||||
def get_config_item_by_id(item_id):
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('SELECT item_name, json_data FROM config_table WHERE id = ?', (item_id,))
|
||||
row = cursor.fetchone()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
if row is None:
|
||||
return -2, "not found"
|
||||
else:
|
||||
return 0, {"item_name": row[0], "json_data": row[1]}
|
||||
|
||||
# Function to get a config item by ID
|
||||
def get_config_item_by_name(item_name):
|
||||
#print(item_name)
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
query = f"SELECT item_name, json_data FROM config_table WHERE item_name = '{item_name}'"
|
||||
#print(query)
|
||||
cursor.execute(query)
|
||||
row = cursor.fetchone()
|
||||
#print(row)
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
if row is None:
|
||||
return -2, "not found"
|
||||
else:
|
||||
return 0, {"item_name": row[0], "json_data": row[1]}
|
||||
|
||||
# Function to create a new config item
|
||||
def create_config_item(config_item: ConfigItem):
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('INSERT INTO config_table (item_name, json_data) VALUES (?, ?)', (config_item.item_name, config_item.json_data))
|
||||
item_id = cursor.lastrowid
|
||||
conn.commit()
|
||||
print(item_id)
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
return 0, {"id": item_id, "item_name":config_item.item_name, "json_data":config_item.json_data}
|
||||
except Exception as e:
|
||||
return -2, str(e)
|
||||
|
||||
# Function to update a config item by ID
|
||||
def update_config_item(item_id, config_item: ConfigItem):
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('UPDATE config_table SET item_name = ?, json_data = ? WHERE id = ?', (config_item.item_name, config_item.json_data, item_id))
|
||||
conn.commit()
|
||||
|
||||
#refresh active item je zatím řešena takto natvrdo při updatu položky "active_profile" a při startu aplikace
|
||||
if config_item.item_name == "active_profile":
|
||||
ch.config_handler.activate_profile()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
return 0, {"id": item_id, **config_item.dict()}
|
||||
except Exception as e:
|
||||
return -2, str(e)
|
||||
|
||||
# Function to delete a config item by ID
|
||||
def delete_config_item(item_id):
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('DELETE FROM config_table WHERE id = ?', (item_id,))
|
||||
conn.commit()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
return 0, {"id": item_id}
|
||||
|
||||
# endregion
|
||||
|
||||
#Example of using config directive
|
||||
# config_directive = "overrides"
|
||||
# ret, res = get_config_item_by_name(config_directive)
|
||||
# if ret < 0:
|
||||
# print(f"CONFIG OVERRIDE {config_directive} Error {res}")
|
||||
# else:
|
||||
# config = orjson.loads(res["json_data"])
|
||||
|
||||
# print("OVERRIDN CFG:", config)
|
||||
# for key, value in config.items():
|
||||
# if hasattr(cfg, key):
|
||||
# print(f"Overriding {key} with {value}")
|
||||
# setattr(cfg, key, value)
|
||||
|
||||
463
v2realbot/controller/run_manager.py
Normal file
463
v2realbot/controller/run_manager.py
Normal file
@ -0,0 +1,463 @@
|
||||
from typing import Any, List, Tuple
|
||||
from uuid import UUID, uuid4
|
||||
from v2realbot.common.model import RunManagerRecord, StrategyInstance, RunDay, StrategyInstance, Runner, RunRequest, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, RunArchiveChange, Bar, TradeEvent, TestList, Intervals, ConfigItem, InstantIndicator, DataTablesRequest
|
||||
from v2realbot.utils.utils import validate_and_format_time, AttributeDict, zoneNY, zonePRG, safe_get, dict_replace_value, Store, parse_toml_string, json_serial, is_open_hours, send_to_telegram, concatenate_weekdays, transform_data
|
||||
from v2realbot.utils.ilog import delete_logs
|
||||
from v2realbot.common.PrescribedTradeModel import Trade, TradeDirection, TradeStatus, TradeStoplossType
|
||||
from datetime import datetime
|
||||
from v2realbot.loader.trade_offline_streamer import Trade_Offline_Streamer
|
||||
from threading import Thread, current_thread, Event, enumerate
|
||||
from v2realbot.config import STRATVARS_UNCHANGEABLES, ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_LIVE_API_KEY, ACCOUNT1_LIVE_SECRET_KEY, DATA_DIR,MEDIA_DIRECTORY, RUNNER_DETAIL_DIRECTORY
|
||||
import importlib
|
||||
from alpaca.trading.requests import GetCalendarRequest
|
||||
from alpaca.trading.client import TradingClient
|
||||
#from alpaca.trading.models import Calendar
|
||||
from queue import Queue
|
||||
from tinydb import TinyDB, Query, where
|
||||
from tinydb.operations import set
|
||||
import orjson
|
||||
import numpy as np
|
||||
from rich import print
|
||||
import pandas as pd
|
||||
from traceback import format_exc
|
||||
from datetime import timedelta, time
|
||||
from threading import Lock
|
||||
import v2realbot.common.db as db
|
||||
import v2realbot.common.transform as tr
|
||||
from sqlite3 import OperationalError, Row
|
||||
import v2realbot.strategyblocks.indicators.custom as ci
|
||||
from v2realbot.strategyblocks.inits.init_indicators import initialize_dynamic_indicators
|
||||
from v2realbot.strategyblocks.indicators.indicators_hub import populate_dynamic_indicators
|
||||
from v2realbot.interfaces.backtest_interface import BacktestInterface
|
||||
import os
|
||||
import v2realbot.reporting.metricstoolsimage as mt
|
||||
import gzip
|
||||
import os
|
||||
import msgpack
|
||||
import v2realbot.controller.services as cs
|
||||
import v2realbot.scheduler.ap_scheduler as aps
|
||||
|
||||
# Functions for your 'run_manager' table
|
||||
|
||||
# CREATE TABLE "run_manager" (
|
||||
# "moddus" TEXT NOT NULL,
|
||||
# "id" varchar(32),
|
||||
# "strat_id" varchar(32) NOT NULL,
|
||||
# "symbol" TEXT,
|
||||
# "account" TEXT NOT NULL,
|
||||
# "mode" TEXT NOT NULL,
|
||||
# "note" TEXT,
|
||||
# "ilog_save" BOOLEAN,
|
||||
# "bt_from" TEXT,
|
||||
# "bt_to" TEXT,
|
||||
# "weekdays_filter" TEXT,
|
||||
# "batch_id" TEXT,
|
||||
# "start_time" TEXT NOT NULL,
|
||||
# "stop_time" TEXT NOT NULL,
|
||||
# "status" TEXT NOT NULL,
|
||||
# "last_processed" TEXT,
|
||||
# "history" TEXT,
|
||||
# "valid_from" TEXT,
|
||||
# "valid_to" TEXT,
|
||||
# "testlist_id" TEXT,
|
||||
# "runner_id" varchar2(32),
|
||||
# PRIMARY KEY("id")
|
||||
# )
|
||||
|
||||
# CREATE INDEX idx_moddus ON run_manager (moddus);
|
||||
# CREATE INDEX idx_status ON run_manager (status);
|
||||
# CREATE INDEX idx_status_moddus ON run_manager (status, moddus);
|
||||
# CREATE INDEX idx_valid_from_to ON run_manager (valid_from, valid_to);
|
||||
# CREATE INDEX idx_stopped_batch_id ON runner_header (stopped, batch_id);
|
||||
# CREATE INDEX idx_search_value ON runner_header (strat_id, batch_id);
|
||||
|
||||
|
||||
##weekdays are stored as comma separated values
|
||||
# Fetching (assume 'weekdays' field is a comma-separated string)
|
||||
# weekday_str = record['weekdays']
|
||||
# weekdays = [int(x) for x in weekday_str.split(',')]
|
||||
|
||||
# # ... logic to check whether today's weekday is in 'weekdays'
|
||||
|
||||
# # Storing
|
||||
# weekdays = [1, 2, 5] # Example
|
||||
# weekday_str = ",".join(str(x) for x in weekdays)
|
||||
# update_data = {'weekdays': weekday_str}
|
||||
# # ... use in an SQL UPDATE statement
|
||||
|
||||
# for row in records:
|
||||
# row['weekdays_filter'] = [int(x) for x in row['weekdays_filter'].split(',')] if row['weekdays_filter'] else []
|
||||
|
||||
|
||||
#get stratin info return
|
||||
# strat : StrategyInstance = None
|
||||
# result, strat = cs.get_stratin("625760ac-6376-47fa-8989-1e6a3f6ab66a")
|
||||
# if result == 0:
|
||||
# print(strat)
|
||||
# else:
|
||||
# print("Error:", strat)
|
||||
|
||||
|
||||
# Fetch all
|
||||
#result, records = fetch_all_run_manager_records()
|
||||
|
||||
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
|
||||
|
||||
|
||||
def fetch_all_run_manager_records() -> list[RunManagerRecord]:
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = Row
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('SELECT * FROM run_manager')
|
||||
rows = cursor.fetchall()
|
||||
results = []
|
||||
#Transform row to object
|
||||
for row in rows:
|
||||
#add transformed object into result list
|
||||
results.append(tr.row_to_runmanager(row))
|
||||
|
||||
return 0, results
|
||||
finally:
|
||||
conn.row_factory = None
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
# Fetch by strategy_id
|
||||
# result, record = fetch_run_manager_record_by_id('625760ac-6376-47fa-8989-1e6a3f6ab66a')
|
||||
def fetch_run_manager_record_by_id(strategy_id) -> RunManagerRecord:
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = Row
|
||||
cursor = conn.cursor()
|
||||
cursor.execute('SELECT * FROM run_manager WHERE id = ?', (str(strategy_id),))
|
||||
row = cursor.fetchone()
|
||||
if row is None:
|
||||
return -2, "not found"
|
||||
else:
|
||||
return 0, tr.row_to_runmanager(row)
|
||||
|
||||
except Exception as e:
|
||||
print("ERROR while fetching all records:", str(e) + format_exc())
|
||||
return -2, str(e) + format_exc()
|
||||
finally:
|
||||
conn.row_factory = None
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
def add_run_manager_record(new_record: RunManagerRecord):
|
||||
#validation/standardization of time
|
||||
new_record.start_time = validate_and_format_time(new_record.start_time)
|
||||
if new_record.start_time is None:
|
||||
return -2, f"Invalid start_time format {new_record.start_time}"
|
||||
|
||||
if new_record.stop_time is not None:
|
||||
new_record.stop_time = validate_and_format_time(new_record.stop_time)
|
||||
if new_record.stop_time is None:
|
||||
return -2, f"Invalid stop_time format {new_record.stop_time}"
|
||||
|
||||
if new_record.batch_id is None:
|
||||
new_record.batch_id = str(uuid4())[:8]
|
||||
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
|
||||
strat : StrategyInstance = None
|
||||
result, strat = cs.get_stratin(id=str(new_record.strat_id))
|
||||
if result == 0:
|
||||
new_record.symbol = strat.symbol
|
||||
else:
|
||||
return -1, f"Strategy {new_record.strat_id} not found"
|
||||
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Construct a suitable INSERT query based on your RunManagerRecord fields
|
||||
insert_query = """
|
||||
INSERT INTO run_manager (moddus, id, strat_id, symbol,account, mode, note,ilog_save,
|
||||
market, bt_from, bt_to, weekdays_filter, batch_id,
|
||||
start_time, stop_time, status, last_processed,
|
||||
history, valid_from, valid_to, testlist_id)
|
||||
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?)
|
||||
"""
|
||||
values = [
|
||||
new_record.moddus, str(new_record.id), str(new_record.strat_id), new_record.symbol, new_record.account, new_record.mode, new_record.note,
|
||||
int(new_record.ilog_save), new_record.market,
|
||||
new_record.bt_from.isoformat() if new_record.bt_from is not None else None,
|
||||
new_record.bt_to.isoformat() if new_record.bt_to is not None else None,
|
||||
",".join(str(x) for x in new_record.weekdays_filter) if new_record.weekdays_filter else None,
|
||||
new_record.batch_id, new_record.start_time,
|
||||
new_record.stop_time, new_record.status,
|
||||
new_record.last_processed.isoformat() if new_record.last_processed is not None else None,
|
||||
new_record.history,
|
||||
new_record.valid_from.isoformat() if new_record.valid_from is not None else None,
|
||||
new_record.valid_to.isoformat() if new_record.valid_to is not None else None,
|
||||
new_record.testlist_id
|
||||
]
|
||||
db.execute_with_retry(cursor, insert_query, values)
|
||||
conn.commit()
|
||||
|
||||
#Add APS scheduler job refresh
|
||||
res, result = aps.initialize_jobs()
|
||||
if res < 0:
|
||||
return -2, f"Error initializing jobs: {res} {result}"
|
||||
|
||||
return 0, new_record.id # Assuming success, you might return something more descriptive
|
||||
except Exception as e:
|
||||
print("ERROR while adding record:", str(e) + format_exc())
|
||||
return -2, str(e) + format_exc()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
# Update (example)
|
||||
# update_data = {'last_started': '2024-02-13 10:35:00'}
|
||||
# result, message = update_run_manager_record('625760ac-6376-47fa-8989-1e6a3f6ab66a', update_data)
|
||||
def update_run_manager_record(record_id, updated_record: RunManagerRecord):
|
||||
#validation/standardization of time
|
||||
updated_record.start_time = validate_and_format_time(updated_record.start_time)
|
||||
if updated_record.start_time is None:
|
||||
return -2, f"Invalid start_time format {updated_record.start_time}"
|
||||
|
||||
if updated_record.stop_time is not None:
|
||||
updated_record.stop_time = validate_and_format_time(updated_record.stop_time)
|
||||
if updated_record.stop_time is None:
|
||||
return -2, f"Invalid stop_time format {updated_record.stop_time}"
|
||||
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
|
||||
#strategy lookup check, if strategy still exists
|
||||
strat : StrategyInstance = None
|
||||
result, strat = cs.get_stratin(id=str(updated_record.strat_id))
|
||||
if result == 0:
|
||||
updated_record.symbol = strat.symbol
|
||||
else:
|
||||
return -1, f"Strategy {updated_record.strat_id} not found"
|
||||
|
||||
#remove values with None, so they are not updated
|
||||
#updated_record_dict = updated_record.dict(exclude_none=True)
|
||||
|
||||
# Construct update query and handle weekdays conversion
|
||||
update_query = 'UPDATE run_manager SET '
|
||||
update_params = []
|
||||
for key, value in updated_record.dict().items(): # Iterate over model attributes
|
||||
if key in ['id', 'strat_running']: # Skip updating the primary key
|
||||
continue
|
||||
update_query += f"{key} = ?, "
|
||||
if key == "ilog_save":
|
||||
value = int(value)
|
||||
elif key in ["strat_id", "runner_id"]:
|
||||
value = str(value) if value else None
|
||||
elif key == "weekdays_filter":
|
||||
value = ",".join(str(x) for x in value) if value else None
|
||||
elif key in ['valid_from', 'valid_to', 'bt_from', 'bt_to', 'last_processed']:
|
||||
value = value.isoformat() if value else None
|
||||
update_params.append(value)
|
||||
# if 'weekdays_filter' in updated_record.dict():
|
||||
# updated_record.weekdays_filter = ",".join(str(x) for x in updated_record.weekdays_filter)
|
||||
update_query = update_query[:-2] # Remove trailing comma and space
|
||||
update_query += ' WHERE id = ?'
|
||||
update_params.append(str(record_id))
|
||||
|
||||
db.execute_with_retry(cursor, update_query, update_params)
|
||||
#cursor.execute(update_query, update_params)
|
||||
conn.commit()
|
||||
|
||||
#Add APS scheduler job refresh
|
||||
res, result = aps.initialize_jobs()
|
||||
if res < 0:
|
||||
return -2, f"Error initializing jobs: {res} {result}"
|
||||
|
||||
except Exception as e:
|
||||
print("ERROR while updating record:", str(e) + format_exc())
|
||||
return -2, str(e) + format_exc()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
return 0, record_id
|
||||
|
||||
# result, message = delete_run_manager_record('625760ac-6376-47fa-8989-1e6a3f6ab66a')
|
||||
def delete_run_manager_record(record_id):
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
cursor = conn.cursor()
|
||||
db.execute_with_retry(cursor, 'DELETE FROM run_manager WHERE id = ?', (str(record_id),))
|
||||
#cursor.execute('DELETE FROM run_manager WHERE id = ?', (str(strategy_id),))
|
||||
conn.commit()
|
||||
except Exception as e:
|
||||
print("ERROR while deleting record:", str(e) + format_exc())
|
||||
return -2, str(e) + format_exc()
|
||||
finally:
|
||||
db.pool.release_connection(conn)
|
||||
return 0, record_id
|
||||
|
||||
def fetch_scheduled_candidates_for_start_and_stop(market_datetime_now, market) -> tuple[int, dict]:
|
||||
"""
|
||||
Fetches all active records from the 'run_manager' table where the mode is 'schedule'. It checks if the current
|
||||
time in the America/New_York timezone is within the operational intervals specified by 'start_time' and 'stop_time'
|
||||
for each record. This function is designed to correctly handle scenarios where the operational interval crosses
|
||||
midnight, as well as intervals contained within a single day.
|
||||
|
||||
The function localizes 'valid_from', 'valid_to', 'start_time', and 'stop_time' using the 'zoneNY' timezone object
|
||||
for accurate comparison with the current time.
|
||||
|
||||
Parameters:
|
||||
market_datetime_now (datetime): The current date and time in the America/New_York timezone.
|
||||
market (str): The market identifier.
|
||||
|
||||
Returns:
|
||||
Tuple[int, dict]: A tuple where the first element is a status code (0 for success, -2 for error), and the
|
||||
second element is a dictionary. This dictionary has keys 'start' and 'stop', each containing a list of
|
||||
RunManagerRecord objects meeting the respective criteria. If an error occurs, the second element is a
|
||||
descriptive error message.
|
||||
|
||||
Note:
|
||||
- This function assumes that the 'zoneNY' pytz timezone object is properly defined and configured to represent
|
||||
the America/New York timezone.
|
||||
- It also assumes that the 'run_manager' table exists in the database with the required columns.
|
||||
- 'start_time' and 'stop_time' are expected to be strings representing times in 24-hour format.
|
||||
- If 'valid_from', 'valid_to', 'start_time', or 'stop_time' are NULL in the database, they are considered as
|
||||
having unlimited boundaries.
|
||||
|
||||
Pozor: je jeste jeden okrajovy pripad, kdy by to nemuselo zafungovat: kdyby casy byly nastaveny pro
|
||||
beh strategie pres pulnoc, ale zapla by se pozdeji az po pulnoci
|
||||
(https://chat.openai.com/c/3c77674a-8a2c-45aa-afbd-ab140f473e07)
|
||||
|
||||
"""
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = Row
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Get current datetime in America/New York timezone
|
||||
market_datetime_now_str = market_datetime_now.strftime('%Y-%m-%d %H:%M:%S')
|
||||
current_time_str = market_datetime_now.strftime('%H:%M')
|
||||
print("current_market_datetime_str:", market_datetime_now_str)
|
||||
print("current_time_str:", current_time_str)
|
||||
|
||||
# Select also supports scenarios where strategy runs overnight
|
||||
# SQL query to fetch records with active status and date constraints for both start and stop times
|
||||
query = """
|
||||
SELECT *,
|
||||
CASE
|
||||
WHEN start_time <= stop_time AND (? >= start_time AND ? < stop_time) OR
|
||||
start_time > stop_time AND (? >= start_time OR ? < stop_time) THEN 1
|
||||
ELSE 0
|
||||
END as is_start_time,
|
||||
CASE
|
||||
WHEN start_time <= stop_time AND (? >= stop_time OR ? < start_time) OR
|
||||
start_time > stop_time AND (? >= stop_time AND ? < start_time) THEN 1
|
||||
ELSE 0
|
||||
END as is_stop_time
|
||||
FROM run_manager
|
||||
WHERE status = 'active' AND moddus = 'schedule' AND
|
||||
((valid_from IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_from) <= ?) AND
|
||||
(valid_to IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_to) >= ?))
|
||||
"""
|
||||
cursor.execute(query, (current_time_str, current_time_str, current_time_str, current_time_str,
|
||||
current_time_str, current_time_str, current_time_str, current_time_str,
|
||||
market_datetime_now_str, market_datetime_now_str))
|
||||
rows = cursor.fetchall()
|
||||
|
||||
start_candidates = []
|
||||
stop_candidates = []
|
||||
for row in rows:
|
||||
run_manager_record = tr.row_to_runmanager(row)
|
||||
if row['is_start_time']:
|
||||
start_candidates.append(run_manager_record)
|
||||
if row['is_stop_time']:
|
||||
stop_candidates.append(run_manager_record)
|
||||
|
||||
results = {'start': start_candidates, 'stop': stop_candidates}
|
||||
|
||||
return 0, results
|
||||
except Exception as e:
|
||||
msg_err = f"ERROR while fetching records for start and stop times with datetime {market_datetime_now_str}: {str(e)} {format_exc()}"
|
||||
print(msg_err)
|
||||
return -2, msg_err
|
||||
finally:
|
||||
conn.row_factory = None
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
|
||||
def fetch_startstop_scheduled_candidates(market_datetime_now, time_check, market = "US") -> tuple[int, list[RunManagerRecord]]:
|
||||
"""
|
||||
Fetches all active records from the 'run_manager' table where moddus is schedule, the current date and time
|
||||
in the America/New_York timezone falls between the 'valid_from' and 'valid_to' datetime
|
||||
fields, and either 'start_time' or 'stop_time' matches the specified condition with the current time.
|
||||
If 'valid_from', 'valid_to', or the time column ('start_time'/'stop_time') are NULL, they are considered
|
||||
as having unlimited boundaries.
|
||||
|
||||
The function localizes the 'valid_from', 'valid_to', and the time column times using the 'zoneNY'
|
||||
timezone object for accurate comparison with the current time.
|
||||
|
||||
Parameters:
|
||||
market_datetime_now (datetime): Current datetime in the market timezone.
|
||||
market (str): The market for which to fetch candidates.
|
||||
time_check (str): Either 'start' or 'stop', indicating which time condition to check.
|
||||
|
||||
Returns:
|
||||
Tuple[int, list[RunManagerRecord]]: A tuple where the first element is a status code
|
||||
(0 for success, -2 for error), and the second element is a list of RunManagerRecord
|
||||
objects meeting the criteria. If an error occurs, the second element is a descriptive
|
||||
error message.
|
||||
|
||||
Note:
|
||||
This function assumes that the 'zoneNY' pytz timezone object is properly defined and
|
||||
configured to represent the America/New York timezone. It also assumes that the
|
||||
'run_manager' table exists in the database with the columns as described in the
|
||||
provided schema.
|
||||
"""
|
||||
if time_check not in ['start', 'stop']:
|
||||
return -2, "Invalid time_check parameter. Must be 'start' or 'stop'."
|
||||
|
||||
conn = db.pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = Row
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Get current datetime in America/New York timezone
|
||||
market_datetime_now_str = market_datetime_now.strftime('%Y-%m-%d %H:%M:%S')
|
||||
current_time_str = market_datetime_now.strftime('%H:%M')
|
||||
print("current_market_datetime_str:", market_datetime_now_str)
|
||||
print("current_time_str:", current_time_str)
|
||||
|
||||
# SQL query to fetch records with active status, date constraints, and time condition
|
||||
time_column = 'start_time' if time_check == 'start' else 'stop_time'
|
||||
query = f"""
|
||||
SELECT * FROM run_manager
|
||||
WHERE status = 'active' AND moddus = 'schedule' AND
|
||||
((valid_from IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_from) <= ?) AND
|
||||
(valid_to IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_to) >= ?)) AND
|
||||
({time_column} IS NULL OR {time_column} <= ?)
|
||||
"""
|
||||
cursor.execute(query, (market_datetime_now_str, market_datetime_now_str, current_time_str))
|
||||
rows = cursor.fetchall()
|
||||
results = [tr.row_to_runmanager(row) for row in rows]
|
||||
|
||||
return 0, results
|
||||
except Exception as e:
|
||||
msg_err = f"ERROR while fetching records based on {time_check} time with datetime {market_datetime_now_str}: {str(e)} {format_exc()}"
|
||||
print(msg_err)
|
||||
return -2, msg_err
|
||||
finally:
|
||||
conn.row_factory = None
|
||||
db.pool.release_connection(conn)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
res, sada = fetch_startstop_scheduled_candidates(datetime.now().astimezone(zoneNY), "start")
|
||||
if res == 0:
|
||||
print(sada)
|
||||
else:
|
||||
print("Error:", sada)
|
||||
|
||||
# from apscheduler.schedulers.background import BackgroundScheduler
|
||||
# import time
|
||||
|
||||
# def print_hello():
|
||||
# print("Hello")
|
||||
|
||||
# def schedule_job():
|
||||
# scheduler = BackgroundScheduler()
|
||||
# scheduler.add_job(print_hello, 'interval', seconds=10)
|
||||
# scheduler.start()
|
||||
|
||||
# schedule_job()
|
||||
1
v2realbot/controller/runner_details.py
Normal file
1
v2realbot/controller/runner_details.py
Normal file
@ -0,0 +1 @@
|
||||
#PLACEHOLDER TO RUNNER_DETAILS SERVICES - refactored
|
||||
File diff suppressed because it is too large
Load Diff
0
v2realbot/endpoints/__init__.py
Normal file
0
v2realbot/endpoints/__init__.py
Normal file
0
v2realbot/endpoints/archived_runners.py
Normal file
0
v2realbot/endpoints/archived_runners.py
Normal file
0
v2realbot/endpoints/batches.py
Normal file
0
v2realbot/endpoints/batches.py
Normal file
0
v2realbot/endpoints/configs.py
Normal file
0
v2realbot/endpoints/configs.py
Normal file
0
v2realbot/endpoints/models.py
Normal file
0
v2realbot/endpoints/models.py
Normal file
0
v2realbot/endpoints/runners.py
Normal file
0
v2realbot/endpoints/runners.py
Normal file
0
v2realbot/endpoints/stratins.py
Normal file
0
v2realbot/endpoints/stratins.py
Normal file
0
v2realbot/endpoints/testlists.py
Normal file
0
v2realbot/endpoints/testlists.py
Normal file
@ -1,6 +1,11 @@
|
||||
from enum import Enum
|
||||
from alpaca.trading.enums import OrderSide, OrderStatus, OrderType
|
||||
|
||||
class BarType(str, Enum):
|
||||
TIME = "time"
|
||||
VOLUME = "volume"
|
||||
DOLLAR = "dollar"
|
||||
|
||||
class Env(str, Enum):
|
||||
PROD = "prod"
|
||||
TEST = "test"
|
||||
@ -52,6 +57,16 @@ class Account(str, Enum):
|
||||
"""
|
||||
ACCOUNT1 = "ACCOUNT1"
|
||||
ACCOUNT2 = "ACCOUNT2"
|
||||
|
||||
class Moddus(str, Enum):
|
||||
"""
|
||||
Moddus for RunManager record
|
||||
|
||||
schedule - scheduled record
|
||||
queue - queued record
|
||||
"""
|
||||
SCHEDULE = "schedule"
|
||||
QUEUE = "queue"
|
||||
class RecordType(str, Enum):
|
||||
"""
|
||||
Represents output of aggregator
|
||||
@ -60,9 +75,19 @@ class RecordType(str, Enum):
|
||||
BAR = "bar"
|
||||
CBAR = "cbar"
|
||||
CBARVOLUME = "cbarvolume"
|
||||
CBARDOLLAR = "cbardollar"
|
||||
CBARRENKO = "cbarrenko"
|
||||
TRADE = "trade"
|
||||
|
||||
class SchedulerStatus(str, Enum):
|
||||
"""
|
||||
ACTIVE - active scheduling
|
||||
SUSPENDED - suspended for scheduling
|
||||
"""
|
||||
|
||||
ACTIVE = "active"
|
||||
SUSPENDED = "suspended"
|
||||
|
||||
class Mode(str, Enum):
|
||||
"""
|
||||
LIVE - live on production
|
||||
@ -76,7 +101,6 @@ class Mode(str, Enum):
|
||||
BT = "backtest"
|
||||
PREP = "prep"
|
||||
|
||||
|
||||
class StartBarAlign(str, Enum):
|
||||
"""
|
||||
Represents first bar start time alignement according to timeframe
|
||||
@ -84,4 +108,10 @@ class StartBarAlign(str, Enum):
|
||||
RANDOM = first bar starts when first trade occurs
|
||||
"""
|
||||
ROUND = "round"
|
||||
RANDOM = "random"
|
||||
RANDOM = "random"
|
||||
|
||||
class Market(str, Enum):
|
||||
US = "US"
|
||||
CRYPTO = "CRYPTO"
|
||||
|
||||
|
||||
@ -2,9 +2,9 @@ from alpaca.trading.enums import OrderSide, OrderType
|
||||
from threading import Lock
|
||||
from v2realbot.interfaces.general_interface import GeneralInterface
|
||||
from v2realbot.backtesting.backtester import Backtester
|
||||
from v2realbot.config import BT_DELAYS, COUNT_API_REQUESTS
|
||||
from datetime import datetime
|
||||
from v2realbot.utils.utils import zoneNY
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
|
||||
""""
|
||||
backtester methods can be called
|
||||
@ -19,7 +19,7 @@ class BacktestInterface(GeneralInterface):
|
||||
def __init__(self, symbol, bt: Backtester) -> None:
|
||||
self.symbol = symbol
|
||||
self.bt = bt
|
||||
self.count_api_requests = COUNT_API_REQUESTS
|
||||
self.count_api_requests = cfh.config_handler.get_val('COUNT_API_REQUESTS')
|
||||
self.mincnt = list([dict(minute=0,count=0)])
|
||||
#TODO time v API nejspis muzeme dat pryc a BT bude si to brat primo ze self.time (nezapomenout na + BT_DELAYS)
|
||||
# self.time = self.bt.time
|
||||
@ -43,33 +43,33 @@ class BacktestInterface(GeneralInterface):
|
||||
def buy(self, size = 1, repeat: bool = False):
|
||||
self.count()
|
||||
#add REST API latency
|
||||
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.BUY,size=size,order_type = OrderType.MARKET)
|
||||
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.BUY,size=size,order_type = OrderType.MARKET)
|
||||
|
||||
"""buy limit"""
|
||||
def buy_l(self, price: float, size: int = 1, repeat: bool = False, force: int = 0):
|
||||
self.count()
|
||||
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.BUY,size=size,price=price,order_type = OrderType.LIMIT)
|
||||
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.BUY,size=size,price=price,order_type = OrderType.LIMIT)
|
||||
|
||||
"""sell market"""
|
||||
def sell(self, size = 1, repeat: bool = False):
|
||||
self.count()
|
||||
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.SELL,size=size,order_type = OrderType.MARKET)
|
||||
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.SELL,size=size,order_type = OrderType.MARKET)
|
||||
|
||||
"""sell limit"""
|
||||
async def sell_l(self, price: float, size = 1, repeat: bool = False):
|
||||
self.count()
|
||||
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.SELL,size=size,price=price,order_type = OrderType.LIMIT)
|
||||
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.SELL,size=size,price=price,order_type = OrderType.LIMIT)
|
||||
|
||||
"""replace order"""
|
||||
async def repl(self, orderid: str, price: float = None, size: int = None, repeat: bool = False):
|
||||
self.count()
|
||||
return self.bt.replace_order(time=self.bt.time + BT_DELAYS.strat_to_sub,id=orderid,size=size,price=price)
|
||||
return self.bt.replace_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),id=orderid,size=size,price=price)
|
||||
|
||||
"""cancel order"""
|
||||
#TBD exec predtim?
|
||||
def cancel(self, orderid: str):
|
||||
self.count()
|
||||
return self.bt.cancel_order(time=self.bt.time + BT_DELAYS.strat_to_sub, id=orderid)
|
||||
return self.bt.cancel_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'), id=orderid)
|
||||
|
||||
"""get positions ->(size,avgp)"""
|
||||
#TBD exec predtim?
|
||||
|
||||
@ -40,7 +40,9 @@ class LiveInterface(GeneralInterface):
|
||||
|
||||
return market_order.id
|
||||
except Exception as e:
|
||||
print("Nepodarilo se odeslat buy", str(e))
|
||||
reason = "Nepodarilo se market buy:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
return -1
|
||||
|
||||
"""buy limit"""
|
||||
@ -65,7 +67,9 @@ class LiveInterface(GeneralInterface):
|
||||
|
||||
return limit_order.id
|
||||
except Exception as e:
|
||||
print("Nepodarilo se odeslat limitku", str(e))
|
||||
reason = "Nepodarilo se odeslat buy limitku:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
return -1
|
||||
|
||||
"""sell market"""
|
||||
@ -87,7 +91,9 @@ class LiveInterface(GeneralInterface):
|
||||
|
||||
return market_order.id
|
||||
except Exception as e:
|
||||
print("Nepodarilo se odeslat sell", str(e))
|
||||
reason = "Nepodarilo se odeslat sell:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
return -1
|
||||
|
||||
"""sell limit"""
|
||||
@ -112,8 +118,9 @@ class LiveInterface(GeneralInterface):
|
||||
return limit_order.id
|
||||
|
||||
except Exception as e:
|
||||
print("Nepodarilo se odeslat sell_l", str(e))
|
||||
#raise Exception(e)
|
||||
reason = "Nepodarilo se odeslat sell limitku:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
return -1
|
||||
|
||||
"""order replace"""
|
||||
@ -136,7 +143,9 @@ class LiveInterface(GeneralInterface):
|
||||
if e.code == 42210000: return orderid
|
||||
else:
|
||||
##mozna tady proste vracet vzdy ok
|
||||
print("Neslo nahradit profitku. Problem",str(e))
|
||||
reason = "Neslo nahradit profitku. Problem:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
return -1
|
||||
#raise Exception(e)
|
||||
|
||||
@ -150,7 +159,9 @@ class LiveInterface(GeneralInterface):
|
||||
#order doesnt exist
|
||||
if e.code == 40410000: return 0
|
||||
else:
|
||||
print("nepovedlo se zrusit objednavku", str(e))
|
||||
reason = "Nepovedlo se zrusit objednavku:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
#raise Exception(e)
|
||||
return -1
|
||||
|
||||
@ -162,7 +173,7 @@ class LiveInterface(GeneralInterface):
|
||||
return a.avg_entry_price, a.qty
|
||||
except (APIError, Exception) as e:
|
||||
#no position
|
||||
if e.code == 40410000: return 0,0
|
||||
if hasattr(e, 'code') and e.code == 40410000: return 0,0
|
||||
else:
|
||||
reason = "Exception when calling LIVE interface pos, REPEATING:" + str(e) + format_exc()
|
||||
print("API ERROR: Nepodarilo se ziskat pozici.", reason)
|
||||
@ -178,7 +189,9 @@ class LiveInterface(GeneralInterface):
|
||||
#list of Orders (orderlist[0].id)
|
||||
return orderlist
|
||||
except Exception as e:
|
||||
print("Chyba pri dotazeni objednávek.", str(e))
|
||||
reason = "Chyba pri dotazeni objednávek:" + str(e) + format_exc()
|
||||
print(reason)
|
||||
send_to_telegram(reason)
|
||||
#raise Exception (e)
|
||||
return -1
|
||||
|
||||
|
||||
1411
v2realbot/loader/agg_vect.ipynb
Normal file
1411
v2realbot/loader/agg_vect.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@ -3,7 +3,7 @@
|
||||
"""
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign
|
||||
from datetime import datetime, timedelta
|
||||
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, Queue,is_open_hours,zoneNY
|
||||
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, Queue,is_open_hours,zoneNY, zoneUTC
|
||||
from queue import Queue
|
||||
from rich import print
|
||||
from v2realbot.enums.enums import Mode
|
||||
@ -11,9 +11,10 @@ import threading
|
||||
from copy import deepcopy
|
||||
from msgpack import unpackb
|
||||
import os
|
||||
from v2realbot.config import DATA_DIR, GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN, AGG_EXCLUDED_TRADES
|
||||
import pickle
|
||||
from v2realbot.config import DATA_DIR
|
||||
import dill
|
||||
import gzip
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
|
||||
class TradeAggregator:
|
||||
def __init__(self,
|
||||
@ -24,7 +25,7 @@ class TradeAggregator:
|
||||
align: StartBarAlign = StartBarAlign.ROUND,
|
||||
mintick: int = 0,
|
||||
exthours: bool = False,
|
||||
excludes: list = AGG_EXCLUDED_TRADES,
|
||||
excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'),
|
||||
skip_cache: bool = False):
|
||||
"""
|
||||
UPDATED VERSION - vrací více záznamů
|
||||
@ -47,7 +48,7 @@ class TradeAggregator:
|
||||
self.excludes = excludes
|
||||
self.skip_cache = skip_cache
|
||||
|
||||
if mintick >= resolution:
|
||||
if resolution > 0 and mintick >= resolution:
|
||||
print("Mintick musi byt mensi nez resolution")
|
||||
raise Exception
|
||||
|
||||
@ -149,7 +150,7 @@ class TradeAggregator:
|
||||
# else:
|
||||
data['t'] = parse_alpaca_timestamp(data['t'])
|
||||
|
||||
if not is_open_hours(datetime.fromtimestamp(data['t'])) and self.exthours is False:
|
||||
if not is_open_hours(datetime.fromtimestamp(data['t'], tz=zoneUTC)) and self.exthours is False:
|
||||
#print("AGG: trade not in open hours skipping", datetime.fromtimestamp(data['t']).astimezone(zoneNY))
|
||||
return []
|
||||
|
||||
@ -178,14 +179,30 @@ class TradeAggregator:
|
||||
# return
|
||||
# else: pass
|
||||
|
||||
if self.rectype in (RecordType.BAR, RecordType.CBAR):
|
||||
return await self.calculate_time_bar(data, symbol)
|
||||
# if self.rectype in (RecordType.BAR, RecordType.CBAR):
|
||||
# return await self.calculate_time_bar(data, symbol)
|
||||
|
||||
if self.rectype == RecordType.CBARVOLUME:
|
||||
return await self.calculate_volume_bar(data, symbol)
|
||||
# if self.rectype == RecordType.CBARVOLUME:
|
||||
# return await self.calculate_volume_bar(data, symbol)
|
||||
|
||||
if self.rectype == RecordType.CBARRENKO:
|
||||
return await self.calculate_renko_bar(data, symbol)
|
||||
# if self.rectype == RecordType.CBARVOLUME:
|
||||
# return await self.calculate_volume_bar(data, symbol)
|
||||
|
||||
# if self.rectype == RecordType.CBARRENKO:
|
||||
# return await self.calculate_renko_bar(data, symbol)
|
||||
|
||||
match self.rectype:
|
||||
case RecordType.BAR | RecordType.CBAR:
|
||||
return await self.calculate_time_bar(data, symbol)
|
||||
|
||||
case RecordType.CBARVOLUME:
|
||||
return await self.calculate_volume_bar(data, symbol)
|
||||
|
||||
case RecordType.CBARDOLLAR:
|
||||
return await self.calculate_dollar_bar(data, symbol)
|
||||
|
||||
case RecordType.CBARRENKO:
|
||||
return await self.calculate_renko_bar(data, symbol)
|
||||
|
||||
async def calculate_time_bar(self, data, symbol):
|
||||
#print("barstart",datetime.fromtimestamp(self.bar_start))
|
||||
@ -276,7 +293,7 @@ class TradeAggregator:
|
||||
self.diff_price = True
|
||||
self.last_price = data['p']
|
||||
|
||||
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
|
||||
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
|
||||
self.trades_too_close = True
|
||||
else:
|
||||
self.trades_too_close = False
|
||||
@ -303,13 +320,13 @@ class TradeAggregator:
|
||||
#TODO: do budoucna vymyslet, kdyz bude mene tradu, tak to radit vzdy do spravneho intervalu
|
||||
#zarovname time prvniho baru podle timeframu kam patří (např. 5, 10, 15 ...) (ROUND)
|
||||
if self.align == StartBarAlign.ROUND and self.bar_start == 0:
|
||||
t = datetime.fromtimestamp(data['t'])
|
||||
t = datetime.fromtimestamp(data['t'], tz=zoneUTC)
|
||||
t = t - timedelta(seconds=t.second % self.resolution,microseconds=t.microsecond)
|
||||
self.bar_start = datetime.timestamp(t)
|
||||
#nebo pouzijeme datum tradu zaokrouhlene na vteriny (RANDOM)
|
||||
else:
|
||||
#ulozime si jeho timestamp (odtum pocitame resolution)
|
||||
t = datetime.fromtimestamp(int(data['t']))
|
||||
t = datetime.fromtimestamp(int(data['t']), tz=zoneUTC)
|
||||
#timestamp
|
||||
self.bar_start = int(data['t'])
|
||||
|
||||
@ -359,7 +376,7 @@ class TradeAggregator:
|
||||
if self.mintick != 0 and self.lastBarConfirmed:
|
||||
#d zacatku noveho baru musi ubehnout x sekund nez posilame updazte
|
||||
#pocatek noveho baru + Xs musi byt vetsi nez aktualni trade
|
||||
if (self.newBar['time'] + timedelta(seconds=self.mintick)) > datetime.fromtimestamp(data['t']):
|
||||
if (self.newBar['time'] + timedelta(seconds=self.mintick)) > datetime.fromtimestamp(data['t'], tz=zoneUTC):
|
||||
#print("waiting for mintick")
|
||||
return []
|
||||
else:
|
||||
@ -426,7 +443,7 @@ class TradeAggregator:
|
||||
"trades": 1,
|
||||
"hlcc4": data['p'],
|
||||
"confirmed": 0,
|
||||
"time": datetime.fromtimestamp(data['t']),
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
@ -460,7 +477,7 @@ class TradeAggregator:
|
||||
"trades": 1,
|
||||
"hlcc4":data['p'],
|
||||
"confirmed": 1,
|
||||
"time": datetime.fromtimestamp(data['t']),
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
@ -523,7 +540,7 @@ class TradeAggregator:
|
||||
self.diff_price = True
|
||||
self.last_price = data['p']
|
||||
|
||||
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
|
||||
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
|
||||
self.trades_too_close = True
|
||||
else:
|
||||
self.trades_too_close = False
|
||||
@ -551,6 +568,179 @@ class TradeAggregator:
|
||||
else:
|
||||
return []
|
||||
|
||||
#WIP - revidovant kod a otestovat
|
||||
async def calculate_dollar_bar(self, data, symbol):
|
||||
""""
|
||||
Agreguje DOLLAR BARS -
|
||||
hlavni promenne
|
||||
- self.openedBar (dict) = stavová obsahují aktivní nepotvrzený bar
|
||||
- confirmedBars (list) = nestavová obsahuje confirmnute bary, které budou na konci funkceflushnuty
|
||||
"""""
|
||||
#volume_bucket = 10000 #daily MA volume z emackova na 30 deleno 50ti - dat do configu
|
||||
dollar_bucket = self.resolution
|
||||
#potvrzene pripravene k vraceni
|
||||
confirmedBars = []
|
||||
#potvrdi existujici a nastavi k vraceni
|
||||
def confirm_existing():
|
||||
self.openedBar['confirmed'] = 1
|
||||
self.openedBar['vwap'] = self.vwaphelper / self.openedBar['volume']
|
||||
self.vwaphelper = 0
|
||||
|
||||
#ulozime zacatek potvrzeneho baru
|
||||
#self.lastBarConfirmed = self.openedBar['time']
|
||||
|
||||
self.openedBar['updated'] = data['t']
|
||||
confirmedBars.append(deepcopy(self.openedBar))
|
||||
self.openedBar = None
|
||||
#TBD po každém potvrzení zvýšíme čas o nanosekundu (pro zobrazení v gui)
|
||||
#data['t'] = data['t'] + 0.000001
|
||||
|
||||
#init unconfirmed - velikost bucketu kontrolovana predtim
|
||||
def initialize_unconfirmed(size):
|
||||
#inicializuji pro nový bar
|
||||
self.vwaphelper += (data['p'] * size)
|
||||
self.barindex +=1
|
||||
self.openedBar = {
|
||||
"close": data['p'],
|
||||
"high": data['p'],
|
||||
"low": data['p'],
|
||||
"open": data['p'],
|
||||
"volume": size,
|
||||
"trades": 1,
|
||||
"hlcc4": data['p'],
|
||||
"confirmed": 0,
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
"resolution":dollar_bucket
|
||||
}
|
||||
|
||||
def update_unconfirmed(size):
|
||||
#spočteme vwap - potřebujeme předchozí hodnoty
|
||||
self.vwaphelper += (data['p'] * size)
|
||||
self.openedBar['updated'] = data['t']
|
||||
self.openedBar['close'] = data['p']
|
||||
self.openedBar['high'] = max(self.openedBar['high'],data['p'])
|
||||
self.openedBar['low'] = min(self.openedBar['low'],data['p'])
|
||||
self.openedBar['volume'] = self.openedBar['volume'] + size
|
||||
self.openedBar['trades'] = self.openedBar['trades'] + 1
|
||||
self.openedBar['vwap'] = self.vwaphelper / self.openedBar['volume']
|
||||
#pohrat si s timto round
|
||||
self.openedBar['hlcc4'] = round((self.openedBar['high']+self.openedBar['low']+self.openedBar['close']+self.openedBar['close'])/4,3)
|
||||
|
||||
#init new - confirmed
|
||||
def initialize_confirmed(size):
|
||||
#ulozime zacatek potvrzeneho baru
|
||||
#self.lastBarConfirmed = datetime.fromtimestamp(data['t'])
|
||||
self.barindex +=1
|
||||
confirmedBars.append({
|
||||
"close": data['p'],
|
||||
"high": data['p'],
|
||||
"low": data['p'],
|
||||
"open": data['p'],
|
||||
"volume": size,
|
||||
"trades": 1,
|
||||
"hlcc4":data['p'],
|
||||
"confirmed": 1,
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
"resolution": dollar_bucket
|
||||
})
|
||||
|
||||
#current trade dollar value
|
||||
trade_dollar_val = int(data['s'])*float(data['p'])
|
||||
|
||||
#existuje stávající bar a vejdeme se do nej
|
||||
if self.openedBar is not None and trade_dollar_val + self.openedBar['volume']*self.openedBar['close'] < dollar_bucket:
|
||||
#vejdeme se do stávajícího baru (tzn. neprekracujeme bucket)
|
||||
update_unconfirmed(int(data['s']))
|
||||
#updatujeme stávající nepotvrzeny bar
|
||||
#nevejdem se do nej nebo neexistuje predchozi bar
|
||||
else:
|
||||
#1)existuje predchozi bar - doplnime zbytkem do valikosti bucketu a nastavime confirmed
|
||||
if self.openedBar is not None:
|
||||
|
||||
#doplnime je zbytkem (v bucket left-je zbyvajici volume)
|
||||
opened_bar_dollar_val = self.openedBar['volume']*self.openedBar['close']
|
||||
bucket_left = int((dollar_bucket - opened_bar_dollar_val)/float(data['p']))
|
||||
# - update and confirm bar
|
||||
update_unconfirmed(bucket_left)
|
||||
confirm_existing()
|
||||
|
||||
#zbytek mnozství jde do dalsiho zpracovani
|
||||
data['s'] = int(data['s']) - bucket_left
|
||||
#nastavime cas o nanosekundu vyssi
|
||||
data['t'] = round((data['t']) + 0.000001,6)
|
||||
|
||||
#2 vytvarime novy bar (bary) a vejdeme se do nej
|
||||
if int(data['s'])*float(data['p']) < dollar_bucket:
|
||||
#vytvarime novy nepotvrzeny bar
|
||||
initialize_unconfirmed(int(data['s']))
|
||||
#nevejdeme se do nej - pak vytvarime 1 až N dalsich baru (posledni nepotvrzený)
|
||||
else:
|
||||
# >>> for i in range(0, 550, 500):
|
||||
# ... print(i)
|
||||
# ...
|
||||
# 0
|
||||
# 500
|
||||
|
||||
#vytvarime plne potvrzene buckety (kolik se jich plne vejde)
|
||||
for size in range(int(dollar_bucket/float(data['p'])), int(data['s']), int(dollar_bucket/float(data['p']))):
|
||||
initialize_confirmed(dollar_bucket/float(data['p']))
|
||||
#nastavime cas o nanosekundu vyssi
|
||||
data['t'] = round((data['t']) + 0.000001,6)
|
||||
#create complete full bucket with same prices and size
|
||||
#naplnit do return pole
|
||||
|
||||
#pokud je zbytek vytvorime z nej nepotvrzeny bar
|
||||
zbytek = int(data['s'])*float(data['p']) % dollar_bucket
|
||||
|
||||
#ze zbytku vytvorime nepotvrzeny bar
|
||||
if zbytek > 0:
|
||||
#prevedeme zpatky na volume
|
||||
zbytek = int(zbytek/float(data['p']))
|
||||
initialize_unconfirmed(zbytek)
|
||||
#create new open bar with size zbytek s otevrenym
|
||||
|
||||
#je cena stejna od predchoziho tradu? pro nepotvrzeny cbar vracime jen pri zmene ceny
|
||||
if self.last_price == data['p']:
|
||||
self.diff_price = False
|
||||
else:
|
||||
self.diff_price = True
|
||||
self.last_price = data['p']
|
||||
|
||||
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
|
||||
self.trades_too_close = True
|
||||
else:
|
||||
self.trades_too_close = False
|
||||
|
||||
#uložíme do předchozí hodnoty (poznáme tak open a close)
|
||||
self.lasttimestamp = data['t']
|
||||
self.iterace += 1
|
||||
# print(self.iterace, data)
|
||||
|
||||
#pokud mame confirm bary, tak FLUSHNEME confirm a i případný open (zrejme se pak nejaky vytvoril)
|
||||
if len(confirmedBars) > 0:
|
||||
return_set = confirmedBars + ([self.openedBar] if self.openedBar is not None else [])
|
||||
confirmedBars = []
|
||||
return return_set
|
||||
|
||||
#nemame confirm, FLUSHUJEME CBARVOLUME open - neresime zmenu ceny, ale neposilame kulomet (pokud nam nevytvari conf. bar)
|
||||
if self.openedBar is not None and self.rectype == RecordType.CBARDOLLAR:
|
||||
|
||||
#zkousime pustit i stejnou cenu(potrebujeme kvuli MYSELLU), ale blokoval kulomet,tzn. trady mensi nez GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN (1ms)
|
||||
#if self.diff_price is True:
|
||||
if self.trades_too_close is False:
|
||||
return [self.openedBar]
|
||||
else:
|
||||
return []
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
async def calculate_renko_bar(self, data, symbol):
|
||||
""""
|
||||
Agreguje RENKO BARS - dle brick size
|
||||
@ -566,8 +756,14 @@ class TradeAggregator:
|
||||
Ve strategii je třeba počítat s tím, že open v nepotvrzeném baru není finální.
|
||||
"""""
|
||||
|
||||
if self.resolution < 0: # Treat as percentage
|
||||
reference_price = self.lastConfirmedBar['close'] if self.lastConfirmedBar is not None else float(data['p'])
|
||||
brick_size = abs(self.resolution) * reference_price / 100.0
|
||||
else: # Treat as absolute value pocet ticku
|
||||
brick_size = self.resolution
|
||||
|
||||
#pocet ticku např. 10ticků, případně pak na procenta
|
||||
brick_size = self.resolution
|
||||
#brick_size = self.resolution
|
||||
#potvrzene pripravene k vraceni
|
||||
confirmedBars = []
|
||||
#potvrdi existujici a nastavi k vraceni
|
||||
@ -598,7 +794,7 @@ class TradeAggregator:
|
||||
"trades": 1,
|
||||
"hlcc4": data['p'],
|
||||
"confirmed": 0,
|
||||
"time": datetime.fromtimestamp(data['t']),
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
@ -633,7 +829,7 @@ class TradeAggregator:
|
||||
"trades": 1,
|
||||
"hlcc4":data['p'],
|
||||
"confirmed": 1,
|
||||
"time": datetime.fromtimestamp(data['t']),
|
||||
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
|
||||
"updated": data['t'],
|
||||
"vwap": data['p'],
|
||||
"index": self.barindex,
|
||||
@ -676,7 +872,7 @@ class TradeAggregator:
|
||||
self.diff_price = True
|
||||
self.last_price = data['p']
|
||||
|
||||
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
|
||||
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
|
||||
self.trades_too_close = True
|
||||
else:
|
||||
self.trades_too_close = False
|
||||
@ -709,7 +905,7 @@ class TradeAggregator:
|
||||
#a take excludes result = ''.join(self.excludes.sort())
|
||||
self.excludes.sort() # Sorts the list in place
|
||||
excludes_str = ''.join(map(str, self.excludes)) # Joins the sorted elements after converting them to strings
|
||||
cache_file = self.__class__.__name__ + '-' + self.symbol + '-' + str(int(date_from.timestamp())) + '-' + str(int(date_to.timestamp())) + '-' + str(self.rectype) + "-" + str(self.resolution) + "-" + str(self.minsize) + "-" + str(self.align) + '-' + str(self.mintick) + str(self.exthours) + excludes_str + '.cache'
|
||||
cache_file = self.__class__.__name__ + '-' + self.symbol + '-' + str(int(date_from.timestamp())) + '-' + str(int(date_to.timestamp())) + '-' + str(self.rectype) + "-" + str(self.resolution) + "-" + str(self.minsize) + "-" + str(self.align) + '-' + str(self.mintick) + str(self.exthours) + excludes_str + '.cache.gz'
|
||||
file_path = DATA_DIR + "/aggcache/" + cache_file
|
||||
#print(file_path)
|
||||
return file_path
|
||||
@ -719,7 +915,7 @@ class TradeAggregator:
|
||||
file_path = self.populate_file_name(date_from, date_to)
|
||||
if self.skip_cache is False and os.path.exists(file_path):
|
||||
##daily aggregated file exists
|
||||
with open (file_path, 'rb') as fp:
|
||||
with gzip.open (file_path, 'rb') as fp:
|
||||
cachedobject = dill.load(fp)
|
||||
print("AGG CACHE loaded ", file_path)
|
||||
|
||||
@ -752,7 +948,7 @@ class TradeAggregator:
|
||||
|
||||
file_path = self.populate_file_name(self.cache_from, self.cache_to)
|
||||
|
||||
with open(file_path, 'wb') as fp:
|
||||
with gzip.open(file_path, 'wb') as fp:
|
||||
dill.dump(self.cached_object, fp)
|
||||
print(f"AGG CACHE stored ({num}) :{file_path}")
|
||||
print(f"DATES from:{self.cache_from.strftime('%d.%m.%Y %H:%M')} to:{self.cache_to.strftime('%d.%m.%Y %H:%M')}")
|
||||
@ -772,7 +968,7 @@ class TradeAggregator2Queue(TradeAggregator):
|
||||
Child of TradeAggregator - sends items to given queue
|
||||
In the future others will be added - TradeAggToTxT etc.
|
||||
"""
|
||||
def __init__(self, symbol: str, queue: Queue, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = AGG_EXCLUDED_TRADES, skip_cache: bool = False):
|
||||
def __init__(self, symbol: str, queue: Queue, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), skip_cache: bool = False):
|
||||
super().__init__(rectype=rectype, resolution=resolution, minsize=minsize, update_ltp=update_ltp, align=align, mintick=mintick, exthours=exthours, excludes=excludes, skip_cache=skip_cache)
|
||||
self.queue = queue
|
||||
self.symbol = symbol
|
||||
@ -817,7 +1013,7 @@ class TradeAggregator2List(TradeAggregator):
|
||||
""""
|
||||
stores records to the list
|
||||
"""
|
||||
def __init__(self, symbol: str, btdata: list, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = AGG_EXCLUDED_TRADES, skip_cache: bool = False):
|
||||
def __init__(self, symbol: str, btdata: list, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), skip_cache: bool = False):
|
||||
super().__init__(rectype=rectype, resolution=resolution, minsize=minsize, update_ltp=update_ltp, align=align, mintick=mintick, exthours=exthours, excludes=excludes, skip_cache=skip_cache)
|
||||
self.btdata = btdata
|
||||
self.symbol = symbol
|
||||
|
||||
535
v2realbot/loader/aggregator_vectorized.py
Normal file
535
v2realbot/loader/aggregator_vectorized.py
Normal file
@ -0,0 +1,535 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from numba import jit
|
||||
from alpaca.data.historical import StockHistoricalDataClient
|
||||
from sqlalchemy import column
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
|
||||
from alpaca.data.requests import StockTradesRequest
|
||||
import time as time_module
|
||||
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data
|
||||
import pyarrow
|
||||
from traceback import format_exc
|
||||
from datetime import timedelta, datetime, time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import os
|
||||
import gzip
|
||||
import pickle
|
||||
import random
|
||||
from alpaca.data.models import BarSet, QuoteSet, TradeSet
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
from v2realbot.enums.enums import BarType
|
||||
""""
|
||||
Module used for vectorized aggregation of trades.
|
||||
|
||||
Includes fetch (remote/cached) methods and numba aggregator function for TIME BASED, VOLUME BASED and DOLLAR BARS
|
||||
|
||||
"""""
|
||||
|
||||
def aggregate_trades(symbol: str, trades_df: pd.DataFrame, resolution: int, type: BarType = BarType.TIME):
|
||||
""""
|
||||
Accepts dataframe with trades keyed by symbol. Preparess dataframe to
|
||||
numpy and call nNumba optimized aggregator for given bar type. (time/volume/dollar)
|
||||
"""""
|
||||
trades_df = trades_df.loc[symbol]
|
||||
trades_df= trades_df.reset_index()
|
||||
ticks = trades_df[['timestamp', 'price', 'size']].to_numpy()
|
||||
# Extract the timestamps column (assuming it's the first column)
|
||||
timestamps = ticks[:, 0]
|
||||
# Convert the timestamps to Unix timestamps in seconds with microsecond precision
|
||||
unix_timestamps_s = np.array([ts.timestamp() for ts in timestamps], dtype='float64')
|
||||
# Replace the original timestamps in the NumPy array with the converted Unix timestamps
|
||||
ticks[:, 0] = unix_timestamps_s
|
||||
ticks = ticks.astype(np.float64)
|
||||
#based on type, specific aggregator function is called
|
||||
match type:
|
||||
case BarType.TIME:
|
||||
ohlcv_bars = generate_time_bars_nb(ticks, resolution)
|
||||
case BarType.VOLUME:
|
||||
ohlcv_bars = generate_volume_bars_nb(ticks, resolution)
|
||||
case BarType.DOLLAR:
|
||||
ohlcv_bars = generate_dollar_bars_nb(ticks, resolution)
|
||||
case _:
|
||||
raise ValueError("Invalid bar type. Supported types are 'time', 'volume' and 'dollar'.")
|
||||
# Convert the resulting array back to a DataFrame
|
||||
columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'trades']
|
||||
if type == BarType.DOLLAR:
|
||||
columns.append('amount')
|
||||
ohlcv_df = pd.DataFrame(ohlcv_bars, columns=columns)
|
||||
ohlcv_df['time'] = pd.to_datetime(ohlcv_df['time'], unit='s')
|
||||
ohlcv_df.set_index('time', inplace=True)
|
||||
ohlcv_df.index = ohlcv_df.index.tz_localize('UTC').tz_convert(zoneNY)
|
||||
return ohlcv_df
|
||||
|
||||
def convert_dict_to_multiindex_df(tradesResponse):
|
||||
""""
|
||||
Converts dictionary from cache or from remote (raw input) to multiindex dataframe.
|
||||
"""""
|
||||
# Create a DataFrame for each key and add the key as part of the MultiIndex
|
||||
dfs = []
|
||||
for key, values in tradesResponse.items():
|
||||
df = pd.DataFrame(values)
|
||||
# Rename columns
|
||||
# Select and order columns explicitly
|
||||
#print(df)
|
||||
df = df[['t', 'x', 'p', 's', 'i', 'c','z']]
|
||||
df.rename(columns={'t': 'timestamp', 'c': 'conditions', 'p': 'price', 's': 'size', 'x': 'exchange', 'z':'tape', 'i':'id'}, inplace=True)
|
||||
df['symbol'] = key # Add ticker as a column
|
||||
df['timestamp'] = pd.to_datetime(df['timestamp']) # Convert 't' from string to datetime before setting it as an index
|
||||
df.set_index(['symbol', 'timestamp'], inplace=True) # Set the multi-level index using both 'ticker' and 't'
|
||||
df = df.tz_convert(zoneNY, level='timestamp')
|
||||
dfs.append(df)
|
||||
|
||||
# Concatenate all DataFrames into a single DataFrame with MultiIndex
|
||||
final_df = pd.concat(dfs)
|
||||
|
||||
return final_df
|
||||
|
||||
def dict_to_df(tradesResponse, start, end, exclude_conditions = None, minsize = None):
|
||||
""""
|
||||
Transforms dict to Tradeset, then df and to zone aware
|
||||
Also filters to start and end if necessary (ex. 9:30 to 15:40 is required only)
|
||||
|
||||
NOTE: prepodkladame, ze tradesResponse je dict from Raw data (cached/remote)
|
||||
"""""
|
||||
|
||||
df = convert_dict_to_multiindex_df(tradesResponse)
|
||||
|
||||
#REQUIRED FILTERING
|
||||
#pokud je zacatek pozdeji nebo konec driv tak orizneme
|
||||
if (start.time() > time(9, 30) or end.time() < time(16, 0)):
|
||||
print(f"filtrujeme {start.time()} {end.time()}")
|
||||
# Define the time range
|
||||
# start_time = pd.Timestamp(start.time(), tz=zoneNY).time()
|
||||
# end_time = pd.Timestamp(end.time(), tz=zoneNY).time()
|
||||
|
||||
# Create a mask to filter rows within the specified time range
|
||||
mask = (df.index.get_level_values('timestamp') >= start) & \
|
||||
(df.index.get_level_values('timestamp') <= end)
|
||||
|
||||
# Apply the mask to the DataFrame
|
||||
df = df[mask]
|
||||
|
||||
if exclude_conditions is not None:
|
||||
print(f"excluding conditions {exclude_conditions}")
|
||||
# Create a mask to exclude rows with any of the specified conditions
|
||||
mask = df['conditions'].apply(lambda x: any(cond in exclude_conditions for cond in x))
|
||||
|
||||
# Filter out the rows with specified conditions
|
||||
df = df[~mask]
|
||||
|
||||
if minsize is not None:
|
||||
print(f"minsize {minsize}")
|
||||
#exclude conditions
|
||||
df = df[df['size'] >= minsize]
|
||||
return df
|
||||
|
||||
#fetches daily stock tradess - currently only main session is supported
|
||||
def fetch_daily_stock_trades_old(symbol, start, end, exclude_conditions = None, minsize = None, force_remote = False, max_retries=5, backoff_factor=1):
|
||||
"""
|
||||
Attempts to fetch stock trades with exponential backoff. Raises an exception if all retries fail.
|
||||
|
||||
:param symbol: The stock symbol to fetch trades for.
|
||||
:param start: The start time for the trade data.
|
||||
:param end: The end time for the trade data.
|
||||
:param max_retries: Maximum number of retries.
|
||||
:param backoff_factor: Factor to determine the next sleep time.
|
||||
:return: TradesResponse object.
|
||||
:raises: ConnectionError if all retries fail.
|
||||
|
||||
We use tradecache only for main sessison request = 9:30 to 16:00
|
||||
"""
|
||||
use_daily_tradecache = False
|
||||
if (start.time() >= time(9, 30) and end.time() <= time(16, 0)):
|
||||
use_daily_tradecache = True
|
||||
filename_start = zoneNY.localize(datetime.combine(start.date(), time(9, 30)))
|
||||
filename_end= zoneNY.localize(datetime.combine(end.date(), time(16, 0)))
|
||||
daily_file = "TS" + str(symbol) + '-' + str(int(filename_start.timestamp())) + '-' + str(int(filename_end.timestamp())) + '.cache.gz'
|
||||
file_path = DATA_DIR + "/tradecache/"+daily_file
|
||||
|
||||
if use_daily_tradecache and not force_remote and os.path.exists(file_path):
|
||||
print("Searching cache: " + daily_file)
|
||||
with gzip.open (file_path, 'rb') as fp:
|
||||
tradesResponse = pickle.load(fp)
|
||||
print("FOUND in CACHE", daily_file)
|
||||
#response je vzdy ulozena jako raw(dict), davame zpet do TradeSetu, ktery umi i df
|
||||
return dict_to_df(tradesResponse, start, end, exclude_conditions, minsize)
|
||||
|
||||
#daily file doesnt exist
|
||||
else:
|
||||
print("NOT FOUND. Fetching from remote")
|
||||
client = StockHistoricalDataClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
|
||||
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbol, start=start, end=end)
|
||||
last_exception = None
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
tradesResponse = client.get_stock_trades(stockTradeRequest)
|
||||
is_empty = not tradesResponse[symbol]
|
||||
print(f"Remote fetched: {is_empty=}", start, end)
|
||||
#pokud jde o dnešní den a nebyl konec trhu tak cache neukládáme, pripadne pri iex datapointu necachujeme
|
||||
if use_daily_tradecache and not is_empty:
|
||||
if (start < datetime.now().astimezone(zoneNY) < end):
|
||||
print("not saving trade cache, market still open today")
|
||||
else:
|
||||
with gzip.open(file_path, 'wb') as fp:
|
||||
pickle.dump(tradesResponse, fp)
|
||||
print("Saving to Trade CACHE", file_path)
|
||||
return pd.DataFrame() if is_empty else dict_to_df(tradesResponse, start, end)
|
||||
except Exception as e:
|
||||
print(f"Attempt {attempt + 1} failed: {e}")
|
||||
last_exception = e
|
||||
time_module.sleep(backoff_factor * (2 ** attempt))
|
||||
|
||||
print("All attempts to fetch data failed.")
|
||||
raise ConnectionError(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
|
||||
|
||||
def fetch_daily_stock_trades(symbol, start, end, exclude_conditions=None, minsize=None, force_remote=False, max_retries=5, backoff_factor=1):
|
||||
#doc for this function
|
||||
"""
|
||||
Attempts to fetch stock trades either from cache or remote. When remote, it uses retry mechanism with exponential backoff.
|
||||
Also it stores the data to cache if it is not already there.
|
||||
by using force_remote - forcess using remote data always and thus refreshing cache for these dates
|
||||
Attributes:
|
||||
:param symbol: The stock symbol to fetch trades for.
|
||||
:param start: The start time for the trade data.
|
||||
:param end: The end time for the trade data.
|
||||
:exclude_conditions: list of string conditions to exclude from the data
|
||||
:minsize minimum size of trade to be included in the data
|
||||
:force_remote will always use remote data and refresh cache
|
||||
:param max_retries: Maximum number of retries.
|
||||
:param backoff_factor: Factor to determine the next sleep time.
|
||||
:return: TradesResponse object.
|
||||
:raises: ConnectionError if all retries fail.
|
||||
|
||||
We use tradecache only for main sessison requests = 9:30 to 16:00
|
||||
Do budoucna ukládat celý den BAC-20240203.cache.gz a z toho si pak filtrovat bud main sesssionu a extended
|
||||
Ale zatim je uloženo jen main session v BAC-timestampopenu-timestampclose.cache.gz
|
||||
"""
|
||||
# Determine if the requested times fall within the main session
|
||||
in_main_session = (time(9, 30) <= start.time() < time(16, 0)) and (time(9, 30) <= end.time() <= time(16, 0))
|
||||
file_path = ''
|
||||
|
||||
if in_main_session:
|
||||
filename_start = zoneNY.localize(datetime.combine(start.date(), time(9, 30)))
|
||||
filename_end = zoneNY.localize(datetime.combine(end.date(), time(16, 0)))
|
||||
daily_file = f"{symbol}-{int(filename_start.timestamp())}-{int(filename_end.timestamp())}.cache.gz"
|
||||
file_path = f"{DATA_DIR}/tradecache/{daily_file}"
|
||||
if not force_remote and os.path.exists(file_path):
|
||||
print("Searching cache: " + daily_file)
|
||||
with gzip.open(file_path, 'rb') as fp:
|
||||
tradesResponse = pickle.load(fp)
|
||||
print("FOUND in CACHE", daily_file)
|
||||
return dict_to_df(tradesResponse, start, end, exclude_conditions, minsize)
|
||||
|
||||
print("NOT FOUND. Fetching from remote")
|
||||
client = StockHistoricalDataClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True)
|
||||
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbol, start=start, end=end)
|
||||
last_exception = None
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
tradesResponse = client.get_stock_trades(stockTradeRequest)
|
||||
is_empty = not tradesResponse[symbol]
|
||||
print(f"Remote fetched: {is_empty=}", start, end)
|
||||
if in_main_session and not is_empty:
|
||||
current_time = datetime.now().astimezone(zoneNY)
|
||||
if not (start < current_time < end):
|
||||
with gzip.open(file_path, 'wb') as fp:
|
||||
pickle.dump(tradesResponse, fp)
|
||||
print("Saving to Trade CACHE", file_path)
|
||||
|
||||
else: # Don't save the cache if the market is still open
|
||||
print("Not saving trade cache, market still open today")
|
||||
return pd.DataFrame() if is_empty else dict_to_df(tradesResponse, start, end)
|
||||
except Exception as e:
|
||||
print(f"Attempt {attempt + 1} failed: {e}")
|
||||
last_exception = e
|
||||
time_module.sleep(backoff_factor * (2 ** attempt) + random.uniform(0, 1)) # Adding random jitter
|
||||
|
||||
print("All attempts to fetch data failed.")
|
||||
raise ConnectionError(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
|
||||
|
||||
|
||||
def fetch_trades_parallel(symbol, start_date, end_date, exclude_conditions = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), minsize = 100, force_remote = False):
|
||||
"""
|
||||
Fetches trades for each day between start_date and end_date during market hours (9:30-16:00) in parallel and concatenates them into a single DataFrame.
|
||||
|
||||
:param symbol: Stock symbol.
|
||||
:param start_date: Start date as datetime.
|
||||
:param end_date: End date as datetime.
|
||||
:return: DataFrame containing all trades from start_date to end_date.
|
||||
"""
|
||||
futures = []
|
||||
results = []
|
||||
|
||||
market_open_days = fetch_calendar_data(start_date, end_date)
|
||||
day_count = len(market_open_days)
|
||||
print("Contains", day_count, " market days")
|
||||
max_workers = min(10, max(5, day_count // 2)) # Heuristic: half the days to process, but at least 1 and no more than 10
|
||||
|
||||
|
||||
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
||||
#for single_date in (start_date + timedelta(days=i) for i in range((end_date - start_date).days + 1)):
|
||||
for market_day in market_open_days:
|
||||
#start = datetime.combine(single_date, time(9, 30)) # Market opens at 9:30 AM
|
||||
#end = datetime.combine(single_date, time(16, 0)) # Market closes at 4:00 PM
|
||||
|
||||
interval_from = zoneNY.localize(market_day.open)
|
||||
interval_to = zoneNY.localize(market_day.close)
|
||||
|
||||
#pripadne orizneme pokud je pozadovane pozdejsi zacatek a drivejsi konek
|
||||
start = start_date if interval_from < start_date else interval_from
|
||||
#start = max(start_date, interval_from)
|
||||
end = end_date if interval_to > end_date else interval_to
|
||||
#end = min(end_date, interval_to)
|
||||
|
||||
future = executor.submit(fetch_daily_stock_trades, symbol, start, end, exclude_conditions, minsize, force_remote)
|
||||
futures.append(future)
|
||||
|
||||
for future in futures:
|
||||
try:
|
||||
result = future.result()
|
||||
results.append(result)
|
||||
except Exception as e:
|
||||
print(f"Error fetching data for a day: {e}")
|
||||
|
||||
return pd.concat(results, ignore_index=False)
|
||||
|
||||
@jit(nopython=True)
|
||||
def generate_dollar_bars_nb(ticks, amount_per_bar):
|
||||
""""
|
||||
Generates Dollar based bars from ticks.
|
||||
|
||||
There is also simple prevention of aggregation from different days
|
||||
as described here https://chatgpt.com/c/17804fc1-a7bc-495d-8686-b8392f3640a2
|
||||
Downside: split days by UTC (which is ok for main session, but when extended hours it should be reworked by preprocessing new column identifying session)
|
||||
|
||||
|
||||
When trade is split into multiple bars it is counted as trade in each of the bars.
|
||||
Other option: trade count can be proportionally distributed by weight (0.2 to 1st bar, 0.8 to 2nd bar) - but this is not implemented yet
|
||||
https://chatgpt.com/c/ff4802d9-22a2-4b72-8ab7-97a91e7a515f
|
||||
"""""
|
||||
ohlcv_bars = []
|
||||
remaining_amount = amount_per_bar
|
||||
|
||||
# Initialize bar values based on the first tick to avoid uninitialized values
|
||||
open_price = ticks[0, 1]
|
||||
high_price = ticks[0, 1]
|
||||
low_price = ticks[0, 1]
|
||||
close_price = ticks[0, 1]
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
current_day = np.floor(ticks[0, 0] / 86400) # Calculate the initial day from the first tick timestamp
|
||||
bar_time = ticks[0, 0] # Initialize bar time with the time of the first tick
|
||||
|
||||
for tick in ticks:
|
||||
tick_time = tick[0]
|
||||
price = tick[1]
|
||||
tick_volume = tick[2]
|
||||
tick_amount = price * tick_volume
|
||||
tick_day = np.floor(tick_time / 86400) # Calculate the day of the current tick
|
||||
|
||||
# Check if the new tick is from a different day, then close the current bar
|
||||
if tick_day != current_day:
|
||||
if trades_count > 0:
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, amount_per_bar])
|
||||
# Reset for the new day using the current tick data
|
||||
open_price = price
|
||||
high_price = price
|
||||
low_price = price
|
||||
close_price = price
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
remaining_amount = amount_per_bar
|
||||
current_day = tick_day
|
||||
bar_time = tick_time
|
||||
|
||||
# Start new bar if needed because of the dollar value
|
||||
while tick_amount > 0:
|
||||
if tick_amount < remaining_amount:
|
||||
# Add the entire tick to the current bar
|
||||
high_price = max(high_price, price)
|
||||
low_price = min(low_price, price)
|
||||
close_price = price
|
||||
volume += tick_volume
|
||||
remaining_amount -= tick_amount
|
||||
trades_count += 1
|
||||
tick_amount = 0
|
||||
else:
|
||||
# Calculate the amount of volume that fits within the remaining dollar amount
|
||||
volume_to_add = remaining_amount / price
|
||||
volume += volume_to_add # Update the volume here before appending and resetting
|
||||
|
||||
# Append the partially filled bar to the list
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count + 1, amount_per_bar])
|
||||
|
||||
# Fill the current bar and continue with a new bar
|
||||
tick_volume -= volume_to_add
|
||||
tick_amount -= remaining_amount
|
||||
|
||||
# Reset bar values for the new bar using the current tick data
|
||||
open_price = price
|
||||
high_price = price
|
||||
low_price = price
|
||||
close_price = price
|
||||
volume = 0 # Reset volume for the new bar
|
||||
trades_count = 0
|
||||
remaining_amount = amount_per_bar
|
||||
|
||||
# Increment bar time if splitting a trade
|
||||
if tick_volume > 0: #pokud v tradu je jeste zbytek nastavujeme cas o nanosekundu vetsi
|
||||
bar_time = tick_time + 1e-6
|
||||
else:
|
||||
bar_time = tick_time #jinak nastavujeme cas ticku
|
||||
#bar_time = tick_time
|
||||
|
||||
# Add the last bar if it contains any trades
|
||||
if trades_count > 0:
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, amount_per_bar])
|
||||
|
||||
return np.array(ohlcv_bars)
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def generate_volume_bars_nb(ticks, volume_per_bar):
|
||||
""""
|
||||
Generates Volume based bars from ticks.
|
||||
|
||||
NOTE: UTC day split here (doesnt aggregate trades from different days)
|
||||
but realized from UTC (ok for main session) - but needs rework for extension by preprocessing ticks_df and introduction sesssion column
|
||||
|
||||
When trade is split into multiple bars it is counted as trade in each of the bars.
|
||||
Other option: trade count can be proportionally distributed by weight (0.2 to 1st bar, 0.8 to 2nd bar) - but this is not implemented yet
|
||||
https://chatgpt.com/c/ff4802d9-22a2-4b72-8ab7-97a91e7a515f
|
||||
"""""
|
||||
ohlcv_bars = []
|
||||
remaining_volume = volume_per_bar
|
||||
|
||||
# Initialize bar values based on the first tick to avoid uninitialized values
|
||||
open_price = ticks[0, 1]
|
||||
high_price = ticks[0, 1]
|
||||
low_price = ticks[0, 1]
|
||||
close_price = ticks[0, 1]
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
current_day = np.floor(ticks[0, 0] / 86400) # Calculate the initial day from the first tick timestamp
|
||||
bar_time = ticks[0, 0] # Initialize bar time with the time of the first tick
|
||||
|
||||
for tick in ticks:
|
||||
tick_time = tick[0]
|
||||
price = tick[1]
|
||||
tick_volume = tick[2]
|
||||
tick_day = np.floor(tick_time / 86400) # Calculate the day of the current tick
|
||||
|
||||
# Check if the new tick is from a different day, then close the current bar
|
||||
if tick_day != current_day:
|
||||
if trades_count > 0:
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count])
|
||||
# Reset for the new day using the current tick data
|
||||
open_price = price
|
||||
high_price = price
|
||||
low_price = price
|
||||
close_price = price
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
remaining_volume = volume_per_bar
|
||||
current_day = tick_day
|
||||
bar_time = tick_time # Update bar time to the current tick time
|
||||
|
||||
# Start new bar if needed because of the volume
|
||||
while tick_volume > 0:
|
||||
if tick_volume < remaining_volume:
|
||||
# Add the entire tick to the current bar
|
||||
high_price = max(high_price, price)
|
||||
low_price = min(low_price, price)
|
||||
close_price = price
|
||||
volume += tick_volume
|
||||
remaining_volume -= tick_volume
|
||||
trades_count += 1
|
||||
tick_volume = 0
|
||||
else:
|
||||
# Fill the current bar and continue with a new bar
|
||||
volume_to_add = remaining_volume
|
||||
volume += volume_to_add
|
||||
tick_volume -= volume_to_add
|
||||
trades_count += 1
|
||||
# Append the completed bar to the list
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count])
|
||||
|
||||
# Reset bar values for the new bar using the current tick data
|
||||
open_price = price
|
||||
high_price = price
|
||||
low_price = price
|
||||
close_price = price
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
remaining_volume = volume_per_bar
|
||||
# Increment bar time if splitting a trade
|
||||
if tick_volume > 0: #pokud v tradu je jeste zbytek nastavujeme cas o nanosekundu vetsi
|
||||
bar_time = tick_time + 1e-6
|
||||
else:
|
||||
bar_time = tick_time #jinak nastavujeme cas ticku
|
||||
|
||||
|
||||
# Add the last bar if it contains any trades
|
||||
if trades_count > 0:
|
||||
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count])
|
||||
|
||||
return np.array(ohlcv_bars)
|
||||
|
||||
@jit(nopython=True)
|
||||
def generate_time_bars_nb(ticks, resolution):
|
||||
# Initialize the start and end time
|
||||
start_time = np.floor(ticks[0, 0] / resolution) * resolution
|
||||
end_time = np.floor(ticks[-1, 0] / resolution) * resolution
|
||||
|
||||
# # Calculate number of bars
|
||||
# num_bars = int((end_time - start_time) // resolution + 1)
|
||||
|
||||
# Using a list to append data only when trades exist
|
||||
ohlcv_bars = []
|
||||
|
||||
# Variables to track the current bar
|
||||
current_bar_index = -1
|
||||
open_price = 0
|
||||
high_price = -np.inf
|
||||
low_price = np.inf
|
||||
close_price = 0
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
|
||||
for tick in ticks:
|
||||
tick_time = np.floor(tick[0] / resolution) * resolution
|
||||
price = tick[1]
|
||||
tick_volume = tick[2]
|
||||
|
||||
# Check if the tick belongs to a new bar
|
||||
if tick_time != start_time + current_bar_index * resolution:
|
||||
if current_bar_index >= 0 and trades_count > 0: # Save the previous bar if trades happened
|
||||
ohlcv_bars.append([start_time + current_bar_index * resolution, open_price, high_price, low_price, close_price, volume, trades_count])
|
||||
|
||||
# Reset bar values
|
||||
current_bar_index = int((tick_time - start_time) / resolution)
|
||||
open_price = price
|
||||
high_price = price
|
||||
low_price = price
|
||||
volume = 0
|
||||
trades_count = 0
|
||||
|
||||
# Update the OHLCV values for the current bar
|
||||
high_price = max(high_price, price)
|
||||
low_price = min(low_price, price)
|
||||
close_price = price
|
||||
volume += tick_volume
|
||||
trades_count += 1
|
||||
|
||||
# Save the last processed bar
|
||||
if trades_count > 0:
|
||||
ohlcv_bars.append([start_time + current_bar_index * resolution, open_price, high_price, low_price, close_price, volume, trades_count])
|
||||
|
||||
return np.array(ohlcv_bars)
|
||||
|
||||
# Example usage
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
#example in agg_vect.ipynb
|
||||
@ -1,14 +1,13 @@
|
||||
from v2realbot.loader.aggregator import TradeAggregator, TradeAggregator2List, TradeAggregator2Queue
|
||||
#from v2realbot.loader.cacher import get_cached_agg_data
|
||||
from alpaca.trading.requests import GetCalendarRequest
|
||||
from alpaca.trading.client import TradingClient
|
||||
from alpaca.data.live import StockDataStream
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR, OFFLINE_MODE
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
|
||||
from alpaca.data.enums import DataFeed
|
||||
from alpaca.data.historical import StockHistoricalDataClient
|
||||
from alpaca.data.requests import StockLatestQuoteRequest, StockBarsRequest, StockTradesRequest
|
||||
from threading import Thread, current_thread
|
||||
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY
|
||||
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data
|
||||
from v2realbot.utils.tlog import tlog
|
||||
from datetime import datetime, timedelta, date
|
||||
from threading import Thread
|
||||
@ -16,6 +15,7 @@ import asyncio
|
||||
from msgpack.ext import Timestamp
|
||||
from msgpack import packb
|
||||
from pandas import to_datetime
|
||||
import gzip
|
||||
import pickle
|
||||
import os
|
||||
from rich import print
|
||||
@ -25,13 +25,15 @@ from tqdm import tqdm
|
||||
import time
|
||||
from traceback import format_exc
|
||||
from collections import defaultdict
|
||||
import requests
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
"""
|
||||
Trade offline data streamer, based on Alpaca historical data.
|
||||
"""
|
||||
class Trade_Offline_Streamer(Thread):
|
||||
#pro BT se pripojujeme vzdy k primarnimu uctu - pouze tahame historicka data + calendar
|
||||
client = StockHistoricalDataClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True)
|
||||
clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
|
||||
#clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
|
||||
def __init__(self, time_from: datetime, time_to: datetime, btdata) -> None:
|
||||
# Call the Thread class's init function
|
||||
Thread.__init__(self)
|
||||
@ -63,6 +65,35 @@ class Trade_Offline_Streamer(Thread):
|
||||
def stop(self):
|
||||
pass
|
||||
|
||||
def fetch_stock_trades(self, symbol, start, end, max_retries=5, backoff_factor=1):
|
||||
"""
|
||||
Attempts to fetch stock trades with exponential backoff. Raises an exception if all retries fail.
|
||||
|
||||
:param symbol: The stock symbol to fetch trades for.
|
||||
:param start: The start time for the trade data.
|
||||
:param end: The end time for the trade data.
|
||||
:param max_retries: Maximum number of retries.
|
||||
:param backoff_factor: Factor to determine the next sleep time.
|
||||
:return: TradesResponse object.
|
||||
:raises: ConnectionError if all retries fail.
|
||||
"""
|
||||
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbol, start=start, end=end)
|
||||
last_exception = None
|
||||
|
||||
for attempt in range(max_retries):
|
||||
try:
|
||||
tradesResponse = self.client.get_stock_trades(stockTradeRequest)
|
||||
print("Remote Fetch DAY DATA Complete", start, end)
|
||||
return tradesResponse
|
||||
except Exception as e:
|
||||
print(f"Attempt {attempt + 1} failed: {e}")
|
||||
last_exception = e
|
||||
time.sleep(backoff_factor * (2 ** attempt))
|
||||
|
||||
print("All attempts to fetch data failed.")
|
||||
send_to_telegram(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
|
||||
raise ConnectionError(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
|
||||
|
||||
# Override the run() function of Thread class
|
||||
#odebrano async
|
||||
def main(self):
|
||||
@ -73,6 +104,8 @@ class Trade_Offline_Streamer(Thread):
|
||||
print("call add streams to queue first")
|
||||
return 0
|
||||
|
||||
cfh.config_handler.print_current_config()
|
||||
|
||||
#iterujeme nad streamy
|
||||
for i in self.streams:
|
||||
self.uniquesymbols.add(i.symbol)
|
||||
@ -106,25 +139,21 @@ class Trade_Offline_Streamer(Thread):
|
||||
#datetime.fromtimestamp(data['updated']).astimezone(zoneNY))
|
||||
#REFACTOR STARTS HERE
|
||||
#print(f"{self.time_from=} {self.time_to=}")
|
||||
|
||||
if OFFLINE_MODE:
|
||||
|
||||
if cfh.config_handler.get_val('OFFLINE_MODE'):
|
||||
#just one day - same like time_from
|
||||
den = str(self.time_to.date())
|
||||
bt_day = Calendar(date=den,open="9:30",close="16:00")
|
||||
cal_dates = [bt_day]
|
||||
else:
|
||||
calendar_request = GetCalendarRequest(start=self.time_from,end=self.time_to)
|
||||
|
||||
#toto zatim workaround - dat do retry funkce a obecne vymyslet exception handling, abych byl notifikovan a bylo videt okamzite v logu a na frontendu
|
||||
try:
|
||||
cal_dates = self.clientTrading.get_calendar(calendar_request)
|
||||
except Exception as e:
|
||||
print("CHYBA - retrying in 4s: " + str(e) + format_exc())
|
||||
time.sleep(5)
|
||||
cal_dates = self.clientTrading.get_calendar(calendar_request)
|
||||
start_date = self.time_from # Assuming this is your start date
|
||||
end_date = self.time_to # Assuming this is your end date
|
||||
cal_dates = fetch_calendar_data(start_date, end_date)
|
||||
|
||||
#zatim podpora pouze main session
|
||||
|
||||
live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
|
||||
|
||||
#zatim podpora pouze 1 symbolu, predelat na froloop vsech symbolu ze symbpole
|
||||
#minimalni jednotka pro CACHE je 1 den - a to jen marketopen to marketclose (extended hours not supported yet)
|
||||
for day in cal_dates:
|
||||
@ -167,9 +196,10 @@ class Trade_Offline_Streamer(Thread):
|
||||
# stream.send_cache_to_output(cache)
|
||||
# to_rem.append(stream)
|
||||
|
||||
#cache resime jen kdyz backtestujeme cely den
|
||||
#cache resime jen kdyz backtestujeme cely den a mame sip datapoint (iex necachujeme)
|
||||
#pokud ne tak ani necteme, ani nezapisujeme do cache
|
||||
if self.time_to >= day.close:
|
||||
|
||||
if (self.time_to >= day.close and self.time_from <= day.open) and live_data_feed == DataFeed.SIP:
|
||||
#tento odstavec obchazime pokud je nastaveno "dont_use_cache"
|
||||
stream_btdata = self.to_run[symbpole[0]][0]
|
||||
cache_btdata, file_btdata = stream_btdata.get_cache(day.open, day.close)
|
||||
@ -197,7 +227,7 @@ class Trade_Offline_Streamer(Thread):
|
||||
stream_main.enable_cache_output(day.open, day.close)
|
||||
|
||||
#trade daily file
|
||||
daily_file = str(symbpole[0]) + '-' + str(int(day.open.timestamp())) + '-' + str(int(day.close.timestamp())) + '.cache'
|
||||
daily_file = str(symbpole[0]) + '-' + str(int(day.open.timestamp())) + '-' + str(int(day.close.timestamp())) + '.cache.gz'
|
||||
print(daily_file)
|
||||
file_path = DATA_DIR + "/tradecache/"+daily_file
|
||||
|
||||
@ -207,23 +237,31 @@ class Trade_Offline_Streamer(Thread):
|
||||
#pokud je start_time < trade < end_time
|
||||
#odesíláme do queue
|
||||
#jinak pass
|
||||
with open (file_path, 'rb') as fp:
|
||||
with gzip.open (file_path, 'rb') as fp:
|
||||
tradesResponse = pickle.load(fp)
|
||||
print("Loading from Trade CACHE", file_path)
|
||||
#daily file doesnt exist
|
||||
else:
|
||||
# TODO refactor pro zpracovani vice symbolu najednou(multithreads), nyni predpokladame pouze 1
|
||||
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbpole[0], start=day.open,end=day.close)
|
||||
tradesResponse = self.client.get_stock_trades(stockTradeRequest)
|
||||
|
||||
#implement retry mechanism
|
||||
symbol = symbpole[0] # Assuming symbpole[0] is your target symbol
|
||||
day_open = day.open # Assuming day.open is the start time
|
||||
day_close = day.close # Assuming day.close is the end time
|
||||
|
||||
tradesResponse = self.fetch_stock_trades(symbol, day_open, day_close)
|
||||
|
||||
# # TODO refactor pro zpracovani vice symbolu najednou(multithreads), nyni predpokladame pouze 1
|
||||
# stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbpole[0], start=day.open,end=day.close)
|
||||
# tradesResponse = self.client.get_stock_trades(stockTradeRequest)
|
||||
print("Remote Fetch DAY DATA Complete", day.open, day.close)
|
||||
|
||||
#pokud jde o dnešní den a nebyl konec trhu tak cache neukládáme
|
||||
if day.open < datetime.now().astimezone(zoneNY) < day.close:
|
||||
print("not saving trade cache, market still open today")
|
||||
#pokud jde o dnešní den a nebyl konec trhu tak cache neukládáme, pripadne pri iex datapointu necachujeme
|
||||
if (day.open < datetime.now().astimezone(zoneNY) < day.close) or live_data_feed == DataFeed.IEX:
|
||||
print("not saving trade cache, market still open today or IEX datapoint")
|
||||
#ic(datetime.now().astimezone(zoneNY))
|
||||
#ic(day.open, day.close)
|
||||
else:
|
||||
with open(file_path, 'wb') as fp:
|
||||
with gzip.open(file_path, 'wb') as fp:
|
||||
pickle.dump(tradesResponse, fp)
|
||||
|
||||
#zde už máme daily data
|
||||
@ -257,7 +295,7 @@ class Trade_Offline_Streamer(Thread):
|
||||
cnt = 1
|
||||
|
||||
|
||||
for t in tqdm(tradesResponse[symbol]):
|
||||
for t in tqdm(tradesResponse[symbol], desc="Loading Trades"):
|
||||
|
||||
#protoze je zde cely den, poustime dal, jen ty relevantni
|
||||
#pokud je start_time < trade < end_time
|
||||
@ -270,6 +308,9 @@ class Trade_Offline_Streamer(Thread):
|
||||
#tmp = to_datetime(t['t'], utc=True).timestamp()
|
||||
|
||||
|
||||
#obcas se v response objevoval None radek
|
||||
if t is None:
|
||||
continue
|
||||
|
||||
datum = to_datetime(t['t'], utc=True)
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
"""
|
||||
from v2realbot.loader.aggregator import TradeAggregator2Queue
|
||||
from alpaca.data.live import StockDataStream
|
||||
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_PAPER_FEED
|
||||
from v2realbot.config import LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY
|
||||
from alpaca.data.historical import StockHistoricalDataClient
|
||||
from alpaca.data.requests import StockLatestQuoteRequest, StockBarsRequest, StockTradesRequest
|
||||
from threading import Thread, current_thread
|
||||
@ -12,6 +12,7 @@ from v2realbot.utils.utils import parse_alpaca_timestamp, ltp
|
||||
from datetime import datetime, timedelta
|
||||
from threading import Thread, Lock
|
||||
from msgpack import packb
|
||||
import v2realbot.utils.config_handler as cfh
|
||||
|
||||
"""
|
||||
Shared streamer (can be shared amongst concurrently running strategies)
|
||||
@ -19,9 +20,12 @@ from msgpack import packb
|
||||
by strategies
|
||||
"""
|
||||
class Trade_WS_Streamer(Thread):
|
||||
|
||||
live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
|
||||
##tento ws streamer je pouze jeden pro vsechny, tzn. vyuziváme natvrdo placena data primarniho uctu (nezalezi jestli paper nebo live)
|
||||
client = StockDataStream(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True, websocket_params={}, feed=ACCOUNT1_PAPER_FEED)
|
||||
msg = f"Realtime Websocket connection will use FEED: {live_data_feed} and credential of ACCOUNT1"
|
||||
print(msg)
|
||||
#cfh.config_handler.print_current_config()
|
||||
client = StockDataStream(LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, raw_data=True, websocket_params={}, feed=live_data_feed)
|
||||
#uniquesymbols = set()
|
||||
_streams = []
|
||||
#to_run = dict()
|
||||
@ -38,10 +42,23 @@ class Trade_WS_Streamer(Thread):
|
||||
return False
|
||||
|
||||
def add_stream(self, obj: TradeAggregator2Queue):
|
||||
print(Trade_WS_Streamer.msg)
|
||||
print("stav pred pridavanim", Trade_WS_Streamer._streams)
|
||||
Trade_WS_Streamer._streams.append(obj)
|
||||
if Trade_WS_Streamer.client._running is False:
|
||||
print("websocket zatim nebezi, pouze pridavame do pole")
|
||||
|
||||
#zde delame refresh clienta (pokud se zmenilo live_data_feed)
|
||||
|
||||
# live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
|
||||
# #po otestování přepnout jen pokud se live_data_feed změnil
|
||||
# #if live_data_feed != Trade_WS_Streamer.live_data_feed:
|
||||
# # Trade_WS_Streamer.live_data_feed = live_data_feed
|
||||
# msg = f"REFRESH OF CLIENT! Realtime Websocket connection will use FEED: {live_data_feed} and credential of ACCOUNT1"
|
||||
# print(msg)
|
||||
# #cfh.config_handler.print_current_config()
|
||||
# Trade_WS_Streamer.client = StockDataStream(LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, raw_data=True, websocket_params={}, feed=live_data_feed)
|
||||
|
||||
else:
|
||||
print("websocket client bezi")
|
||||
if self.symbol_exists(obj.symbol):
|
||||
@ -59,7 +76,12 @@ class Trade_WS_Streamer(Thread):
|
||||
#if it is the last item at all, stop the client from running
|
||||
if len(Trade_WS_Streamer._streams) == 0:
|
||||
print("removed last item from WS, stopping the client")
|
||||
Trade_WS_Streamer.client.stop()
|
||||
#Trade_WS_Streamer.client.stop_ws()
|
||||
#Trade_WS_Streamer.client.stop()
|
||||
#zkusíme explicitně zavolat kroky pro disconnect od ws
|
||||
if Trade_WS_Streamer.client._stop_stream_queue.empty():
|
||||
Trade_WS_Streamer.client._stop_stream_queue.put_nowait({"should_stop": True})
|
||||
Trade_WS_Streamer.client._should_run = False
|
||||
return
|
||||
|
||||
if not self.symbol_exists(obj.symbol):
|
||||
|
||||
@ -1,26 +1,25 @@
|
||||
import os,sys
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY, LOG_FILE
|
||||
os.environ["KERAS_BACKEND"] = "jax"
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY, LOG_PATH, MODEL_DIR
|
||||
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
|
||||
from datetime import datetime
|
||||
import os
|
||||
from rich import print
|
||||
from fastapi import FastAPI, Depends, HTTPException, status
|
||||
from fastapi import FastAPI, Depends, HTTPException, status, File, UploadFile, Response
|
||||
from fastapi.security import APIKeyHeader
|
||||
import uvicorn
|
||||
from uuid import UUID
|
||||
import v2realbot.controller.services as cs
|
||||
from v2realbot.utils.ilog import get_log_window
|
||||
from v2realbot.common.model import StrategyInstance, RunnerView, RunRequest, Trade, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, Bar, RunArchiveChange, TestList, ConfigItem, InstantIndicator, DataTablesRequest, AnalyzerInputs
|
||||
from v2realbot.common.model import RunManagerRecord, StrategyInstance, RunnerView, RunRequest, Trade, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, Bar, RunArchiveChange, TestList, ConfigItem, InstantIndicator, DataTablesRequest, AnalyzerInputs
|
||||
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Depends, HTTPException, status, WebSocketException, Cookie, Query
|
||||
from fastapi.responses import FileResponse, StreamingResponse
|
||||
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
||||
from v2realbot.enums.enums import Env, Mode
|
||||
from typing import Annotated
|
||||
import os
|
||||
import uvicorn
|
||||
import json
|
||||
import orjson
|
||||
from queue import Queue, Empty
|
||||
from threading import Thread
|
||||
import asyncio
|
||||
@ -35,6 +34,16 @@ from v2realbot.reporting.metricstoolsimage import generate_trading_report_image
|
||||
from traceback import format_exc
|
||||
#from v2realbot.reporting.optimizecutoffs import find_optimal_cutoff
|
||||
import v2realbot.reporting.analyzer as ci
|
||||
import shutil
|
||||
from starlette.responses import JSONResponse
|
||||
import mlroom
|
||||
import mlroom.utils.mlutils as ml
|
||||
from typing import List
|
||||
import v2realbot.controller.run_manager as rm
|
||||
import v2realbot.scheduler.ap_scheduler as aps
|
||||
import re
|
||||
import v2realbot.controller.configs as cf
|
||||
import v2realbot.controller.services as cs
|
||||
#from async io import Queue, QueueEmpty
|
||||
#
|
||||
# install()
|
||||
@ -245,11 +254,13 @@ def _run_stratin(stratin_id: UUID, runReq: RunRequest):
|
||||
runReq.bt_to = zoneNY.localize(runReq.bt_to)
|
||||
#pokud jedeme nad test intervaly anebo je požadováno více dní - pouštíme jako batch day by day
|
||||
#do budoucna dát na FE jako flag
|
||||
if runReq.mode != Mode.LIVE and runReq.test_batch_id is not None or (runReq.bt_from.date() != runReq.bt_to.date()):
|
||||
#print(runReq)
|
||||
if runReq.mode not in [Mode.LIVE, Mode.PAPER] and (runReq.test_batch_id is not None or (runReq.bt_from is not None and runReq.bt_to is not None and runReq.bt_from.date() != runReq.bt_to.date())):
|
||||
res, id = cs.run_batch_stratin(id=stratin_id, runReq=runReq)
|
||||
else:
|
||||
if runReq.weekdays_filter is not None:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Weekday only for backtest mode with batch (not single day)")
|
||||
#not necessary for live/paper the weekdays are simply ignored, in the future maybe add validation if weekdays are presented
|
||||
#if runReq.weekdays_filter is not None:
|
||||
# raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Weekday only for backtest mode with batch (not single day)")
|
||||
res, id = cs.run_stratin(id=stratin_id, runReq=runReq)
|
||||
if res == 0: return id
|
||||
elif res < 0:
|
||||
@ -325,14 +336,14 @@ def migrate():
|
||||
end_positions=row.get('end_positions'),
|
||||
end_positions_avgp=row.get('end_positions_avgp'),
|
||||
metrics=row.get('open_orders'),
|
||||
#metrics=json.loads(row.get('metrics')) if row.get('metrics') else None,
|
||||
#metrics=orjson.loads(row.get('metrics')) if row.get('metrics') else None,
|
||||
stratvars_toml=row.get('stratvars_toml')
|
||||
)
|
||||
|
||||
def get_all_archived_runners():
|
||||
conn = pool.get_connection()
|
||||
try:
|
||||
conn.row_factory = lambda c, r: json.loads(r[0])
|
||||
conn.row_factory = lambda c, r: orjson.loads(r[0])
|
||||
c = conn.cursor()
|
||||
res = c.execute(f"SELECT data FROM runner_header")
|
||||
finally:
|
||||
@ -377,7 +388,7 @@ def migrate():
|
||||
SET strat_id=?, batch_id=?, symbol=?, name=?, note=?, started=?, stopped=?, mode=?, account=?, bt_from=?, bt_to=?, strat_json=?, settings=?, ilog_save=?, profit=?, trade_count=?, end_positions=?, end_positions_avgp=?, metrics=?, stratvars_toml=?
|
||||
WHERE runner_id=?
|
||||
''',
|
||||
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, json.dumps(ra.strat_json), json.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, json.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
|
||||
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, orjson.dumps(ra.strat_json).decode('utf-8'), orjson.dumps(ra.settings).decode('utf-8'), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, orjson.dumps(ra.metrics).decode('utf-8'), ra.stratvars_toml, str(ra.id)))
|
||||
|
||||
conn.commit()
|
||||
finally:
|
||||
@ -455,6 +466,16 @@ def _delete_archived_runners_byIDs(runner_ids: list[UUID]):
|
||||
elif res < 0:
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"Error: {res}:{id}")
|
||||
|
||||
#get runners list based on batch_id
|
||||
@app.get("/archived_runners/batch/{batch_id}", dependencies=[Depends(api_key_auth)])
|
||||
def _get_archived_runnerslist_byBatchID(batch_id: str) -> list[UUID]:
|
||||
res, set =cs.get_archived_runnerslist_byBatchID(batch_id)
|
||||
if res == 0:
|
||||
return set
|
||||
else:
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
|
||||
|
||||
|
||||
#delete archive runner from header and detail
|
||||
@app.delete("/archived_runners/batch/{batch_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
|
||||
def _delete_archived_runners_byBatchID(batch_id: str):
|
||||
@ -466,10 +487,11 @@ def _delete_archived_runners_byBatchID(batch_id: str):
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not changed: {res}:{batch_id}:{id}")
|
||||
|
||||
|
||||
#WIP - TOM indicator preview from frontend
|
||||
#return indicator value for archived runner
|
||||
#WIP - TOM indicator preview from frontend f
|
||||
#return indicator value for archived runner, return values list0 - bar indicators, list1 - ticks indicators
|
||||
#TBD mozna predelat na dict pro prehlednost
|
||||
@app.put("/archived_runners/{runner_id}/previewindicator", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
|
||||
def _preview_indicator_byTOML(runner_id: UUID, indicator: InstantIndicator) -> list[float]:
|
||||
def _preview_indicator_byTOML(runner_id: UUID, indicator: InstantIndicator) -> list[dict]:
|
||||
#mozna pak pridat name
|
||||
res, vals = cs.preview_indicator_byTOML(id=runner_id, indicator=indicator)
|
||||
if res == 0: return vals
|
||||
@ -510,13 +532,23 @@ def _get_all_archived_runners_detail() -> list[RunArchiveDetail]:
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
|
||||
|
||||
#get archived runners detail by id
|
||||
# @app.get("/archived_runners_detail/{runner_id}", dependencies=[Depends(api_key_auth)])
|
||||
# def _get_archived_runner_details_byID(runner_id) -> RunArchiveDetail:
|
||||
# res, set = cs.get_archived_runner_details_byID(runner_id)
|
||||
# if res == 0:
|
||||
# return set
|
||||
# else:
|
||||
# raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id} a {set}")
|
||||
|
||||
#this is the variant of above that skips parsing of json and returns JSON string returned from db
|
||||
@app.get("/archived_runners_detail/{runner_id}", dependencies=[Depends(api_key_auth)])
|
||||
def _get_archived_runner_details_byID(runner_id) -> RunArchiveDetail:
|
||||
res, set = cs.get_archived_runner_details_byID(runner_id)
|
||||
def _get_archived_runner_details_byID(runner_id: UUID):
|
||||
res, data = cs.get_archived_runner_details_byID(id=runner_id, parsed=False)
|
||||
if res == 0:
|
||||
return set
|
||||
# Return the raw JSON string as a plain Response
|
||||
return Response(content=data, media_type="application/json")
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id} a {set}")
|
||||
raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id}. {data}")
|
||||
|
||||
#get archived runners detail by id
|
||||
@app.get("/archived_runners_log/{runner_id}", dependencies=[Depends(api_key_auth)])
|
||||
@ -527,30 +559,68 @@ def _get_archived_runner_log_byID(runner_id: UUID, timestamp_from: float, timest
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail=f"No logs found with id: {runner_id} and between {timestamp_from} and {timestamp_to}")
|
||||
|
||||
def remove_ansi_codes(text):
|
||||
ansi_escape = re.compile(r'\x1B[@-_][0-?]*[ -/]*[@-~]')
|
||||
return ansi_escape.sub('', text)
|
||||
|
||||
# endregion
|
||||
# A simple function to read the last lines of a file
|
||||
def tail(file_path, n=10, buffer_size=1024):
|
||||
with open(file_path, 'rb') as f:
|
||||
f.seek(0, 2) # Move to the end of the file
|
||||
file_size = f.tell()
|
||||
lines = []
|
||||
buffer = bytearray()
|
||||
# def tail(file_path, n=10, buffer_size=1024):
|
||||
# try:
|
||||
# with open(file_path, 'rb') as f:
|
||||
# f.seek(0, 2) # Move to the end of the file
|
||||
# file_size = f.tell()
|
||||
# lines = []
|
||||
# buffer = bytearray()
|
||||
|
||||
for i in range(file_size // buffer_size + 1):
|
||||
read_start = max(-buffer_size * (i + 1), -file_size)
|
||||
f.seek(read_start, 2)
|
||||
read_size = min(buffer_size, file_size - buffer_size * i)
|
||||
buffer[0:0] = f.read(read_size) # Prepend to buffer
|
||||
# for i in range(file_size // buffer_size + 1):
|
||||
# read_start = max(-buffer_size * (i + 1), -file_size)
|
||||
# f.seek(read_start, 2)
|
||||
# read_size = min(buffer_size, file_size - buffer_size * i)
|
||||
# buffer[0:0] = f.read(read_size) # Prepend to buffer
|
||||
|
||||
if buffer.count(b'\n') >= n + 1:
|
||||
break
|
||||
# if buffer.count(b'\n') >= n + 1:
|
||||
# break
|
||||
|
||||
lines = buffer.decode(errors='ignore').splitlines()[-n:]
|
||||
return lines
|
||||
# lines = buffer.decode(errors='ignore').splitlines()[-n:]
|
||||
# lines = [remove_ansi_codes(line) for line in lines]
|
||||
# return lines
|
||||
# except Exception as e:
|
||||
# return [str(e) + format_exc()]
|
||||
|
||||
#updated version that reads lines line by line
|
||||
def tail(file_path, n=10):
|
||||
try:
|
||||
with open(file_path, 'rb') as f:
|
||||
f.seek(0, 2) # Move to the end of the file
|
||||
file_size = f.tell()
|
||||
lines = []
|
||||
line = b''
|
||||
|
||||
f.seek(-1, 2) # Start at the last byte
|
||||
while len(lines) < n and f.tell() != 0:
|
||||
byte = f.read(1)
|
||||
if byte == b'\n':
|
||||
# Decode, remove ANSI codes, and append the line
|
||||
lines.append(remove_ansi_codes(line.decode(errors='ignore')))
|
||||
line = b''
|
||||
else:
|
||||
line = byte + line
|
||||
f.seek(-2, 1) # Move backwards by two bytes
|
||||
|
||||
if line:
|
||||
# Append any remaining line after removing ANSI codes
|
||||
lines.append(remove_ansi_codes(line.decode(errors='ignore')))
|
||||
|
||||
return lines[::-1] # Reverse the list to get the lines in correct order
|
||||
except Exception as e:
|
||||
return [str(e)]
|
||||
|
||||
|
||||
|
||||
@app.get("/log", dependencies=[Depends(api_key_auth)])
|
||||
def read_log(lines: int = 10):
|
||||
log_path = LOG_FILE
|
||||
def read_log(lines: int = 700, logfile: str = "strat.log"):
|
||||
log_path = LOG_PATH / logfile
|
||||
return {"lines": tail(log_path, lines)}
|
||||
|
||||
#get alpaca history bars
|
||||
@ -584,7 +654,7 @@ def _generate_report_image(runner_ids: list[UUID]):
|
||||
res, stream = generate_trading_report_image(runner_ids=runner_ids,stream=True)
|
||||
if res == 0: return StreamingResponse(stream, media_type="image/png",headers={"Content-Disposition": "attachment; filename=report.png"})
|
||||
elif res < 0:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{id}")
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{stream}")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {str(e)}" + format_exc())
|
||||
|
||||
@ -620,7 +690,8 @@ def _generate_analysis(analyzerInputs: AnalyzerInputs):
|
||||
|
||||
if res == 0: return StreamingResponse(stream, media_type="image/png")
|
||||
elif res < 0:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{id}")
|
||||
print("Error when generating analysis: ",str(stream))
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{stream}")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {str(e)}" + format_exc())
|
||||
|
||||
@ -633,7 +704,7 @@ def create_record(testlist: TestList):
|
||||
# Insert the record into the database
|
||||
conn = pool.get_connection()
|
||||
cursor = conn.cursor()
|
||||
cursor.execute("INSERT INTO test_list (id, name, dates) VALUES (?, ?, ?)", (testlist.id, testlist.name, json.dumps(testlist.dates, default=json_serial)))
|
||||
cursor.execute("INSERT INTO test_list (id, name, dates) VALUES (?, ?, ?)", (testlist.id, testlist.name, orjson.dumps(testlist.dates, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME).decode('utf-8')))
|
||||
conn.commit()
|
||||
pool.release_connection(conn)
|
||||
return testlist
|
||||
@ -649,7 +720,7 @@ def get_testlists():
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
|
||||
|
||||
# API endpoint to retrieve a single record by ID
|
||||
@app.get('/testlists/{record_id}')
|
||||
@app.get('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
|
||||
def get_testlist(record_id: str):
|
||||
res, testlist = cs.get_testlist_byID(record_id=record_id)
|
||||
|
||||
@ -659,7 +730,7 @@ def get_testlist(record_id: str):
|
||||
raise HTTPException(status_code=404, detail='Record not found')
|
||||
|
||||
# API endpoint to update a record
|
||||
@app.put('/testlists/{record_id}')
|
||||
@app.put('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
|
||||
def update_testlist(record_id: str, testlist: TestList):
|
||||
# Check if the record exists
|
||||
conn = pool.get_connection()
|
||||
@ -671,7 +742,7 @@ def update_testlist(record_id: str, testlist: TestList):
|
||||
raise HTTPException(status_code=404, detail='Record not found')
|
||||
|
||||
# Update the record in the database
|
||||
cursor.execute("UPDATE test_list SET name = ?, dates = ? WHERE id = ?", (testlist.name, json.dumps(testlist.dates, default=json_serial), record_id))
|
||||
cursor.execute("UPDATE test_list SET name = ?, dates = ? WHERE id = ?", (testlist.name, orjson.dumps(testlist.dates, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME).decode('utf-8'), record_id))
|
||||
conn.commit()
|
||||
pool.release_connection(conn)
|
||||
|
||||
@ -679,7 +750,7 @@ def update_testlist(record_id: str, testlist: TestList):
|
||||
return testlist
|
||||
|
||||
# API endpoint to delete a record
|
||||
@app.delete('/testlists/{record_id}')
|
||||
@app.delete('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
|
||||
def delete_testlist(record_id: str):
|
||||
# Check if the record exists
|
||||
conn = pool.get_connection()
|
||||
@ -702,7 +773,7 @@ def delete_testlist(record_id: str):
|
||||
# Get all config items
|
||||
@app.get("/config-items/", dependencies=[Depends(api_key_auth)])
|
||||
def get_all_items() -> list[ConfigItem]:
|
||||
res, sada = cs.get_all_config_items()
|
||||
res, sada = cf.get_all_config_items()
|
||||
if res == 0:
|
||||
return sada
|
||||
else:
|
||||
@ -712,7 +783,7 @@ def get_all_items() -> list[ConfigItem]:
|
||||
# Get a config item by ID
|
||||
@app.get("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
|
||||
def get_item(item_id: int)-> ConfigItem:
|
||||
res, sada = cs.get_config_item_by_id(item_id)
|
||||
res, sada = cf.get_config_item_by_id(item_id)
|
||||
if res == 0:
|
||||
return sada
|
||||
else:
|
||||
@ -721,7 +792,7 @@ def get_item(item_id: int)-> ConfigItem:
|
||||
# Get a config item by Name
|
||||
@app.get("/config-items-by-name/", dependencies=[Depends(api_key_auth)])
|
||||
def get_item(item_name: str)-> ConfigItem:
|
||||
res, sada = cs.get_config_item_by_name(item_name)
|
||||
res, sada = cf.get_config_item_by_name(item_name)
|
||||
if res == 0:
|
||||
return sada
|
||||
else:
|
||||
@ -730,7 +801,7 @@ def get_item(item_name: str)-> ConfigItem:
|
||||
# Create a new config item
|
||||
@app.post("/config-items/", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
|
||||
def create_item(config_item: ConfigItem) -> ConfigItem:
|
||||
res, sada = cs.create_config_item(config_item)
|
||||
res, sada = cf.create_config_item(config_item)
|
||||
if res == 0: return sada
|
||||
else:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id} {sada}")
|
||||
@ -739,11 +810,11 @@ def create_item(config_item: ConfigItem) -> ConfigItem:
|
||||
# Update a config item by ID
|
||||
@app.put("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
|
||||
def update_item(item_id: int, config_item: ConfigItem) -> ConfigItem:
|
||||
res, sada = cs.get_config_item_by_id(item_id)
|
||||
res, sada = cf.get_config_item_by_id(item_id)
|
||||
if res != 0:
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
|
||||
|
||||
res, sada = cs.update_config_item(item_id, config_item)
|
||||
res, sada = cf.update_config_item(item_id, config_item)
|
||||
if res == 0: return sada
|
||||
else:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id}")
|
||||
@ -752,17 +823,171 @@ def update_item(item_id: int, config_item: ConfigItem) -> ConfigItem:
|
||||
# Delete a config item by ID
|
||||
@app.delete("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
|
||||
def delete_item(item_id: int) -> dict:
|
||||
res, sada = cs.get_config_item_by_id(item_id)
|
||||
res, sada = cf.get_config_item_by_id(item_id)
|
||||
if res != 0:
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
|
||||
|
||||
res, sada = cs.delete_config_item(item_id)
|
||||
res, sada = cf.delete_config_item(item_id)
|
||||
if res == 0: return sada
|
||||
else:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id}")
|
||||
|
||||
# endregion
|
||||
|
||||
# region scheduler
|
||||
# 1. Fetch All RunManagerRecords
|
||||
@app.get("/run_manager_records/", dependencies=[Depends(api_key_auth)], response_model=List[RunManagerRecord])
|
||||
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
|
||||
def get_all_run_manager_records():
|
||||
result, records = rm.fetch_all_run_manager_records()
|
||||
if result != 0:
|
||||
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error fetching records")
|
||||
return records
|
||||
|
||||
# 2. Fetch RunManagerRecord by ID
|
||||
@app.get("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], response_model=RunManagerRecord)
|
||||
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
|
||||
def get_run_manager_record(record_id: UUID):
|
||||
result, record = rm.fetch_run_manager_record_by_id(record_id)
|
||||
if result == -2: # Record not found
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Record not found")
|
||||
elif result != 0:
|
||||
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error fetching record")
|
||||
return record
|
||||
|
||||
# 3. Update RunManagerRecord
|
||||
@app.patch("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
|
||||
def update_run_manager_record(record_id: UUID, update_data: RunManagerRecord):
|
||||
#make dates zone aware zoneNY
|
||||
# if update_data.valid_from is not None:
|
||||
# update_data.valid_from = zoneNY.localize(update_data.valid_from)
|
||||
# if update_data.valid_to is not None:
|
||||
# update_data.valid_to = zoneNY.localize(update_data.valid_to)
|
||||
result, message = rm.update_run_manager_record(record_id, update_data)
|
||||
if result == -2: # Update failed
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=message)
|
||||
elif result != 0:
|
||||
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Error during update {result} {message}")
|
||||
return {"message": "Record updated successfully"}
|
||||
|
||||
# 4. Delete RunManagerRecord
|
||||
@app.delete("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
|
||||
def delete_run_manager_record(record_id: UUID):
|
||||
result, message = rm.delete_run_manager_record(record_id)
|
||||
if result == -2: # Delete failed
|
||||
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=message)
|
||||
elif result != 0:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error during deletion {result} {message}")
|
||||
return {"message": "Record deleted successfully"}
|
||||
|
||||
@app.post("/run_manager_records/", status_code=status.HTTP_201_CREATED)
|
||||
def create_run_manager_record(new_record: RunManagerRecord, api_key_auth: Depends = Depends(api_key_auth)):
|
||||
#make date zone aware - convert to zoneNY
|
||||
# if new_record.valid_from is not None:
|
||||
# new_record.valid_from = zoneNY.localize(new_record.valid_from)
|
||||
# if new_record.valid_to is not None:
|
||||
# new_record.valid_to = zoneNY.localize(new_record.valid_to)
|
||||
|
||||
result, record_id = rm.add_run_manager_record(new_record)
|
||||
if result != 0:
|
||||
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error during record creation: {result} {record_id}")
|
||||
return {"id": record_id}
|
||||
# endregion
|
||||
|
||||
#model section
|
||||
#UPLOAD MODEL
|
||||
@app.post("/model/upload_model", dependencies=[Depends(api_key_auth)])
|
||||
async def _upload_model(file: UploadFile = File(...)):
|
||||
# Specify the directory to save the file
|
||||
#save_directory = DATA_DIR+'/models/'
|
||||
save_directory = MODEL_DIR
|
||||
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
# Extract just the filename, discarding any path information
|
||||
base_filename = os.path.basename(file.filename)
|
||||
file_path = os.path.join(save_directory, base_filename)
|
||||
|
||||
# Save the uploaded file
|
||||
with open(file_path, "wb") as buffer:
|
||||
while True:
|
||||
data = await file.read(1024) # Read in chunks
|
||||
if not data:
|
||||
break
|
||||
buffer.write(data)
|
||||
|
||||
print(f"saved to {file_path=} file:{base_filename=}")
|
||||
|
||||
return {"filename": base_filename, "location": file_path}
|
||||
|
||||
#LIST MODELS
|
||||
@app.get("/model/list-models", dependencies=[Depends(api_key_auth)])
|
||||
def list_models():
|
||||
#models_directory = DATA_DIR + '/models/'
|
||||
models_directory = MODEL_DIR
|
||||
# Ensure the directory exists
|
||||
if not os.path.exists(models_directory):
|
||||
return {"error": "Models directory does not exist."}
|
||||
|
||||
# List all files in the directory
|
||||
model_files = sorted(os.listdir(models_directory))
|
||||
return {"models": model_files}
|
||||
|
||||
@app.post("/model/upload-model", dependencies=[Depends(api_key_auth)])
|
||||
def upload_model(file: UploadFile = File(...)):
|
||||
if not file:
|
||||
raise HTTPException(status_code=400, detail="No file uploaded.")
|
||||
file_location = os.path.join(MODEL_DIR, file.filename)
|
||||
with open(file_location, "wb+") as file_object:
|
||||
shutil.copyfileobj(file.file, file_object)
|
||||
|
||||
return JSONResponse(status_code=200, content={"message": "Model uploaded successfully."})
|
||||
|
||||
@app.delete("/model/delete-model/{model_name}", dependencies=[Depends(api_key_auth)])
|
||||
def delete_model(model_name: str):
|
||||
model_path = os.path.join(MODEL_DIR, model_name)
|
||||
if os.path.exists(model_path):
|
||||
os.remove(model_path)
|
||||
return {"message": "Model deleted successfully."}
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail="Model not found.")
|
||||
|
||||
@app.get("/model/download-model/{model_name}", dependencies=[Depends(api_key_auth)])
|
||||
def download_model(model_name: str):
|
||||
model_path = os.path.join(MODEL_DIR, model_name)
|
||||
if os.path.exists(model_path):
|
||||
return FileResponse(path=model_path, filename=model_name, media_type='application/octet-stream')
|
||||
else:
|
||||
raise HTTPException(status_code=404, detail="Model not found.")
|
||||
|
||||
@app.get("/model/metadata/{model_name}", dependencies=[Depends(api_key_auth)])
|
||||
def get_metadata(model_name: str):
|
||||
try:
|
||||
#loadujeme pouze v modu cfg only
|
||||
model_instance = ml.load_model(file=model_name, directory=MODEL_DIR, cfg_only = True)
|
||||
try:
|
||||
metadata = model_instance.metadata
|
||||
except AttributeError:
|
||||
metadata = model_instance.__dict__
|
||||
del metadata["scalerX"]
|
||||
del metadata["scalerY"]
|
||||
del metadata["model"]
|
||||
except Exception as e:
|
||||
metadata = "No Metada" + str(e) + format_exc()
|
||||
return metadata
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=404, detail="Model not found."+str(e) + format_exc())
|
||||
|
||||
# model_path = os.path.join(MODEL_DIR, model_name)
|
||||
# if os.path.exists(model_path):
|
||||
# # Example: Retrieve metadata from a file or generate it
|
||||
# metadata = {
|
||||
# "name": model_name,
|
||||
# "size": os.path.getsize(model_path),
|
||||
# "last_modified": os.path.getmtime(model_path),
|
||||
# # ... other metadata fields ...
|
||||
# }
|
||||
|
||||
|
||||
# Thread function to insert data from the queue into the database
|
||||
def insert_queue2db():
|
||||
@ -777,7 +1002,7 @@ def insert_queue2db():
|
||||
c = insert_conn.cursor()
|
||||
insert_data = []
|
||||
for i in loglist:
|
||||
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
|
||||
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME|orjson.OPT_NON_STR_KEYS).decode('utf-8'))
|
||||
insert_data.append(row)
|
||||
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
|
||||
insert_conn.commit()
|
||||
@ -789,7 +1014,10 @@ def insert_queue2db():
|
||||
insert_queue.put(data) # Put the data back into the queue for retry
|
||||
sleep(1) # You can adjust the sleep duration
|
||||
else:
|
||||
raise # If it's another error, raise it
|
||||
raise # If it's another error, raise it
|
||||
except Exception as e:
|
||||
print("ERROR INSERT LOGQUEUE MODULE:" + str(e)+format_exc())
|
||||
print(data)
|
||||
|
||||
#join cekej na dokonceni vsech
|
||||
for i in cs.db.runners:
|
||||
@ -802,15 +1030,25 @@ if __name__ == "__main__":
|
||||
insert_thread = Thread(target=insert_queue2db)
|
||||
insert_thread.start()
|
||||
|
||||
#attach debugGER to be able to debug scheduler jobs (run in separate threads)
|
||||
# debugpy.listen(('localhost', 5678))
|
||||
# print("Waiting for debugger to attach...")
|
||||
# debugpy.wait_for_client() # Script will pause here until debugger is attached
|
||||
|
||||
#init scheduled tasks from schedule table
|
||||
#Add APS scheduler job refresh
|
||||
res, result = aps.initialize_jobs()
|
||||
if res < 0:
|
||||
#raise exception
|
||||
raise Exception(f"Error {res} initializing APS jobs, error {result}")
|
||||
|
||||
uvicorn.run("__main__:app", host="0.0.0.0", port=8000, reload=False)
|
||||
except Exception as e:
|
||||
print("Error intializing app: " + str(e) + format_exc())
|
||||
aps.scheduler.shutdown(wait=False)
|
||||
finally:
|
||||
print("closing insert_conn connection")
|
||||
insert_conn.close()
|
||||
print("closed")
|
||||
##TODO pridat moznost behu na PAPER a LIVE per strategie
|
||||
|
||||
# zjistit zda order notification websocket muze bezet na obou soucasne
|
||||
# pokud ne, mohl bych vyuzivat jen zive data
|
||||
# a pro paper trading(live interface) a notifications bych pouzival separatni paper ucet
|
||||
# to by asi slo
|
||||
|
||||
|
||||
@ -1,389 +0,0 @@
|
||||
# from sklearn.preprocessing import StandardScaler
|
||||
# # from keras.models import Sequential
|
||||
# from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
|
||||
# from v2realbot.config import DATA_DIR
|
||||
# from joblib import dump
|
||||
# # import v2realbot.ml.mlutils as mu
|
||||
# from v2realbot.utils.utils import slice_dict_lists
|
||||
# import numpy as np
|
||||
# from copy import deepcopy
|
||||
# import v2realbot.controller.services as cs
|
||||
# #Basic classes for machine learning
|
||||
# #drzi model a jeho zakladni nastaveni
|
||||
|
||||
# #Sample Data
|
||||
# sample_bars = {
|
||||
# 'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
||||
# 'high': [10, 11, 12, 13, 14,10, 11, 12, 13, 14,10, 11, 12, 13, 14],
|
||||
# 'low': [8, 9, 7, 6, 8,8, 9, 7, 6, 8,8, 9, 7, 6, 8],
|
||||
# 'volume': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300],
|
||||
# 'close': [9, 10, 11, 12, 13,9, 10, 11, 12, 13,9, 10, 11, 12, 13],
|
||||
# 'open': [9, 10, 8, 8, 8,9, 10, 8, 8, 8,9, 10, 8, 8, 8],
|
||||
# 'resolution': [1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1, 1, 1, 1]
|
||||
# }
|
||||
|
||||
# sample_indicators = {
|
||||
# 'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
||||
# 'fastslope': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
# 'fsdelta': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
# 'fastslope2': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
# 'ema': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300]
|
||||
# }
|
||||
|
||||
# #Trida, která drzi instanci ML modelu a jeho konfigurace
|
||||
# #take se pouziva jako nastroj na pripravu dat pro train a predikci
|
||||
# #pozor samotna data trida neobsahuje, jen konfiguraci a pak samotny model
|
||||
# class ModelML:
|
||||
# def __init__(self, name: str,
|
||||
# pred_output: PredOutput,
|
||||
# bar_features: list,
|
||||
# ind_features: list,
|
||||
# input_sequences: int,
|
||||
# target: str,
|
||||
# target_reference: str,
|
||||
# train_target_steps: int, #train
|
||||
# train_target_transformation: TargetTRFM, #train
|
||||
# train_epochs: int, #train
|
||||
# train_runner_ids: list = None, #train
|
||||
# train_batch_id: str = None, #train
|
||||
# version: str = "1",
|
||||
# note : str = None,
|
||||
# use_bars: bool = True,
|
||||
# train_remove_cross_sequences: bool = False, #train
|
||||
# #standardne StandardScaler
|
||||
# scalerX: StandardScaler = StandardScaler(),
|
||||
# scalerY: StandardScaler = StandardScaler(),
|
||||
# model, #Sequential = Sequential()
|
||||
# )-> None:
|
||||
|
||||
# self.name = name
|
||||
# self.version = version
|
||||
# self.note = note
|
||||
# self.pred_output: PredOutput = pred_output
|
||||
# #model muze byt take bez barů, tzn. jen indikatory
|
||||
# self.use_bars = use_bars
|
||||
# #zajistime poradi
|
||||
# bar_features.sort()
|
||||
# ind_features.sort()
|
||||
# self.bar_features = bar_features
|
||||
# self.ind_features = ind_features
|
||||
# if (train_runner_ids is None or len(train_runner_ids) == 0) and train_batch_id is None:
|
||||
# raise Exception("train_runner_ids nebo train_batch_id musi byt vyplnene")
|
||||
# self.train_runner_ids = train_runner_ids
|
||||
# self.train_batch_id = train_batch_id
|
||||
# #target cílový sloupec, který je používám přímo nebo transformován na binary
|
||||
# self.target = target
|
||||
# self.target_reference = target_reference
|
||||
# self.train_target_steps = train_target_steps
|
||||
# self.train_target_transformation = train_target_transformation
|
||||
# self.input_sequences = input_sequences
|
||||
# self.train_epochs = train_epochs
|
||||
# #keep cross sequences between runners
|
||||
# self.train_remove_cross_sequences = train_remove_cross_sequences
|
||||
# self.scalerX = scalerX
|
||||
# self.scalerY = scalerY
|
||||
# self.model = model
|
||||
|
||||
# def save(self):
|
||||
# filename = mu.get_full_filename(self.name,self.version)
|
||||
# dump(self, filename)
|
||||
# print(f"model {self.name} save")
|
||||
|
||||
# #create X data with features
|
||||
# def column_stack_source(self, bars, indicators, verbose = 1) -> np.array:
|
||||
# #create SOURCE DATA with features
|
||||
# # bars and indicators dictionary and features as input
|
||||
# poradi_sloupcu_inds = [feature for feature in self.ind_features if feature in indicators]
|
||||
# indicator_data = np.column_stack([indicators[feature] for feature in self.ind_features if feature in indicators])
|
||||
|
||||
# if len(bars)>0:
|
||||
# bar_data = np.column_stack([bars[feature] for feature in self.bar_features if feature in bars])
|
||||
# poradi_sloupcu_bars = [feature for feature in self.bar_features if feature in bars]
|
||||
# if verbose == 1:
|
||||
# print("poradi sloupce v source_data", str(poradi_sloupcu_bars + poradi_sloupcu_inds))
|
||||
# combined_day_data = np.column_stack([bar_data,indicator_data])
|
||||
# else:
|
||||
# combined_day_data = indicator_data
|
||||
# if verbose == 1:
|
||||
# print("poradi sloupce v source_data", str(poradi_sloupcu_inds))
|
||||
# return combined_day_data
|
||||
|
||||
# #create TARGET(Y) data
|
||||
# def column_stack_target(self, bars, indicators) -> np.array:
|
||||
# target_base = []
|
||||
# target_reference = []
|
||||
# try:
|
||||
# try:
|
||||
# target_base = bars[self.target]
|
||||
# except KeyError:
|
||||
# target_base = indicators[self.target]
|
||||
# try:
|
||||
# target_reference = bars[self.target_reference]
|
||||
# except KeyError:
|
||||
# target_reference = indicators[self.target_reference]
|
||||
# except KeyError:
|
||||
# pass
|
||||
# target_day_data = np.column_stack([target_base, target_reference])
|
||||
# return target_day_data
|
||||
|
||||
# def load_runners_as_list(self, runner_id_list = None, batch_id = None):
|
||||
# """Loads all runners data (bars, indicators) for given runners into list of dicts.
|
||||
|
||||
# List of runners/train_batch_id may be provided, or self.train_runner_ids/train_batch_id is taken instead.
|
||||
|
||||
# Returns:
|
||||
# tuple (barslist, indicatorslist,) - lists with dictionaries for each runner
|
||||
# """
|
||||
# if runner_id_list is not None:
|
||||
# runner_ids = runner_id_list
|
||||
# print("loading runners for ",str(runner_id_list))
|
||||
# elif batch_id is not None:
|
||||
# print("Loading runners for train_batch_id:", batch_id)
|
||||
# res, runner_ids = cs.get_archived_runnerslist_byBatchID(batch_id)
|
||||
# elif self.train_batch_id is not None:
|
||||
# print("Loading runners for TRAINING BATCH self.train_batch_id:", self.train_batch_id)
|
||||
# res, runner_ids = cs.get_archived_runnerslist_byBatchID(self.train_batch_id)
|
||||
# #pripadne bereme z listu runneru
|
||||
# else:
|
||||
# runner_ids = self.train_runner_ids
|
||||
# print("loading runners for TRAINING runners ",str(self.train_runner_ids))
|
||||
|
||||
|
||||
# barslist = []
|
||||
# indicatorslist = []
|
||||
# ind_keys = None
|
||||
# for runner_id in runner_ids:
|
||||
# bars, indicators = mu.load_runner(runner_id)
|
||||
# print(f"runner:{runner_id}")
|
||||
# if self.use_bars:
|
||||
# barslist.append(bars)
|
||||
# print(f"bars keys {len(bars)} lng {len(bars[self.bar_features[0]])}")
|
||||
# indicatorslist.append(indicators)
|
||||
# print(f"indi keys {len(indicators)} lng {len(indicators[self.ind_features[0]])}")
|
||||
# if ind_keys is not None and ind_keys != len(indicators):
|
||||
# raise Exception("V runnerech musi byt stejny pocet indikatoru")
|
||||
# else:
|
||||
# ind_keys = len(indicators)
|
||||
|
||||
# return barslist, indicatorslist
|
||||
|
||||
# #toto nejspis rozdelit na TRAIN mod (kdy ma smysl si brat nataveni napr. remove cross)
|
||||
# def create_sequences(self, combined_data, target_data = None, remove_cross_sequences: bool = False, rows_in_day = None):
|
||||
# """Creates sequences of given length seq and optionally target N steps in the future.
|
||||
|
||||
# Returns X(source) a Y(transformed target) - vrací take Y_untransformed - napr. referencni target column pro zobrazeni v grafu (napr. cenu)
|
||||
|
||||
# Volby pro transformaci targetu:
|
||||
# - KEEPVAL (keep value as is)
|
||||
# - KEEPVAL_MOVE(keep value, move target N steps in the future)
|
||||
|
||||
# další na zámysl (nejspíš ale data budu připravovat ve stratu a využívat jen KEEPy nahoře)
|
||||
# - BINARY_prefix - sloupec založený na podmínce, výsledek je 0,1
|
||||
# - BINARY_TREND RISING - podmínka založena, že v target columnu stoupají/klesají po target N steps
|
||||
# (podvarianty BINARY TREND RISING(0-1), FALLING(0-1), BOTH(-1 - ))
|
||||
# - BINARY_READY - předpřipravený sloupec(vytvořený ve strategii jako indikator), stačí jen posunout o target step
|
||||
# - BINARY_READY_POSUNUTY - předpřipraveny sloupec (již posunutýo o target M) - stačí brát as is
|
||||
|
||||
# Args:
|
||||
# combined_data: A list of combined data.
|
||||
# target_data: A list of target data (0-target,1-target ref.column)
|
||||
# remove_cross_sequences: If to remove crossday sequences
|
||||
# rows_in_day: helper dict to remove crossday sequences
|
||||
# return_untr: whether to return untransformed reference column
|
||||
|
||||
# Returns:
|
||||
# A list of X sequences and a list of y sequences.
|
||||
# """
|
||||
|
||||
# if remove_cross_sequences is True and rows_in_day is None:
|
||||
# raise Exception("To remove crossday sequences, rows_in_day param required.")
|
||||
|
||||
# if target_data is not None and len(target_data) > 0:
|
||||
# target_data_untr = target_data[:,1]
|
||||
# target_data = target_data[:,0]
|
||||
# else:
|
||||
# target_data_untr = []
|
||||
# target_data = []
|
||||
|
||||
# X_train = []
|
||||
# y_train = []
|
||||
# y_untr = []
|
||||
# #comb data shape (4073, 13)
|
||||
# #target shape (4073, 1)
|
||||
# print("Start Sequencing")
|
||||
# #range sekvence podle toho jestli je pozadovan MOVE nebo NE
|
||||
# if self.train_target_transformation == TargetTRFM.KEEPVAL_MOVE:
|
||||
# right_offset = self.input_sequences + self.train_target_steps
|
||||
# else:
|
||||
# right_offset= self.input_sequences
|
||||
# for i in range(len(combined_data) - right_offset):
|
||||
|
||||
# #take neresime cross sekvence kdyz neni vyplneni target nebo neni vyplnena rowsinaday
|
||||
# if remove_cross_sequences is True and not self.is_same_day(i,i + right_offset, rows_in_day):
|
||||
# print(f"sekvence vyrazena. NEW Zacatek {combined_data[i, 0]} konec {combined_data[i + right_offset, 0]}")
|
||||
# continue
|
||||
|
||||
# #pridame sekvenci
|
||||
# X_train.append(combined_data[i:i + self.input_sequences])
|
||||
|
||||
# #target hodnotu bude ponecha (na radku mame jiz cilovy target)
|
||||
# #nebo vezme hodnotu z N(train_target_steps) baru vpredu a da jako target k radku
|
||||
# #je rizeno nastavenim right_offset vyse
|
||||
# if target_data is not None and len(target_data) > 0:
|
||||
# y_train.append(target_data[i + right_offset])
|
||||
|
||||
# #udela binary transformaci targetu
|
||||
# # elif self.target_transformation == TargetTRFM.BINARY_TREND_UP:
|
||||
# # #mini loop od 0 do počtu target steps - zda jsou successively rising
|
||||
# # #radeji budu resit vizualne conditional indikatorem pri priprave dat
|
||||
# # rising = False
|
||||
# # for step in range(0,self.train_target_steps):
|
||||
# # if target_data[i + self.input_sequences + step] < target_data[i + self.input_sequences + step + 1]:
|
||||
# # rising = True
|
||||
# # else:
|
||||
# # rising = False
|
||||
# # break
|
||||
# # y_train.append([1] if rising else [0])
|
||||
# # #tato zakomentovana varianta porovnava jen cenu ted a cenu na target baru
|
||||
# # #y_train.append([1] if target_data[i + self.input_sequences] < target_data[i + self.input_sequences + self.train_target_steps] else [0])
|
||||
# if target_data is not None and len(target_data) > 0:
|
||||
# y_untr.append(target_data_untr[i + self.input_sequences])
|
||||
# return np.array(X_train), np.array(y_train), np.array(y_untr)
|
||||
|
||||
# def is_same_day(self, idx_start, idx_end, rows_in_day):
|
||||
# """Helper for sequencing enables to recognize if the start/end index are from the same day.
|
||||
|
||||
# Used for sequences to remove cross runner(day) sequences.
|
||||
|
||||
# Args:
|
||||
# idx_start: Start index
|
||||
# idx_end: End index
|
||||
# rows_in_day: 1D array containing number of rows(bars,inds) for each day.
|
||||
# Cumsumed defines edges where each day ends. [10,30,60]
|
||||
|
||||
# Returns:
|
||||
# A boolean
|
||||
|
||||
# refactor to vectors if possible
|
||||
# i_b, i_e
|
||||
# podm_pole = i_b<pole and i_s >= pole
|
||||
# [10,30,60]
|
||||
# """
|
||||
# for i in rows_in_day:
|
||||
# #jde o polozku na pomezi - vyhazujeme
|
||||
# if idx_start < i and idx_end >= i:
|
||||
# return False
|
||||
# if idx_start < i and idx_end < i:
|
||||
# return True
|
||||
# return None
|
||||
|
||||
# #vytvori X a Y data z nastaveni self
|
||||
# #pro vybrane runnery stahne data, vybere sloupce dle faature a target
|
||||
# #a vrátí jako sloupce v numpy poli
|
||||
# #zaroven vraci i rows_in_day pro nasledny sekvencing
|
||||
# def load_data(self, runners_ids: list = None, batch_id: list = None, source: Source = Source.RUNNERS):
|
||||
# """Service to load data for the model. Can be used for training or for vector prediction.
|
||||
|
||||
# If input data are not provided, it will get the value from training model configuration (train_runners_ids, train_batch_id)
|
||||
|
||||
# Args:
|
||||
# runner_ids:
|
||||
# batch_id:
|
||||
# source: To load sample data.
|
||||
|
||||
# Returns:
|
||||
# source_data,target_data,rows_in_day
|
||||
# """
|
||||
# rows_in_day = []
|
||||
# indicatorslist = []
|
||||
# #bud natahneme samply
|
||||
# if source == Source.SAMPLES:
|
||||
# if self.use_bars:
|
||||
# bars = sample_bars
|
||||
# else:
|
||||
# bars = {}
|
||||
# indicators = sample_indicators
|
||||
# indicatorslist.append(indicators)
|
||||
# #nebo dotahneme pozadovane runnery
|
||||
# else:
|
||||
# #nalodujeme vsechny runnery jako listy (bud z runnerids nebo dle batchid)
|
||||
# barslist, indicatorslist = self.load_runners_as_list(runner_id_list=runners_ids, batch_id=batch_id)
|
||||
# #nerozumim
|
||||
# bl = deepcopy(barslist)
|
||||
# il = deepcopy(indicatorslist)
|
||||
# #a zmergujeme jejich data dohromady
|
||||
# bars = mu.merge_dicts(bl)
|
||||
# indicators = mu.merge_dicts(il)
|
||||
|
||||
# #zaroven vytvarime pomocny list, kde stale drzime pocet radku per day (pro nasledny sekvencing)
|
||||
# #zatim nad indikatory - v budoucnu zvazit, kdyby jelo neco jen nad barama
|
||||
# for i, val in enumerate(indicatorslist):
|
||||
# #pro prvni klic z indikatoru pocteme cnt
|
||||
# pocet = len(indicatorslist[i][self.ind_features[0]])
|
||||
# print("pro runner vkladame pocet", pocet)
|
||||
# rows_in_day.append(pocet)
|
||||
|
||||
# rows_in_day = np.array(rows_in_day)
|
||||
# rows_in_day = np.cumsum(rows_in_day)
|
||||
# print("celkove pole rows_in_day(cumsum):", rows_in_day)
|
||||
|
||||
# print("Data LOADED.")
|
||||
# print(f"number of indicators {len(indicators)}")
|
||||
# print(f"number of bar elements{len(bars)}")
|
||||
# print(f"ind list length {len(indicators['time'])}")
|
||||
# print(f"bar list length {len(bars['time'])}")
|
||||
|
||||
# self.validate_available_features(bars, indicators)
|
||||
|
||||
# print("Preparing FEATURES")
|
||||
# source_data, target_data = self.stack_bars_indicators(bars, indicators)
|
||||
# return source_data, target_data, rows_in_day
|
||||
|
||||
# def validate_available_features(self, bars, indicators):
|
||||
# for k in self.bar_features:
|
||||
# if not k in bars.keys():
|
||||
# raise Exception(f"Missing bar feature {k}")
|
||||
|
||||
# for k in self.ind_features:
|
||||
# if not k in indicators.keys():
|
||||
# raise Exception(f"Missing ind feature {k}")
|
||||
|
||||
# def stack_bars_indicators(self, bars, indicators):
|
||||
# print("Stacking dicts to numpy")
|
||||
# print("Source - X")
|
||||
# source_data = self.column_stack_source(bars, indicators)
|
||||
# print("shape", np.shape(source_data))
|
||||
# print("Target - Y", self.target)
|
||||
# target_data = self.column_stack_target(bars, indicators)
|
||||
# print("shape", np.shape(target_data))
|
||||
|
||||
# return source_data, target_data
|
||||
|
||||
# #pomocna sluzba, ktera provede vsechny transformace a inverzni scaling a vyleze z nej predikce
|
||||
# #vstupem je standardni format ve strategii (state.bars, state.indicators)
|
||||
# #vystupem je jedna hodnota
|
||||
# def predict(self, bars, indicators) -> float:
|
||||
# #oriznuti podle seqence - pokud je nastaveno v modelu
|
||||
# lastNbars = slice_dict_lists(bars, self.input_sequences)
|
||||
# lastNindicators = slice_dict_lists(indicators, self.input_sequences)
|
||||
# # print("last5bars", lastNbars)
|
||||
# # print("last5indicators",lastNindicators)
|
||||
|
||||
# combined_live_data = self.column_stack_source(lastNbars, lastNindicators, verbose=0)
|
||||
# #print("combined_live_data",combined_live_data)
|
||||
# combined_live_data = self.scalerX.transform(combined_live_data)
|
||||
# combined_live_data = np.array(combined_live_data)
|
||||
# #print("last 5 values combined data shape", np.shape(combined_live_data))
|
||||
|
||||
# #converts to 3D array
|
||||
# # 1 number of samples in the array.
|
||||
# # 2 represents the sequence length.
|
||||
# # 3 represents the number of features in the data.
|
||||
# combined_live_data = combined_live_data.reshape((1, self.input_sequences, combined_live_data.shape[1]))
|
||||
|
||||
# # Make a prediction
|
||||
# prediction = self.model(combined_live_data, training=False)
|
||||
# #prediction = prediction.reshape((1, 1))
|
||||
# # Convert the prediction back to the original scale
|
||||
# prediction = self.scalerY.inverse_transform(prediction)
|
||||
# return float(prediction)
|
||||
@ -1,55 +0,0 @@
|
||||
import numpy as np
|
||||
# import v2realbot.controller.services as cs
|
||||
from joblib import load
|
||||
from v2realbot.config import DATA_DIR
|
||||
|
||||
def get_full_filename(name, version = "1"):
|
||||
return DATA_DIR+'/models/'+name+'_v'+version+'.pkl'
|
||||
|
||||
def load_model(name, version = "1"):
|
||||
filename = get_full_filename(name, version)
|
||||
return load(filename)
|
||||
|
||||
#pomocne funkce na manipulaci s daty
|
||||
|
||||
def merge_dicts(dict_list):
|
||||
# Initialize an empty merged dictionary
|
||||
merged_dict = {}
|
||||
|
||||
# Iterate through the dictionaries in the list
|
||||
for i,d in enumerate(dict_list):
|
||||
for key, value in d.items():
|
||||
if key in merged_dict:
|
||||
merged_dict[key] += value
|
||||
else:
|
||||
merged_dict[key] = value
|
||||
#vlozime element s idenitfikaci runnera
|
||||
|
||||
return merged_dict
|
||||
|
||||
# # Initialize the merged dictionary with the first dictionary in the list
|
||||
# merged_dict = dict_list[0].copy()
|
||||
# merged_dict["index"] = []
|
||||
|
||||
# # Iterate through the remaining dictionaries and concatenate their lists
|
||||
# for i, d in enumerate(dict_list[1:]):
|
||||
# merged_dict["index"] =
|
||||
# for key, value in d.items():
|
||||
# if key in merged_dict:
|
||||
# merged_dict[key] += value
|
||||
# else:
|
||||
# merged_dict[key] = value
|
||||
|
||||
# return merged_dict
|
||||
|
||||
def load_runner(runner_id):
|
||||
res, sada = cs.get_archived_runner_details_byID(runner_id)
|
||||
if res == 0:
|
||||
print("ok")
|
||||
else:
|
||||
print("error",res,sada)
|
||||
raise Exception(f"error loading runner {runner_id} : {res} {sada}")
|
||||
|
||||
bars = sada["bars"]
|
||||
indicators = sada["indicators"][0]
|
||||
return bars, indicators
|
||||
104
v2realbot/reporting/analyzer/WIP_daily_profit_distribution.py
Normal file
104
v2realbot/reporting/analyzer/WIP_daily_profit_distribution.py
Normal file
@ -0,0 +1,104 @@
|
||||
import matplotlib
|
||||
import matplotlib.dates as mdates
|
||||
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import v2realbot.controller.services as cs
|
||||
from rich import print
|
||||
from v2realbot.common.model import AnalyzerInputs
|
||||
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
|
||||
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
|
||||
from pathlib import Path
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
|
||||
from io import BytesIO
|
||||
from v2realbot.utils.historicals import get_historical_bars
|
||||
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
|
||||
from collections import defaultdict
|
||||
from scipy.stats import zscore
|
||||
from io import BytesIO
|
||||
from v2realbot.reporting.load_trades import load_trades
|
||||
from typing import Tuple, Optional, List
|
||||
from traceback import format_exc
|
||||
import pandas as pd
|
||||
|
||||
def daily_profit_distribution(runner_ids: list = None, batch_id: str = None, stream: bool = False):
|
||||
try:
|
||||
res, trades, days_cnt = load_trades(runner_ids, batch_id)
|
||||
if res != 0:
|
||||
raise Exception("Error in loading trades")
|
||||
|
||||
#print(trades)
|
||||
|
||||
# Convert list of Trade objects to DataFrame
|
||||
trades_df = pd.DataFrame([t.__dict__ for t in trades if t.status == "closed"])
|
||||
|
||||
# Ensure 'exit_time' is a datetime object and make it timezone-naive if necessary
|
||||
trades_df['exit_time'] = pd.to_datetime(trades_df['exit_time']).dt.tz_convert(zoneNY)
|
||||
trades_df['date'] = trades_df['exit_time'].dt.date
|
||||
|
||||
daily_profit = trades_df.groupby(['date', 'direction']).profit.sum().unstack(fill_value=0)
|
||||
#print("dp",daily_profit)
|
||||
daily_cumulative_profit = trades_df.groupby('date').profit.sum().cumsum()
|
||||
|
||||
# Create the plot
|
||||
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
|
||||
# Bar chart for daily profit composition
|
||||
daily_profit.plot(kind='bar', stacked=True, ax=ax1, color=['green', 'red'], zorder=2)
|
||||
ax1.set_ylabel('Daily Profit')
|
||||
ax1.set_xlabel('Date')
|
||||
#ax1.xaxis.set_major_locator(MaxNLocator(10))
|
||||
|
||||
# Line chart for cumulative daily profit
|
||||
#ax2 = ax1.twinx()
|
||||
#print(daily_cumulative_profit)
|
||||
#print(daily_cumulative_profit.index)
|
||||
#ax2.plot(daily_cumulative_profit.index, daily_cumulative_profit, color='yellow', linestyle='-', linewidth=2, zorder=3)
|
||||
#ax2.set_ylabel('Cumulative Profit')
|
||||
|
||||
# Setting the secondary y-axis range dynamically based on cumulative profit values
|
||||
# ax2.set_ylim(daily_cumulative_profit.min() - (daily_cumulative_profit.std() * 2),
|
||||
# daily_cumulative_profit.max() + (daily_cumulative_profit.std() * 2))
|
||||
|
||||
# Dark mode settings
|
||||
ax1.set_facecolor('black')
|
||||
# ax1.grid(True)
|
||||
#ax2.set_facecolor('black')
|
||||
fig.patch.set_facecolor('black')
|
||||
ax1.tick_params(colors='white')
|
||||
#ax2.tick_params(colors='white')
|
||||
# ax1.xaxis_date()
|
||||
# ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d.%m.', tz=zoneNY))
|
||||
ax1.tick_params(axis='x', rotation=45)
|
||||
|
||||
# Footer
|
||||
footer_text = f'Days Count: {days_cnt} | Parameters: {{"runner_ids": {len(runner_ids) if runner_ids is not None else None}, "batch_id": {batch_id}, "stream": {stream}}}'
|
||||
plt.figtext(0.5, 0.01, footer_text, wrap=True, horizontalalignment='center', fontsize=8, color='white')
|
||||
|
||||
# Save or stream the plot
|
||||
if stream:
|
||||
img_stream = BytesIO()
|
||||
plt.savefig(img_stream, format='png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
|
||||
img_stream.seek(0)
|
||||
plt.close(fig)
|
||||
return (0, img_stream)
|
||||
else:
|
||||
plt.savefig(f'{__name__}.png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
|
||||
plt.close(fig)
|
||||
return (0, None)
|
||||
|
||||
except Exception as e:
|
||||
# Detailed error reporting
|
||||
return (-1, str(e) + format_exc())
|
||||
# Local debugging
|
||||
if __name__ == '__main__':
|
||||
batch_id = "6f9b012c"
|
||||
res, val = daily_profit_distribution(batch_id=batch_id)
|
||||
print(res, val)
|
||||
104
v2realbot/reporting/analyzer/daily_profit_distribution.py
Normal file
104
v2realbot/reporting/analyzer/daily_profit_distribution.py
Normal file
@ -0,0 +1,104 @@
|
||||
import matplotlib
|
||||
import matplotlib.dates as mdates
|
||||
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import v2realbot.controller.services as cs
|
||||
from rich import print
|
||||
from v2realbot.common.model import AnalyzerInputs
|
||||
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
|
||||
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
|
||||
from pathlib import Path
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
|
||||
from io import BytesIO
|
||||
from v2realbot.utils.historicals import get_historical_bars
|
||||
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
|
||||
from collections import defaultdict
|
||||
from scipy.stats import zscore
|
||||
from io import BytesIO
|
||||
from v2realbot.reporting.load_trades import load_trades
|
||||
from typing import Tuple, Optional, List
|
||||
from traceback import format_exc
|
||||
import pandas as pd
|
||||
|
||||
def daily_profit_distribution(runner_ids: list = None, batch_id: str = None, stream: bool = False):
|
||||
try:
|
||||
res, trades, days_cnt = load_trades(runner_ids, batch_id)
|
||||
if res != 0:
|
||||
raise Exception("Error in loading trades")
|
||||
|
||||
#print(trades)
|
||||
|
||||
# Convert list of Trade objects to DataFrame
|
||||
trades_df = pd.DataFrame([t.__dict__ for t in trades if t.status == "closed"])
|
||||
|
||||
# Ensure 'exit_time' is a datetime object and make it timezone-naive if necessary
|
||||
trades_df['exit_time'] = pd.to_datetime(trades_df['exit_time']).dt.tz_convert(zoneNY)
|
||||
trades_df['date'] = trades_df['exit_time'].dt.date
|
||||
|
||||
daily_profit = trades_df.groupby(['date', 'direction']).profit.sum().unstack(fill_value=0)
|
||||
#print("dp",daily_profit)
|
||||
daily_cumulative_profit = trades_df.groupby('date').profit.sum().cumsum()
|
||||
|
||||
# Create the plot
|
||||
fig, ax1 = plt.subplots(figsize=(10, 6))
|
||||
|
||||
# Bar chart for daily profit composition
|
||||
daily_profit.plot(kind='bar', stacked=True, ax=ax1, color=['green', 'red'], zorder=2)
|
||||
ax1.set_ylabel('Daily Profit')
|
||||
ax1.set_xlabel('Date')
|
||||
#ax1.xaxis.set_major_locator(MaxNLocator(10))
|
||||
|
||||
# Line chart for cumulative daily profit
|
||||
#ax2 = ax1.twinx()
|
||||
#print(daily_cumulative_profit)
|
||||
#print(daily_cumulative_profit.index)
|
||||
#ax2.plot(daily_cumulative_profit.index, daily_cumulative_profit, color='yellow', linestyle='-', linewidth=2, zorder=3)
|
||||
#ax2.set_ylabel('Cumulative Profit')
|
||||
|
||||
# Setting the secondary y-axis range dynamically based on cumulative profit values
|
||||
# ax2.set_ylim(daily_cumulative_profit.min() - (daily_cumulative_profit.std() * 2),
|
||||
# daily_cumulative_profit.max() + (daily_cumulative_profit.std() * 2))
|
||||
|
||||
# Dark mode settings
|
||||
ax1.set_facecolor('black')
|
||||
# ax1.grid(True)
|
||||
#ax2.set_facecolor('black')
|
||||
fig.patch.set_facecolor('black')
|
||||
ax1.tick_params(colors='white')
|
||||
#ax2.tick_params(colors='white')
|
||||
# ax1.xaxis_date()
|
||||
# ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d.%m.', tz=zoneNY))
|
||||
ax1.tick_params(axis='x', rotation=45)
|
||||
|
||||
# Footer
|
||||
footer_text = f'Days Count: {days_cnt} | Parameters: {{"runner_ids": {len(runner_ids) if runner_ids is not None else None}, "batch_id": {batch_id}, "stream": {stream}}}'
|
||||
plt.figtext(0.5, 0.01, footer_text, wrap=True, horizontalalignment='center', fontsize=8, color='white')
|
||||
|
||||
# Save or stream the plot
|
||||
if stream:
|
||||
img_stream = BytesIO()
|
||||
plt.savefig(img_stream, format='png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
|
||||
img_stream.seek(0)
|
||||
plt.close(fig)
|
||||
return (0, img_stream)
|
||||
else:
|
||||
plt.savefig(f'{__name__}.png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
|
||||
plt.close(fig)
|
||||
return (0, None)
|
||||
|
||||
except Exception as e:
|
||||
# Detailed error reporting
|
||||
return (-1, str(e) + format_exc())
|
||||
# Local debugging
|
||||
if __name__ == '__main__':
|
||||
batch_id = "6f9b012c"
|
||||
res, val = daily_profit_distribution(batch_id=batch_id)
|
||||
print(res, val)
|
||||
@ -25,7 +25,7 @@ from io import BytesIO
|
||||
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
|
||||
|
||||
#LOSS and PROFIT without GRAPH
|
||||
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, rem_outliers:bool = False, file: str = "optimalcutoff.png",steps:int = 50):
|
||||
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, mode:str="absolute", rem_outliers:bool = False, z_score_threshold:int = 3, file: str = "optimalcutoff.png",steps:int = 50):
|
||||
|
||||
#TODO dopracovat drawdown a minimalni a maximalni profity nikoliv cumulovane, zamyslet se
|
||||
#TODO list of runner_ids
|
||||
@ -115,7 +115,11 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
|
||||
for trade in trades:
|
||||
if trade.status == TradeStatus.CLOSED and trade.exit_time:
|
||||
day = trade.exit_time.date()
|
||||
daily_cumulative_profits[day].append(trade.profit)
|
||||
if mode == "absolute":
|
||||
daily_cumulative_profits[day].append(trade.profit)
|
||||
#relative profit
|
||||
else:
|
||||
daily_cumulative_profits[day].append(trade.rel_profit)
|
||||
|
||||
for day in daily_cumulative_profits:
|
||||
daily_cumulative_profits[day] = np.cumsum(daily_cumulative_profits[day])
|
||||
@ -131,7 +135,7 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
|
||||
for day, profits in cumulative_profits.items():
|
||||
if len(profits) > 0:
|
||||
day_z_score = z_scores[list(cumulative_profits.keys()).index(day)]
|
||||
if abs(day_z_score) < 3: # Adjust threshold as needed
|
||||
if abs(day_z_score) < z_score_threshold: # Adjust threshold as needed
|
||||
filtered_profits[day] = profits
|
||||
return filtered_profits
|
||||
|
||||
@ -145,26 +149,25 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
|
||||
# profit_range = (0, max_profit) if max_profit > 0 else (0, 0)
|
||||
# loss_range = (min_profit, 0) if min_profit < 0 else (0, 0)
|
||||
|
||||
if mode == "absolute":
|
||||
# OPT2 Calculate profit_range and loss_range based on all cumulative profits
|
||||
all_cumulative_profits = np.concatenate([profits for profits in daily_cumulative_profits.values()])
|
||||
max_cumulative_profit = np.max(all_cumulative_profits)
|
||||
min_cumulative_profit = np.min(all_cumulative_profits)
|
||||
profit_range = (0, max_cumulative_profit) if max_cumulative_profit > 0 else (0, 0)
|
||||
loss_range = (min_cumulative_profit, 0) if min_cumulative_profit < 0 else (0, 0)
|
||||
all_cumulative_profits = np.concatenate([profits for profits in daily_cumulative_profits.values()])
|
||||
max_cumulative_profit = np.max(all_cumulative_profits)
|
||||
min_cumulative_profit = np.min(all_cumulative_profits)
|
||||
profit_range = (0, max_cumulative_profit) if max_cumulative_profit > 0 else (0, 0)
|
||||
loss_range = (min_cumulative_profit, 0) if min_cumulative_profit < 0 else (0, 0)
|
||||
else:
|
||||
#for relative - hardcoded
|
||||
profit_range = (0, 1) # Adjust based on your data
|
||||
loss_range = (-1, 0)
|
||||
|
||||
print("Calculated ranges", profit_range, loss_range)
|
||||
print("Ranges", profit_range, loss_range)
|
||||
|
||||
num_points = steps # Adjust for speed vs accuracy
|
||||
profit_cutoffs = np.linspace(*profit_range, num_points)
|
||||
loss_cutoffs = np.linspace(*loss_range, num_points)
|
||||
|
||||
# OPT 3Statically define ranges for loss and profit cutoffs
|
||||
# profit_range = (0, 1000) # Adjust based on your data
|
||||
# loss_range = (-1000, 0)
|
||||
# num_points = 20 # Adjust for speed vs accuracy
|
||||
|
||||
profit_cutoffs = np.linspace(*profit_range, num_points)
|
||||
loss_cutoffs = np.linspace(*loss_range, num_points)
|
||||
|
||||
total_profits_matrix = np.zeros((len(profit_cutoffs), len(loss_cutoffs)))
|
||||
|
||||
@ -207,12 +210,12 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
|
||||
}
|
||||
plt.rcParams.update(params)
|
||||
plt.figure(figsize=(10, 8))
|
||||
sns.heatmap(total_profits_matrix, xticklabels=np.rint(loss_cutoffs).astype(int), yticklabels=np.rint(profit_cutoffs).astype(int), cmap="viridis")
|
||||
sns.heatmap(total_profits_matrix, xticklabels=np.rint(loss_cutoffs).astype(int) if mode == "absolute" else np.around(loss_cutoffs, decimals=3), yticklabels=np.rint(profit_cutoffs).astype(int) if mode == "absolute" else np.around(profit_cutoffs, decimals=3), cmap="viridis")
|
||||
plt.xticks(rotation=90) # Rotate x-axis labels to be vertical
|
||||
plt.yticks(rotation=0) # Keep y-axis labels horizontal
|
||||
plt.gca().invert_yaxis()
|
||||
plt.gca().invert_xaxis()
|
||||
plt.suptitle(f"Total Profit for Combinations of Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
|
||||
plt.suptitle(f"Total {mode} Profit for Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
|
||||
plt.title(f"Optimal Profit Cutoff: {optimal_profit_cutoff:.2f}, Optimal Loss Cutoff: {optimal_loss_cutoff:.2f}, Max Profit: {max_profit:.2f}", fontsize=10)
|
||||
plt.xlabel("Loss Cutoff")
|
||||
plt.ylabel("Profit Cutoff")
|
||||
@ -236,8 +239,8 @@ if __name__ == '__main__':
|
||||
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
|
||||
# generate_trading_report_image(runner_ids=id_list)
|
||||
batch_id = "c76b4414"
|
||||
vstup = AnalyzerInputs(**params)
|
||||
res, val = find_optimal_cutoff(batch_id=batch_id, file="optimal_cutoff_vectorized.png",steps=20)
|
||||
#vstup = AnalyzerInputs(**params)
|
||||
res, val = find_optimal_cutoff(batch_id=batch_id, mode="relative", z_score_threshold=2, file="optimal_cutoff_vectorized.png",steps=20)
|
||||
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")
|
||||
|
||||
print(res,val)
|
||||
244
v2realbot/reporting/analyzer/find_optimal_cutoff_REL.py
Normal file
244
v2realbot/reporting/analyzer/find_optimal_cutoff_REL.py
Normal file
@ -0,0 +1,244 @@
|
||||
import matplotlib
|
||||
import matplotlib.dates as mdates
|
||||
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import v2realbot.controller.services as cs
|
||||
from rich import print
|
||||
from v2realbot.common.model import AnalyzerInputs
|
||||
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
|
||||
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
|
||||
from pathlib import Path
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
|
||||
from io import BytesIO
|
||||
from v2realbot.utils.historicals import get_historical_bars
|
||||
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
|
||||
from collections import defaultdict
|
||||
from scipy.stats import zscore
|
||||
from io import BytesIO
|
||||
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
|
||||
|
||||
#HEATMAPA pro RELATIVNI PROFIT - WIP
|
||||
#po dodelani dat do stejné funkce jen s parametrem typ
|
||||
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, rem_outliers:bool = False, z_score_threshold:int = 3, file: str = "optimalcutoff.png",steps:int = 50):
|
||||
|
||||
#TODO dopracovat drawdown a minimalni a maximalni profity nikoliv cumulovane, zamyslet se
|
||||
#TODO list of runner_ids
|
||||
#TODO pridelat na vytvoreni runnera a batche, samostatne REST API + na remove archrunnera
|
||||
|
||||
if runner_ids is None and batch_id is None:
|
||||
return -2, f"runner_id or batch_id must be present"
|
||||
|
||||
if batch_id is not None:
|
||||
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id)
|
||||
|
||||
if res != 0:
|
||||
print(f"no batch {batch_id} found")
|
||||
return -1, f"no batch {batch_id} found"
|
||||
|
||||
trades = []
|
||||
cnt_max = len(runner_ids)
|
||||
cnt = 0
|
||||
#zatim zjistujeme start a end z min a max dni - jelikoz muze byt i seznam runner_ids a nejenom batch
|
||||
end_date = None
|
||||
start_date = None
|
||||
for id in runner_ids:
|
||||
cnt += 1
|
||||
#get runner
|
||||
res, sada =cs.get_archived_runner_header_byID(id)
|
||||
if res != 0:
|
||||
print(f"no runner {id} found")
|
||||
return -1, f"no runner {id} found"
|
||||
|
||||
#print("archrunner")
|
||||
#print(sada)
|
||||
|
||||
if cnt == 1:
|
||||
start_date = sada.bt_from if sada.mode in [Mode.BT,Mode.PREP] else sada.started
|
||||
if cnt == cnt_max:
|
||||
end_date = sada.bt_to if sada.mode in [Mode.BT or Mode.PREP] else sada.stopped
|
||||
# Parse trades
|
||||
|
||||
trades_dicts = sada.metrics["prescr_trades"]
|
||||
|
||||
for trade_dict in trades_dicts:
|
||||
trade_dict['last_update'] = datetime.fromtimestamp(trade_dict.get('last_update')).astimezone(zoneNY) if trade_dict['last_update'] is not None else None
|
||||
trade_dict['entry_time'] = datetime.fromtimestamp(trade_dict.get('entry_time')).astimezone(zoneNY) if trade_dict['entry_time'] is not None else None
|
||||
trade_dict['exit_time'] = datetime.fromtimestamp(trade_dict.get('exit_time')).astimezone(zoneNY) if trade_dict['exit_time'] is not None else None
|
||||
trades.append(Trade(**trade_dict))
|
||||
|
||||
#print(trades)
|
||||
|
||||
# symbol = sada.symbol
|
||||
# #hour bars for backtested period
|
||||
# print(start_date,end_date)
|
||||
# bars= get_historical_bars(symbol, start_date, end_date, TimeFrame.Hour)
|
||||
# print("bars for given period",bars)
|
||||
# """Bars a dictionary with the following keys:
|
||||
# * high: A list of high prices
|
||||
# * low: A list of low prices
|
||||
# * volume: A list of volumes
|
||||
# * close: A list of close prices
|
||||
# * hlcc4: A list of HLCC4 indicators
|
||||
# * open: A list of open prices
|
||||
# * time: A list of times in UTC (ISO 8601 format)
|
||||
# * trades: A list of number of trades
|
||||
# * resolution: A list of resolutions (all set to 'D')
|
||||
# * confirmed: A list of booleans (all set to True)
|
||||
# * vwap: A list of VWAP indicator
|
||||
# * updated: A list of booleans (all set to True)
|
||||
# * index: A list of integers (from 0 to the length of the list of daily bars)
|
||||
# """
|
||||
|
||||
# Filter to only use trades with status 'CLOSED'
|
||||
closed_trades = [trade for trade in trades if trade.status == TradeStatus.CLOSED]
|
||||
|
||||
#print(closed_trades)
|
||||
|
||||
if len(closed_trades) == 0:
|
||||
return -1, "image generation no closed trades"
|
||||
|
||||
# # Group trades by date and calculate daily profits
|
||||
# trades_by_day = defaultdict(list)
|
||||
# for trade in trades:
|
||||
# if trade.status == TradeStatus.CLOSED and trade.exit_time:
|
||||
# trade_day = trade.exit_time.date()
|
||||
# trades_by_day[trade_day].append(trade)
|
||||
|
||||
# Precompute daily cumulative profits
|
||||
daily_cumulative_profits = defaultdict(list)
|
||||
for trade in trades:
|
||||
if trade.status == TradeStatus.CLOSED and trade.exit_time:
|
||||
day = trade.exit_time.date()
|
||||
daily_cumulative_profits[day].append(trade.profit)
|
||||
|
||||
for day in daily_cumulative_profits:
|
||||
daily_cumulative_profits[day] = np.cumsum(daily_cumulative_profits[day])
|
||||
|
||||
|
||||
if rem_outliers:
|
||||
# Remove outliers based on z-scores
|
||||
def remove_outliers(cumulative_profits):
|
||||
all_profits = [profit[-1] for profit in cumulative_profits.values() if len(profit) > 0]
|
||||
z_scores = zscore(all_profits)
|
||||
print(z_scores)
|
||||
filtered_profits = {}
|
||||
for day, profits in cumulative_profits.items():
|
||||
if len(profits) > 0:
|
||||
day_z_score = z_scores[list(cumulative_profits.keys()).index(day)]
|
||||
if abs(day_z_score) < z_score_threshold: # Adjust threshold as needed
|
||||
filtered_profits[day] = profits
|
||||
return filtered_profits
|
||||
|
||||
daily_cumulative_profits = remove_outliers(daily_cumulative_profits)
|
||||
|
||||
|
||||
# OPT1 Dynamically calculate profit_range and loss_range - based on eod daily profit
|
||||
# all_final_profits = [profits[-1] for profits in daily_cumulative_profits.values() if len(profits) > 0]
|
||||
# max_profit = max(all_final_profits)
|
||||
# min_profit = min(all_final_profits)
|
||||
# profit_range = (0, max_profit) if max_profit > 0 else (0, 0)
|
||||
# loss_range = (min_profit, 0) if min_profit < 0 else (0, 0)
|
||||
|
||||
# OPT2 Calculate profit_range and loss_range based on all cumulative profits
|
||||
all_cumulative_profits = np.concatenate([profits for profits in daily_cumulative_profits.values()])
|
||||
max_cumulative_profit = np.max(all_cumulative_profits)
|
||||
min_cumulative_profit = np.min(all_cumulative_profits)
|
||||
profit_range = (0, max_cumulative_profit) if max_cumulative_profit > 0 else (0, 0)
|
||||
loss_range = (min_cumulative_profit, 0) if min_cumulative_profit < 0 else (0, 0)
|
||||
|
||||
print("Calculated ranges", profit_range, loss_range)
|
||||
|
||||
num_points = steps # Adjust for speed vs accuracy
|
||||
profit_cutoffs = np.linspace(*profit_range, num_points)
|
||||
loss_cutoffs = np.linspace(*loss_range, num_points)
|
||||
|
||||
# OPT 3Statically define ranges for loss and profit cutoffs
|
||||
# profit_range = (0, 1000) # Adjust based on your data
|
||||
# loss_range = (-1000, 0)
|
||||
# num_points = 20 # Adjust for speed vs accuracy
|
||||
|
||||
profit_cutoffs = np.linspace(*profit_range, num_points)
|
||||
loss_cutoffs = np.linspace(*loss_range, num_points)
|
||||
|
||||
total_profits_matrix = np.zeros((len(profit_cutoffs), len(loss_cutoffs)))
|
||||
|
||||
for i, profit_cutoff in enumerate(profit_cutoffs):
|
||||
for j, loss_cutoff in enumerate(loss_cutoffs):
|
||||
total_profit = 0
|
||||
for daily_profit in daily_cumulative_profits.values():
|
||||
cutoff_index = np.where((daily_profit >= profit_cutoff) | (daily_profit <= loss_cutoff))[0]
|
||||
if cutoff_index.size > 0:
|
||||
total_profit += daily_profit[cutoff_index[0]]
|
||||
else:
|
||||
total_profit += daily_profit[-1] if daily_profit.size > 0 else 0
|
||||
total_profits_matrix[i, j] = total_profit
|
||||
|
||||
# Find the optimal combination
|
||||
optimal_idx = np.unravel_index(total_profits_matrix.argmax(), total_profits_matrix.shape)
|
||||
optimal_profit_cutoff = profit_cutoffs[optimal_idx[0]]
|
||||
optimal_loss_cutoff = loss_cutoffs[optimal_idx[1]]
|
||||
max_profit = total_profits_matrix[optimal_idx]
|
||||
|
||||
# Plotting
|
||||
# Setting up dark mode for the plots
|
||||
plt.style.use('dark_background')
|
||||
|
||||
# Optionally, you can further customize colors, labels, and axes
|
||||
params = {
|
||||
'axes.titlesize': 9,
|
||||
'axes.labelsize': 8,
|
||||
'xtick.labelsize': 9,
|
||||
'ytick.labelsize': 9,
|
||||
'axes.labelcolor': '#a9a9a9', #a1a3aa',
|
||||
'axes.facecolor': '#121722', #'#0e0e0e', #202020', # Dark background for plot area
|
||||
'axes.grid': False, # Turn off the grid globally
|
||||
'grid.color': 'gray', # If the grid is on, set grid line color
|
||||
'grid.linestyle': '--', # Grid line style
|
||||
'grid.linewidth': 1,
|
||||
'xtick.color': '#a9a9a9',
|
||||
'ytick.color': '#a9a9a9',
|
||||
'axes.edgecolor': '#a9a9a9'
|
||||
}
|
||||
plt.rcParams.update(params)
|
||||
plt.figure(figsize=(10, 8))
|
||||
sns.heatmap(total_profits_matrix, xticklabels=np.rint(loss_cutoffs).astype(int), yticklabels=np.rint(profit_cutoffs).astype(int), cmap="viridis")
|
||||
plt.xticks(rotation=90) # Rotate x-axis labels to be vertical
|
||||
plt.yticks(rotation=0) # Keep y-axis labels horizontal
|
||||
plt.gca().invert_yaxis()
|
||||
plt.gca().invert_xaxis()
|
||||
plt.suptitle(f"Total Profit for Combinations of Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
|
||||
plt.title(f"Optimal Profit Cutoff: {optimal_profit_cutoff:.2f}, Optimal Loss Cutoff: {optimal_loss_cutoff:.2f}, Max Profit: {max_profit:.2f}", fontsize=10)
|
||||
plt.xlabel("Loss Cutoff")
|
||||
plt.ylabel("Profit Cutoff")
|
||||
|
||||
if stream is False:
|
||||
plt.savefig(file)
|
||||
plt.close()
|
||||
print(f"Optimal Profit Cutoff(rem_outliers:{rem_outliers}): {optimal_profit_cutoff}, Optimal Loss Cutoff: {optimal_loss_cutoff}, Max Profit: {max_profit}")
|
||||
return 0, None
|
||||
else:
|
||||
# Return the image as a BytesIO stream
|
||||
img_stream = BytesIO()
|
||||
plt.savefig(img_stream, format='png')
|
||||
plt.close()
|
||||
img_stream.seek(0) # Rewind the stream to the beginning
|
||||
return 0, img_stream
|
||||
|
||||
# Example usage
|
||||
# trades = [list of Trade objects]
|
||||
if __name__ == '__main__':
|
||||
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
|
||||
# generate_trading_report_image(runner_ids=id_list)
|
||||
batch_id = "c76b4414"
|
||||
vstup = AnalyzerInputs(**params)
|
||||
res, val = find_optimal_cutoff(batch_id=batch_id, file="optimal_cutoff_vectorized.png",steps=20)
|
||||
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")
|
||||
|
||||
print(res,val)
|
||||
129
v2realbot/reporting/analyzer/summarize_trade_metrics.py
Normal file
129
v2realbot/reporting/analyzer/summarize_trade_metrics.py
Normal file
@ -0,0 +1,129 @@
|
||||
import matplotlib
|
||||
import matplotlib.dates as mdates
|
||||
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.ticker import MaxNLocator
|
||||
import seaborn as sns
|
||||
import pandas as pd
|
||||
from datetime import datetime
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import v2realbot.controller.services as cs
|
||||
from rich import print
|
||||
from v2realbot.common.model import AnalyzerInputs
|
||||
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
|
||||
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
|
||||
from pathlib import Path
|
||||
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
|
||||
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
|
||||
from io import BytesIO
|
||||
from v2realbot.utils.historicals import get_historical_bars
|
||||
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
|
||||
from collections import defaultdict
|
||||
from scipy.stats import zscore
|
||||
from io import BytesIO
|
||||
from v2realbot.reporting.load_trades import load_trades
|
||||
from typing import Tuple, Optional, List
|
||||
from traceback import format_exc
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def summarize_trade_metrics(runner_ids: list = None, batch_id: str = None, stream: bool = False):
|
||||
try:
|
||||
res, trades, days_cnt = load_trades(runner_ids, batch_id)
|
||||
if res != 0:
|
||||
raise Exception("Error in loading trades")
|
||||
|
||||
closed_trades = [trade for trade in trades if trade.status == "closed"]
|
||||
|
||||
# Calculate metrics
|
||||
metrics = calculate_metrics(closed_trades)
|
||||
|
||||
# Generate and process image
|
||||
img_stream = generate_table_image(metrics)
|
||||
|
||||
# Add footer to image
|
||||
#img_stream = add_footer_to_image(img_stream, days_cnt, runner_ids, batch_id, stream)
|
||||
|
||||
# Output handling
|
||||
if stream:
|
||||
img_stream.seek(0)
|
||||
return (0, img_stream)
|
||||
else:
|
||||
with open(f'summarize_trade_metrics_{batch_id}.png', 'wb') as f:
|
||||
f.write(img_stream.getbuffer())
|
||||
return (0, None)
|
||||
|
||||
except Exception as e:
|
||||
# Detailed error reporting
|
||||
return (-1, str(e)+format_exc())
|
||||
|
||||
def calculate_metrics(closed_trades):
|
||||
if not closed_trades:
|
||||
return {}
|
||||
|
||||
total_profit = sum(trade.profit for trade in closed_trades)
|
||||
max_profit = max(trade.profit for trade in closed_trades)
|
||||
min_profit = min(trade.profit for trade in closed_trades)
|
||||
total_trades = len(closed_trades)
|
||||
long_trades = sum(1 for trade in closed_trades if trade.direction == "long")
|
||||
short_trades = sum(1 for trade in closed_trades if trade.direction == "short")
|
||||
|
||||
# Daily Metrics Calculation
|
||||
trades_by_day = {}
|
||||
for trade in closed_trades:
|
||||
day = trade.entry_time.date() if trade.entry_time else None
|
||||
if day:
|
||||
trades_by_day.setdefault(day, []).append(trade)
|
||||
|
||||
avg_trades_per_day = sum(len(trades) for trades in trades_by_day.values()) / len(trades_by_day)
|
||||
avg_long_trades_per_day = sum(sum(1 for trade in trades if trade.direction == "long") for trades in trades_by_day.values()) / len(trades_by_day)
|
||||
avg_short_trades_per_day = sum(sum(1 for trade in trades if trade.direction == "short") for trades in trades_by_day.values()) / len(trades_by_day)
|
||||
|
||||
return {
|
||||
"Average Profit": total_profit / total_trades,
|
||||
"Maximum Profit": max_profit,
|
||||
"Minimum Profit": min_profit,
|
||||
"Total Number of Trades": total_trades,
|
||||
"Number of Long Trades": long_trades,
|
||||
"Number of Short Trades": short_trades,
|
||||
"Average Trades per Day": avg_trades_per_day,
|
||||
"Average Long Trades per Day": avg_long_trades_per_day,
|
||||
"Average Short Trades per Day": avg_short_trades_per_day
|
||||
}
|
||||
|
||||
def generate_table_image(metrics):
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
ax.axis('tight')
|
||||
ax.axis('off')
|
||||
|
||||
# Convert metrics to a 2D array where each row is a list
|
||||
cell_text = [[value] for value in metrics.values()]
|
||||
|
||||
# Convert dict keys to a list for row labels
|
||||
row_labels = list(metrics.keys())
|
||||
|
||||
ax.table(cellText=cell_text,
|
||||
rowLabels=row_labels,
|
||||
loc='center')
|
||||
|
||||
plt.subplots_adjust(left=0.2, top=0.8)
|
||||
plt.title("Trade Metrics Summary", color='white')
|
||||
|
||||
img_stream = BytesIO()
|
||||
plt.savefig(img_stream, format='png', bbox_inches='tight', pad_inches=0.1, facecolor='black')
|
||||
plt.close(fig)
|
||||
return img_stream
|
||||
|
||||
def add_footer_to_image(img_stream, days_cnt, runner_ids, batch_id, stream):
|
||||
# Implementation for adding a footer to the image
|
||||
# This can be done using PIL (Python Imaging Library) or other image processing libraries
|
||||
# For simplicity, I'm leaving this as a placeholder
|
||||
pass
|
||||
|
||||
# Local debugging
|
||||
if __name__ == '__main__':
|
||||
batch_id = "73ad1866"
|
||||
res, val = summarize_trade_metrics(batch_id=batch_id)
|
||||
print(res, val)
|
||||
@ -1,4 +1,3 @@
|
||||
import json
|
||||
import numpy as np
|
||||
import matplotlib
|
||||
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
|
||||
|
||||
@ -348,9 +348,9 @@ def generate_trading_report_image(runner_ids: list = None, batch_id: str = None,
|
||||
|
||||
#Plot 8 Cumulative profit - bud 1 den nebo vice dni + pridame pod to vyvoj ceny
|
||||
# Extract the closing prices and times
|
||||
closing_prices = bars['close']
|
||||
closing_prices = bars.get('close',[]) if bars is not None else []
|
||||
#times = bars['time'] # Assuming this is a list of pandas Timestamp objects
|
||||
times = pd.to_datetime(bars['time']) # Ensure this is a Pandas datetime series
|
||||
times = pd.to_datetime(bars['time']) if bars is not None else [] # Ensure this is a Pandas datetime series
|
||||
# # Plot the closing prices over time
|
||||
# axs[0, 4].plot(times, closing_prices, color='blue')
|
||||
# axs[0, 4].tick_params(axis='x', rotation=45) # Rotate date labels if necessar
|
||||
@ -372,7 +372,8 @@ def generate_trading_report_image(runner_ids: list = None, batch_id: str = None,
|
||||
ax2.tick_params(axis='y', labelcolor='orange')
|
||||
|
||||
# Set the limits for the x-axis to cover the full range of 'times'
|
||||
axs[1, 3].set_xlim(times.min(), times.max())
|
||||
if isinstance(times, pd.DatetimeIndex):
|
||||
axs[1, 3].set_xlim(times.min(), times.max())
|
||||
sns.lineplot(x=exit_times, y=cumulative_profits, ax=axs[1, 3], color='limegreen')
|
||||
axs[1, 3].scatter(max_profit_time, max_profit, color='green', label='Max Profit')
|
||||
axs[1, 3].scatter(min_profit_time, min_profit, color='red', label='Min Profit')
|
||||
|
||||
0
v2realbot/scheduler/__init__.py
Normal file
0
v2realbot/scheduler/__init__.py
Normal file
310
v2realbot/scheduler/ap_scheduler.py
Normal file
310
v2realbot/scheduler/ap_scheduler.py
Normal file
@ -0,0 +1,310 @@
|
||||
from uuid import UUID
|
||||
from typing import Any, List, Tuple
|
||||
from uuid import UUID, uuid4
|
||||
from v2realbot.enums.enums import Moddus, SchedulerStatus, RecordType, StartBarAlign, Mode, Account, OrderSide
|
||||
from v2realbot.common.model import RunManagerRecord, StrategyInstance, RunDay, StrategyInstance, Runner, RunRequest, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, RunArchiveChange, Bar, TradeEvent, TestList, Intervals, ConfigItem, InstantIndicator, DataTablesRequest, Market
|
||||
from v2realbot.utils.utils import validate_and_format_time, AttributeDict, zoneNY, zonePRG, safe_get, dict_replace_value, Store, parse_toml_string, json_serial, is_open_hours, send_to_telegram, concatenate_weekdays, transform_data
|
||||
from v2realbot.common.PrescribedTradeModel import Trade, TradeDirection, TradeStatus, TradeStoplossType
|
||||
from datetime import datetime
|
||||
from v2realbot.config import JOB_LOG_FILE, STRATVARS_UNCHANGEABLES, ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_LIVE_API_KEY, ACCOUNT1_LIVE_SECRET_KEY, DATA_DIR, MEDIA_DIRECTORY, RUNNER_DETAIL_DIRECTORY
|
||||
import numpy as np
|
||||
from rich import print as richprint
|
||||
import v2realbot.controller.services as cs
|
||||
import v2realbot.controller.run_manager as rm
|
||||
import v2realbot.scheduler.scheduler as sch
|
||||
from apscheduler.schedulers.background import BackgroundScheduler
|
||||
from apscheduler.triggers.cron import CronTrigger
|
||||
from apscheduler.job import Job
|
||||
|
||||
#NOTE zatím není podporováno spouštění strategie přes půlnoc - musí se dořešit weekday_filter
|
||||
#který je zatím jen jeden jak pro start_time tak stop_time - což by v případě strategií běžících
|
||||
#přes půlnoc nezafungovalo (stop by byl následující den a scheduler by jej nespustil)
|
||||
|
||||
def format_apscheduler_jobs(jobs: list[Job]) -> list[dict]:
|
||||
if not jobs:
|
||||
print("No scheduled jobs.")
|
||||
return
|
||||
|
||||
jobs_info = []
|
||||
|
||||
for job in jobs:
|
||||
job_info = {
|
||||
"Job ID": job.id,
|
||||
"Next Run Time": job.next_run_time,
|
||||
"Job Function": job.func.__name__,
|
||||
"Trigger": str(job.trigger),
|
||||
"Job Args": ', '.join(map(str, job.args)),
|
||||
"Job Kwargs": ', '.join(f"{k}={v}" for k, v in job.kwargs.items())
|
||||
}
|
||||
jobs_info.append(job_info)
|
||||
|
||||
return jobs_info
|
||||
|
||||
def get_day_of_week(weekdays_filter):
|
||||
if not weekdays_filter:
|
||||
return '*' # All days of the week
|
||||
return ','.join(map(str, weekdays_filter))
|
||||
|
||||
#initialize_jobs se spousti
|
||||
#- pri spusteni
|
||||
#- triggerovano z add/update a delete
|
||||
|
||||
#zatim cely refresh, v budoucnu upravime jen na zmene menene polozky - viz
|
||||
#https://chat.openai.com/c/2a1423ee-59df-47ff-b073-0c49ade51ed7
|
||||
|
||||
#pomocna funkce, ktera vraci strat_id, ktera jsou v scheduleru vickrat (logika pro ne se lisi)
|
||||
def stratin_occurences(all_records: list[RunManagerRecord]):
|
||||
# Count occurrences
|
||||
strat_id_counts = {}
|
||||
for record in all_records:
|
||||
if record.strat_id in strat_id_counts:
|
||||
strat_id_counts[record.strat_id] += 1
|
||||
else:
|
||||
strat_id_counts[record.strat_id] = 1
|
||||
|
||||
# Find strat_id values that appear twice or more
|
||||
repeated_strat_ids = [strat_id for strat_id, count in strat_id_counts.items() if count >= 2]
|
||||
|
||||
return 0, repeated_strat_ids
|
||||
|
||||
|
||||
def initialize_jobs(run_manager_records: RunManagerRecord = None):
|
||||
"""
|
||||
Initialize all scheduled jobs from RunManagerRecords with moddus = "schedule"
|
||||
Triggered on app init and update of table
|
||||
It deleted all "schedule_" prefixed jobs and schedule new ones base on runmanager table
|
||||
prefiX of "schedule_" in aps scheduler allows to distinguisd schedule types jobs and allows more jobs categories
|
||||
|
||||
Parameters
|
||||
----------
|
||||
run_manager_records : RunManagerRecord, optional
|
||||
RunManagerRecords to initialize the jobs from, by default None
|
||||
|
||||
Returns
|
||||
-------
|
||||
Tuple[int, Union[List[dict], str]]
|
||||
A tuple containing an error code and a message. If there is no error, the
|
||||
message will contain a list of dictionaries with information about the
|
||||
scheduled jobs, otherwise it will contain an error message.
|
||||
"""
|
||||
if run_manager_records is None:
|
||||
res, run_manager_records = rm.fetch_all_run_manager_records()
|
||||
if res < 0:
|
||||
err_msg= f"Error {res} fetching all runmanager records, error {run_manager_records}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
scheduled_jobs = scheduler.get_jobs()
|
||||
|
||||
#print(f"Current {len(scheduled_jobs)} scheduled jobs: {str(scheduled_jobs)}")
|
||||
for job in scheduled_jobs:
|
||||
if job.id.startswith("scheduler_"):
|
||||
scheduler.remove_job(job.id)
|
||||
record : RunManagerRecord = None
|
||||
for record in run_manager_records:
|
||||
if record.status == SchedulerStatus.ACTIVE and record.moddus == Moddus.SCHEDULE:
|
||||
day_of_week = get_day_of_week(record.weekdays_filter)
|
||||
|
||||
hour, minute = map(int, record.start_time.split(':'))
|
||||
start_trigger = CronTrigger(day_of_week=day_of_week, hour=hour, minute=minute,
|
||||
start_date=record.valid_from, end_date=record.valid_to, timezone=zoneNY)
|
||||
stop_hour, stop_minute = map(int, record.stop_time.split(':'))
|
||||
stop_trigger = CronTrigger(day_of_week=day_of_week, hour=stop_hour, minute=stop_minute,
|
||||
start_date=record.valid_from, end_date=record.valid_to, timezone=zoneNY)
|
||||
|
||||
# Schedule new jobs with the 'scheduler_' prefix
|
||||
scheduler.add_job(start_runman_record, start_trigger, id=f"scheduler_start_{record.id}", args=[record.id])
|
||||
scheduler.add_job(stop_runman_record, stop_trigger, id=f"scheduler_stop_{record.id}", args=[record.id])
|
||||
|
||||
#scheduler.add_job(print_hello, 'interval', seconds=10, id=
|
||||
# f"scheduler_testinterval")
|
||||
scheduled_jobs = scheduler.get_jobs()
|
||||
print(f"APS jobs refreshed ({len(scheduled_jobs)})")
|
||||
current_jobs_dict = format_apscheduler_jobs(scheduled_jobs)
|
||||
richprint(current_jobs_dict)
|
||||
return 0, current_jobs_dict
|
||||
|
||||
#zastresovaci funkce resici error handling a printing
|
||||
def start_runman_record(id: UUID, debug_date = None):
|
||||
record = None
|
||||
res, record, msg = _start_runman_record(id=id, debug_date=debug_date)
|
||||
|
||||
if record is not None:
|
||||
market_time_now = datetime.now().astimezone(zoneNY) if debug_date is None else debug_date
|
||||
record.last_processed = market_time_now
|
||||
formatted_date = market_time_now.strftime("%y.%m.%d %H:%M:%S")
|
||||
history_string = f"{formatted_date}"
|
||||
history_string += " STARTED" if res == 0 else "NOTE:" + msg if res == -1 else "ERROR:" + msg
|
||||
print(history_string)
|
||||
if record.history is None:
|
||||
record.history = history_string
|
||||
else:
|
||||
record.history += "\n" + history_string
|
||||
|
||||
rs, msg_rs = update_runman_record(record)
|
||||
if rs < 0:
|
||||
msg_rs = f"Error saving result to history: {msg_rs}"
|
||||
print(msg_rs)
|
||||
send_to_telegram(msg_rs)
|
||||
|
||||
|
||||
if res < -1:
|
||||
msg = f"START JOB: {id} ERROR\n" + msg
|
||||
send_to_telegram(msg)
|
||||
print(msg)
|
||||
else:
|
||||
print(f"START JOB: {id} FINISHED {res}")
|
||||
|
||||
|
||||
def update_runman_record(record: RunManagerRecord):
|
||||
#update record (nejspis jeste upravit - last_run a history)
|
||||
res, set = rm.update_run_manager_record(record.id, record)
|
||||
if res == 0:
|
||||
print(f"Record updated {set}")
|
||||
return 0, "OK"
|
||||
else:
|
||||
err_msg= f"STOP: Error updating {record.id} errir {set} with values {record}"
|
||||
return -2, err_msg#toto stopne zpracovani dalsich zaznamu pri chybe, zvazit continue
|
||||
|
||||
def stop_runman_record(id: UUID, debug_date = None):
|
||||
res, record, msg = _stop_runman_record(id=id, debug_date=debug_date)
|
||||
#results : 0 - ok, -1 not running/already running/not specific, -2 error
|
||||
|
||||
#report vzdy zapiseme do history, pokud je record not None, pripadna chyba se stala po dotazeni recordu
|
||||
if record is not None:
|
||||
market_time_now = datetime.now().astimezone(zoneNY) if debug_date is None else debug_date
|
||||
record.last_processed = market_time_now
|
||||
formatted_date = market_time_now.strftime("%y.%m.%d %H:%M:%S")
|
||||
history_string = f"{formatted_date}"
|
||||
history_string += " STOPPED" if res == 0 else "NOTE:" + msg if res == -1 else "ERROR:" + msg
|
||||
print(history_string)
|
||||
if record.history is None:
|
||||
record.history = history_string
|
||||
else:
|
||||
record.history += "\n" + history_string
|
||||
|
||||
rs, msg_rs = update_runman_record(record)
|
||||
if rs < 0:
|
||||
msg_rs = f"Error saving result to history: {msg_rs}"
|
||||
print(msg_rs)
|
||||
send_to_telegram(msg_rs)
|
||||
|
||||
if res < -1:
|
||||
msg = f"STOP JOB: {id} ERROR\n" + msg
|
||||
send_to_telegram(msg)
|
||||
print(msg)
|
||||
else:
|
||||
print(f"STOP JOB: {id} FINISHED")
|
||||
|
||||
#start function that is called from the job
|
||||
def _start_runman_record(id: UUID, debug_date = None):
|
||||
print(f"Start scheduled record {id}")
|
||||
|
||||
record : RunManagerRecord = None
|
||||
res, result = rm.fetch_run_manager_record_by_id(id)
|
||||
if res < 0:
|
||||
result = "Error fetching run manager record by id: " + str(id) + " Error: " + str(result)
|
||||
return res, record, result
|
||||
|
||||
record = result
|
||||
|
||||
if record.market == Market.US or record.market == Market.CRYPTO:
|
||||
res, sada = sch.get_todays_market_times(market=record.market, debug_date=debug_date)
|
||||
if res == 0:
|
||||
market_time_now, market_open_datetime, market_close_datetime = sada
|
||||
print(f"OPEN:{market_open_datetime} CLOSE:{market_close_datetime}")
|
||||
else:
|
||||
sada = f"Market {record.market} Error getting market times (CLOSED): " + str(sada)
|
||||
return res, record, sada
|
||||
else:
|
||||
print("Market type is unknown.")
|
||||
if cs.is_stratin_running(record.strat_id):
|
||||
return -1, record, f"Stratin {record.strat_id} is already running"
|
||||
|
||||
res, result = sch.run_scheduled_strategy(record)
|
||||
if res < 0:
|
||||
result = "Error running strategy: " + str(result)
|
||||
return res, record, result
|
||||
else:
|
||||
record.runner_id = UUID(result)
|
||||
|
||||
return 0, record, record.runner_id
|
||||
|
||||
#stop function that is called from the job
|
||||
def _stop_runman_record(id: UUID, debug_date = None):
|
||||
record = None
|
||||
#get all records
|
||||
print(f"Stopping record {id}")
|
||||
res, all_records = rm.fetch_all_run_manager_records()
|
||||
if res < 0:
|
||||
err_msg= f"Error {res} fetching all runmanager records, error {all_records}"
|
||||
return -2, record, err_msg
|
||||
|
||||
record : RunManagerRecord = None
|
||||
for rec in all_records:
|
||||
if rec.id == id:
|
||||
record = rec
|
||||
break
|
||||
|
||||
if record is None:
|
||||
return -2, record, f"Record id {id} not found"
|
||||
|
||||
#strat_ids that are repeated
|
||||
res, repeated_strat_ids = stratin_occurences(all_records)
|
||||
if res < 0:
|
||||
err_msg= f"Error {res} finding repeated strat_ids, error {repeated_strat_ids}"
|
||||
return -2, record, err_msg
|
||||
|
||||
if record.strat_running is True:
|
||||
#stopneme na zaklade record.runner_id
|
||||
#this code
|
||||
id_to_stop = record.runner_id
|
||||
|
||||
#pokud existuje manualne spustena stejna strategie a neni jich vic - je to jednoznacne - stopneme ji
|
||||
elif cs.is_stratin_running(record.strat_id) and record.strat_id not in repeated_strat_ids:
|
||||
#stopneme na zaklade record.strat_id
|
||||
id_to_stop = record.strat_id
|
||||
|
||||
else:
|
||||
msg = f"strategy {record.strat_id} not RUNNING or not distinctive (manually launched or two strat_ids in scheduler)"
|
||||
print(msg)
|
||||
return -1, record, msg
|
||||
|
||||
print(f"Requesting STOP {id_to_stop}")
|
||||
res, msg = cs.stop_runner(id=id_to_stop)
|
||||
if res < 0:
|
||||
msg = f"ERROR while STOPPING runner_id/strat_id {id_to_stop} {msg}"
|
||||
return -2, record, msg
|
||||
else:
|
||||
record.runner_id = None
|
||||
|
||||
return 0, record, "finished"
|
||||
|
||||
# Global scheduler instance
|
||||
scheduler = BackgroundScheduler(timezone=zoneNY)
|
||||
scheduler.start()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#use naive datetoime
|
||||
debug_date = None
|
||||
debug_date = datetime(2024, 2, 16, 9, 37, 0, 0)
|
||||
#debug_date = datetime(2024, 2, 16, 10, 30, 0, 0)
|
||||
#debug_date = datetime(2024, 2, 16, 16, 1, 0, 0)
|
||||
|
||||
id = UUID("bc4ec7d2-249b-4799-a02f-f1ce66f83d4a")
|
||||
|
||||
if debug_date is not None:
|
||||
# Localize the naive datetime object to the Eastern timezone
|
||||
debug_date = zoneNY.localize(debug_date)
|
||||
#debugdate formatted as string in format "23.12.2024 9:30"
|
||||
formatted_date = debug_date.strftime("%d.%m.%Y %H:%M")
|
||||
print("Scheduler.py NY time: ", formatted_date)
|
||||
print("ISoformat", debug_date.isoformat())
|
||||
|
||||
# res, result = start_runman_record(id=id, market = "US", debug_date = debug_date)
|
||||
# print(f"CALL FINISHED, with {debug_date} RESULT: {res}, {result}")
|
||||
|
||||
|
||||
res, result = stop_runman_record(id=id, debug_date = debug_date)
|
||||
print(f"CALL FINISHED, with {debug_date} RESULT: {res}, {result}")
|
||||
439
v2realbot/scheduler/scheduler.py
Normal file
439
v2realbot/scheduler/scheduler.py
Normal file
@ -0,0 +1,439 @@
|
||||
import json
|
||||
import datetime
|
||||
import v2realbot.controller.services as cs
|
||||
import v2realbot.controller.run_manager as rm
|
||||
from v2realbot.common.model import RunnerView, RunManagerRecord, StrategyInstance, Runner, RunRequest, Trade, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, Bar, RunArchiveChange, TestList, ConfigItem, InstantIndicator, DataTablesRequest, AnalyzerInputs, Market
|
||||
from uuid import uuid4, UUID
|
||||
from v2realbot.utils.utils import json_serial, send_to_telegram, zoneNY, zonePRG, zoneUTC, fetch_calendar_data
|
||||
from datetime import datetime, timedelta, time
|
||||
from traceback import format_exc
|
||||
from rich import print
|
||||
import requests
|
||||
from v2realbot.config import WEB_API_KEY
|
||||
|
||||
#Puvodni varainta schedulera, ktera mela bezet v pravidelnych intervalech
|
||||
#a spoustet scheduled items v RunManagerRecord
|
||||
#Nově bylo zrefaktorováno a využitý apscheduler - knihovna v pythonu
|
||||
#umožňující plánování jobů, tzn. nyní je každý scheduled záznam RunManagerRecord
|
||||
#naplanovany jako samostatni job a triggerován pouze jednou v daný čas pro start a stop
|
||||
#novy kod v aps_scheduler.py
|
||||
|
||||
def is_US_market_day(date):
|
||||
cal_dates = fetch_calendar_data(date, date)
|
||||
if len(cal_dates) == 0:
|
||||
print("Today is not a market day.")
|
||||
return False, cal_dates
|
||||
else:
|
||||
print("Market is open")
|
||||
return True, cal_dates
|
||||
|
||||
def get_todays_market_times(market, debug_date = None):
|
||||
try:
|
||||
if market == Market.US:
|
||||
#zjistit vsechny podminky - mozna loopovat - podminky jsou vlevo
|
||||
if debug_date is not None:
|
||||
nowNY = debug_date
|
||||
else:
|
||||
nowNY = datetime.now().astimezone(zoneNY)
|
||||
nowNY_date = nowNY.date()
|
||||
#is market open - nyni pouze US
|
||||
stat, calendar_dates = is_US_market_day(nowNY_date)
|
||||
if stat:
|
||||
#zatim podpora pouze main session
|
||||
#pouze main session
|
||||
market_open_datetime = zoneNY.localize(calendar_dates[0].open)
|
||||
market_close_datetime = zoneNY.localize(calendar_dates[0].close)
|
||||
return 0, (nowNY, market_open_datetime, market_close_datetime)
|
||||
else:
|
||||
return -1, "Market is closed."
|
||||
elif market == Market.CRYPTO:
|
||||
now_market_datetime = datetime.now().astimezone(zoneUTC)
|
||||
market_open_datetime = datetime.combine(datetime.now(), time.min)
|
||||
matket_close_datetime = datetime.combine(datetime.now(), time.max)
|
||||
return 0, (now_market_datetime, market_open_datetime, matket_close_datetime)
|
||||
else:
|
||||
return -1, "Market not supported"
|
||||
except Exception as e:
|
||||
err_msg = f"General error in {e} {format_exc()}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
def get_running_strategies():
|
||||
# Construct the URL for the local REST API endpoint on port 8000
|
||||
api_url = "http://localhost:8000/runners/"
|
||||
|
||||
# Headers for the request
|
||||
headers = {
|
||||
"X-API-Key": WEB_API_KEY
|
||||
}
|
||||
|
||||
try:
|
||||
# Make the GET request to the API with the headers
|
||||
response = requests.get(api_url, headers=headers)
|
||||
|
||||
# Check if the request was successful
|
||||
if response.status_code == 200:
|
||||
runners = response.json()
|
||||
print("Successfully fetched runners.")
|
||||
strat_ids = []
|
||||
ids = []
|
||||
|
||||
for runner_view in runners:
|
||||
strat_ids.append(UUID(runner_view["strat_id"]))
|
||||
ids.append(UUID(runner_view["id"]))
|
||||
|
||||
return 0, (strat_ids, ids)
|
||||
else:
|
||||
err_msg = f"Failed to fetch runners. Status Code: {response.status_code}, Response: {response.text}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
except requests.RequestException as e:
|
||||
err_msg = f"Request failed: {str(e)}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
def stop_strategy(runner_id):
|
||||
# Construct the URL for the local REST API endpoint on port 8000 #option 127.0.0.1
|
||||
api_url = f"http://localhost:8000/runners/{runner_id}/stop"
|
||||
|
||||
# Headers for the request
|
||||
headers = {
|
||||
"X-API-Key": WEB_API_KEY
|
||||
}
|
||||
|
||||
try:
|
||||
# Make the PUT request to the API with the headers
|
||||
response = requests.put(api_url, headers=headers)
|
||||
|
||||
# Check if the request was successful
|
||||
if response.status_code == 200:
|
||||
print(f"Runner/strat_id {runner_id} stopped successfully.")
|
||||
return 0, runner_id
|
||||
else:
|
||||
err_msg = f"Failed to stop runner {runner_id}. Status Code: {response.status_code}, Response: {response.text}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
except requests.RequestException as e:
|
||||
err_msg = f"Request failed: {str(e)}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
def fetch_stratin(stratin_id):
|
||||
# Construct the URL for the REST API endpoint
|
||||
api_url = f"http://localhost:8000/stratins/{stratin_id}"
|
||||
|
||||
# Headers for the request
|
||||
headers = {
|
||||
"X-API-Key": WEB_API_KEY
|
||||
}
|
||||
|
||||
try:
|
||||
# Make the GET request to the API with the headers
|
||||
response = requests.get(api_url, headers=headers)
|
||||
|
||||
# Check if the request was successful
|
||||
if response.status_code == 200:
|
||||
# Parse the response as a StrategyInstance object
|
||||
strategy_instance = response.json()
|
||||
#strategy_instance = response # Assuming the response is in JSON format
|
||||
print(f"StrategyInstance fetched: {stratin_id}")
|
||||
return 0, strategy_instance
|
||||
else:
|
||||
err_msg = f"Failed to fetch StrategyInstance {stratin_id}. " \
|
||||
f"Status Code: {response.status_code}, Response: {response.text}"
|
||||
print(err_msg)
|
||||
return -1, err_msg
|
||||
except requests.RequestException as e:
|
||||
err_msg = f"Request failed: {str(e)}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
#return list of strat_ids that are in the scheduled table more than once
|
||||
#TODO toto je workaround dokud nebude canndidates logika ze selectu nyni presunuta na fetch_all_run_manager_records a logiku v pythonu
|
||||
def stratin_occurences():
|
||||
#get all records
|
||||
res, all_records = rm.fetch_all_run_manager_records()
|
||||
if res < 0:
|
||||
err_msg= f"Error {res} fetching all runmanager records, error {all_records}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
# Count occurrences
|
||||
strat_id_counts = {}
|
||||
for record in all_records:
|
||||
if record.strat_id in strat_id_counts:
|
||||
strat_id_counts[record.strat_id] += 1
|
||||
else:
|
||||
strat_id_counts[record.strat_id] = 1
|
||||
|
||||
# Find strat_id values that appear twice or more
|
||||
repeated_strat_ids = [strat_id for strat_id, count in strat_id_counts.items() if count >= 2]
|
||||
|
||||
return 0, repeated_strat_ids
|
||||
|
||||
# in case debug_date is not provided, it takes current time of the given market
|
||||
#V budoucnu zde bude loopa pro kazdy obsluhovany market, nyni pouze US
|
||||
def startstop_scheduled(debug_date = None, market = "US") -> tuple[int, str]:
|
||||
res, sada = get_todays_market_times(market=market, debug_date=debug_date)
|
||||
if res == 0:
|
||||
market_time_now, market_open_datetime, market_close_datetime = sada
|
||||
print(f"OPEN:{market_open_datetime} CLOSE:{market_close_datetime}")
|
||||
else:
|
||||
return res, sada
|
||||
|
||||
#its market day
|
||||
res, candidates = rm.fetch_scheduled_candidates_for_start_and_stop(market_time_now, market)
|
||||
if res == 0:
|
||||
print(f"Candidates fetched, start: {len(candidates['start'])} stop: {len(candidates['stop'])}")
|
||||
else:
|
||||
return res, candidates
|
||||
|
||||
if candidates is None or (len(candidates["start"]) == 0 and len(candidates["stop"]) == 0):
|
||||
return -1, f"No candidates found for {market_time_now} and {market}"
|
||||
#do budoucna, az budou runnery persistovane, bude stav kazde strategie v RunManagerRecord
|
||||
#get current runners (mozna optimalizace, fetch per each section start/stop)
|
||||
res, sada = get_running_strategies()
|
||||
if res < 0:
|
||||
err_msg= f"Error fetching running strategies, error {sada}"
|
||||
print(err_msg)
|
||||
send_to_telegram(err_msg)
|
||||
return -2, err_msg
|
||||
strat_ids_running, runnerids_running = sada
|
||||
print(f"Currently running: {len(strat_ids_running)}")
|
||||
|
||||
#IERATE over START CAndidates
|
||||
record: RunManagerRecord = None
|
||||
print(f"START - Looping over {len(candidates['start'])} candidates")
|
||||
for record in candidates['start']:
|
||||
print("Candidate: ", record)
|
||||
|
||||
if record.weekdays_filter is not None and len(record.weekdays_filter) > 0:
|
||||
curr_weekday = market_time_now.weekday()
|
||||
if curr_weekday not in record.weekdays_filter:
|
||||
print(f"Strategy {record.strat_id} not started, today{curr_weekday} not in weekdays filter {record.weekdays_filter}")
|
||||
continue
|
||||
#one strat_id can run only once at time
|
||||
if record.strat_id in strat_ids_running:
|
||||
msg = f"strategy already {record.strat_id} is running"
|
||||
continue
|
||||
|
||||
res, result = run_scheduled_strategy(record)
|
||||
if res < 0:
|
||||
send_to_telegram(result)
|
||||
print(result)
|
||||
else:
|
||||
record.runner_id = UUID(result)
|
||||
strat_ids_running.append(record.strat_id)
|
||||
runnerids_running.append(record.runner_id)
|
||||
|
||||
record.last_processed = market_time_now
|
||||
history_string = f"{market_time_now.isoformat()} strategy STARTED" if res == 0 else "ERROR:" + result
|
||||
|
||||
if record.history is None:
|
||||
record.history = history_string
|
||||
else:
|
||||
record.history += "\n" + history_string
|
||||
|
||||
#update record (nejspis jeste upravit - last_run a history)
|
||||
res, set = rm.update_run_manager_record(record.id, record)
|
||||
if res == 0:
|
||||
print(f"Record in db updated {set}")
|
||||
#return 0, set
|
||||
else:
|
||||
err_msg= f"Error updating {record.id} errir {set} with values {record}. Process stopped."
|
||||
print(err_msg)
|
||||
send_to_telegram(msg)
|
||||
return -2, err_msg #toto stopne dalsi zpracovani, zvazit continue
|
||||
|
||||
#if stop candidates, then fetch existing runners
|
||||
stop_candidates_cnt = len(candidates['stop'])
|
||||
|
||||
if stop_candidates_cnt > 0:
|
||||
res, repeated_strat_ids = stratin_occurences()
|
||||
if res < 0:
|
||||
err_msg= f"Error {res} in callin stratin_occurences, error {repeated_strat_ids}"
|
||||
send_to_telegram(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
#dalsi OPEN ISSUE pri STOPu:
|
||||
# má STOP_TIME strategie záviset na dni v týdnu? jinými slovy pokud je strategie
|
||||
# nastavená na 9:30-10 v pondělí. Mohu si ji manuálně spustit v úterý a systém ji neshodí?
|
||||
# Zatím to je postaveno, že předpis určuje okno, kde má strategie běžet a mimo tuto dobu bude
|
||||
# automaticky shozena. Druhou možností je potom, že scheduler si striktně hlídá jen strategie,
|
||||
# které byly jím zapnuté a ostatní jsou mu putna. V tomto případě pak např. později ručně spuštěmá
|
||||
# strategie (např. kvůli opravě bugu) bude scheduler ignorovat a nevypne ji i kdyz je nastavena na vypnuti.
|
||||
# Dopady: weekdays pri stopu a stratin_occurences
|
||||
|
||||
#IERATE over STOP Candidates
|
||||
record: RunManagerRecord = None
|
||||
print(f"STOP - Looping over {stop_candidates_cnt} candidates")
|
||||
for record in candidates['stop']:
|
||||
print("Candidate: ", record)
|
||||
|
||||
#Tento šelmostroj se stratin_occurences tu je jen proto, aby scheduler zafungoval i na manualne spustene strategie (ve vetsine pripadu)
|
||||
# Při stopu evaluace kandidátů na vypnutí
|
||||
# - pokud mám v schedules jen 1 strategii s konkretnim strat_id, můžu jet přes strat_id - bezici strategie s timto strat_id bude vypnuta (i manualne startnuta)
|
||||
# - pokud jich mám více, musím jet přes runnery uložené v schedules
|
||||
# (v tomto případě je omezení: ručně pouštěna strategii nebude automaticky
|
||||
# stopnuta - systém neví, která to je)
|
||||
|
||||
#zjistime zda strategie bezi
|
||||
|
||||
#strategii mame v scheduleru pouze jednou, muzeme pouzit strat_id
|
||||
if record.strat_id not in repeated_strat_ids:
|
||||
if record.strat_id not in strat_ids_running:
|
||||
msg = f"strategy {record.strat_id} NOT RUNNING"
|
||||
print(msg)
|
||||
continue
|
||||
else:
|
||||
#do stop
|
||||
id_to_stop = record.strat_id
|
||||
#strat_id je pouzito v scheduleru vicekrat, musime pouzit runner_id
|
||||
elif record.runner_id is not None and record.runner_id in runnerids_running:
|
||||
#do stop
|
||||
id_to_stop = record.runner_id
|
||||
#no distinctive condition
|
||||
else:
|
||||
#dont do anything
|
||||
print(f"strategy {record.strat_id} not RUNNING or not distinctive (manually launched or two strat_ids in scheduler)")
|
||||
continue
|
||||
|
||||
print(f"Requesting STOP {id_to_stop}")
|
||||
res, msg = stop_strategy(id_to_stop)
|
||||
if res < 0:
|
||||
msg = f"ERROR while STOPPING runner_id/strat_id {id_to_stop} {msg}"
|
||||
send_to_telegram(msg)
|
||||
else:
|
||||
if record.strat_id in strat_ids_running:
|
||||
strat_ids_running.remove(record.strat_id)
|
||||
if record.runner_id is not None and record.runner_id in runnerids_running:
|
||||
runnerids_running.remove(record.runner_id)
|
||||
record.runner_id = None
|
||||
|
||||
record.last_processed = market_time_now
|
||||
history_string = f"{market_time_now.isoformat()} strategy {record.strat_id}" + "STOPPED" if res == 0 else "ERROR:" + msg
|
||||
if record.history is None:
|
||||
record.history = history_string
|
||||
else:
|
||||
record.history += "\n" + history_string
|
||||
|
||||
#update record (nejspis jeste upravit - last_run a history)
|
||||
res, set = rm.update_run_manager_record(record.id, record)
|
||||
if res == 0:
|
||||
print(f"Record updated {set}")
|
||||
else:
|
||||
err_msg= f"Error updating {record.id} errir {set} with values {record}"
|
||||
print(err_msg)
|
||||
send_to_telegram(err_msg)
|
||||
return -2, err_msg#toto stopne zpracovani dalsich zaznamu pri chybe, zvazit continue
|
||||
|
||||
return 0, "DONE"
|
||||
|
||||
##LIVE or PAPER
|
||||
#tato verze využívate REST API, po predelani jobu na apscheduler uz muze vyuzivat prime volani cs.run_stratin
|
||||
#TODO predelat
|
||||
def run_scheduled_strategy(record: RunManagerRecord):
|
||||
#get strat_json
|
||||
sada : StrategyInstance = None
|
||||
res, sada = fetch_stratin(record.strat_id)
|
||||
if res == 0:
|
||||
# #TODO toto overit jestli je stejny vystup jako JS
|
||||
# print("Sada", sada)
|
||||
# #strategy_instance = StrategyInstance(**sada)
|
||||
strat_json = json.dumps(sada, default=json_serial)
|
||||
# Replace escaped characters with their unescaped versions so it matches the JS output
|
||||
#strat_json = strat_json.replace('\\r\\n', '\r\n')
|
||||
#print(f"Strat_json fetched, {strat_json}")
|
||||
else:
|
||||
err_msg= f"Strategy {record.strat_id} not found. ERROR {sada}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
#TBD mozna customizovat NOTE
|
||||
|
||||
#pokud neni batch_id pak vyhgeneruju a ulozim do db
|
||||
# if record.batch_id is None:
|
||||
# record.batch_id = str(uuid4())[:8]
|
||||
|
||||
api_url = f"http://localhost:8000/stratins/{record.strat_id}/run"
|
||||
|
||||
# Initialize RunRequest with record values
|
||||
runReq = {
|
||||
"id": str(record.strat_id),
|
||||
"strat_json": strat_json,
|
||||
"mode": record.mode,
|
||||
"account": record.account,
|
||||
"ilog_save": record.ilog_save,
|
||||
"weekdays_filter": record.weekdays_filter,
|
||||
"test_batch_id": record.testlist_id,
|
||||
"batch_id": record.batch_id or str(uuid4())[:8],
|
||||
"bt_from": record.bt_from.isoformat() if record.bt_from else None,
|
||||
"bt_to": record.bt_to.isoformat() if record.bt_to else None,
|
||||
"note": f"SCHED {record.start_time}-" + record.stop_time if record.stop_time else "" + record.note if record.note is not None else ""
|
||||
}
|
||||
|
||||
# Headers for the request
|
||||
headers = {
|
||||
"X-API-Key": WEB_API_KEY
|
||||
}
|
||||
|
||||
try:
|
||||
# Make the PUT request to the API with the headers
|
||||
response = requests.put(api_url, json=runReq, headers=headers)
|
||||
|
||||
# Check if the request was successful
|
||||
if response.status_code == 200:
|
||||
print(f"Strategy {record.strat_id} started successfully.")
|
||||
return 0, response.json()
|
||||
else:
|
||||
err_msg = f"Strategy {record.strat_id} NOT started. Status Code: {response.status_code}, Response: {response.text}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
except requests.RequestException as e:
|
||||
err_msg = f"Request failed: {str(e)}"
|
||||
print(err_msg)
|
||||
return -2, err_msg
|
||||
|
||||
# #intiializae RunRequest with record values
|
||||
# runReq = RunRequest(id=record.strat_id,
|
||||
# strat_json=strat_json,
|
||||
# mode=record.mode,
|
||||
# account=record.account,
|
||||
# ilog_save=record.ilog_save,
|
||||
# weekdays_filter=record.weekdays_filter,
|
||||
# test_batch_id=record.testlist_id,
|
||||
# batch_id=record.batch_id,
|
||||
# bt_from=record.bt_from,
|
||||
# bt_to=record.bt_to,
|
||||
# note=record.note)
|
||||
# #call rest API to start strategy
|
||||
|
||||
|
||||
# #start strategy
|
||||
# res, sada = cs.run_stratin(id=record.strat_id, runReq=runReq, inter_batch_params=None)
|
||||
# if res == 0:
|
||||
# print(f"Strategy {sada} started")
|
||||
# return 0, sada
|
||||
# else:
|
||||
# err_msg= f"Strategy {record.strat_id} NOT started. ERROR {sada}"
|
||||
# print(err_msg)
|
||||
# return -2, err_msg
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#use naive datetoime
|
||||
debug_date = None
|
||||
debug_date = datetime(2024, 2, 16, 16, 37, 0, 0)
|
||||
#debug_date = datetime(2024, 2, 16, 10, 30, 0, 0)
|
||||
#debug_date = datetime(2024, 2, 16, 16, 1, 0, 0)
|
||||
|
||||
if debug_date is not None:
|
||||
# Localize the naive datetime object to the Eastern timezone
|
||||
debug_date = zoneNY.localize(debug_date)
|
||||
#debugdate formatted as string in format "23.12.2024 9:30"
|
||||
formatted_date = debug_date.strftime("%d.%m.%Y %H:%M")
|
||||
print("Scheduler.py NY time: ", formatted_date)
|
||||
print("ISoformat", debug_date.isoformat())
|
||||
|
||||
res, msg = startstop_scheduled(debug_date=debug_date, market="US")
|
||||
print(f"CALL FINISHED, with {debug_date} RESULT: {res}, {msg}")
|
||||
@ -26,7 +26,7 @@
|
||||
|
||||
|
||||
<!-- <script src="https://code.jquery.com/jquery-3.6.4.js" integrity="sha256-a9jBBRygX1Bh5lt8GZjXDzyOB+bWve9EiO7tROUtj/E=" crossorigin="anonymous"></script> -->
|
||||
<script src="/static/js/libs/jquery-3.6.4.js" integrity="sha256-a9jBBRygX1Bh5lt8GZjXDzyOB+bWve9EiO7tROUtj/E=" crossorigin="anonymous"></script>
|
||||
<script src="/static/js/libs/jquery-3.6.4.js"></script>
|
||||
|
||||
<!-- <script src="https://cdn.datatables.net/1.13.4/js/jquery.dataTables.min.js"></script> -->
|
||||
<script src="/static/js/libs/jquery.dataTables.min.js"></script>
|
||||
@ -57,7 +57,7 @@
|
||||
<!-- <script src="https://code.jquery.com/jquery-3.5.1.js"></script> -->
|
||||
|
||||
|
||||
<link rel="stylesheet" href="/static/main.css?v=1.05">
|
||||
<link rel="stylesheet" href="/static/main.css?v=1.07">
|
||||
<!-- <script src="https://cdnjs.cloudflare.com/ajax/libs/mousetrap/1.4.6/mousetrap.min.js"></script> -->
|
||||
|
||||
<script src="/static/js/libs/mousetrap.min.js"></script>
|
||||
@ -225,7 +225,7 @@
|
||||
<label>Minsize: <input type="number" id="trade-minsize" autocomplete="off" value="100"/></label>
|
||||
<label>Filter: C,O,4,B,7,V,P<input type="text" id="trade-filter" autocomplete="off"/></label>
|
||||
<button id="bt-trade" class="btn btn-outline-success btn-sm">Show</button></div>
|
||||
<div id="trades-data" style="display: none" class="collapse show">
|
||||
<div id="trades-data" style="display: none" class="collapse show collapsible-section">
|
||||
<table id="trades-data-table" class="dataTable no-footer" style="width:300px; border-color: #dce1dc; display:contents"></table>
|
||||
<!-- <table id="trades-data-table" class="dataTable no-footer" style="width: 300px;display: contents;"></table> -->
|
||||
</div>
|
||||
@ -234,7 +234,7 @@
|
||||
<label data-bs-toggle="collapse" data-bs-target="#runner-table-inner">
|
||||
<h4>Running Strategies</h4>
|
||||
</label>
|
||||
<div id="runner-table-inner" class="collapse show" style="width:58%">
|
||||
<div id="runner-table-inner" class="collapse show collapsible-section" style="width:58%">
|
||||
<div id="controls">
|
||||
<label>API-KEY: <input type="password" id="api-key" autocomplete="off"/></label>
|
||||
<button onclick="store_api_key(event)" id="bt-store" class="btn btn-outline-success btn-sm">Store</button>
|
||||
@ -298,12 +298,258 @@
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<!-- SCHEDULER -->
|
||||
<div id="runmanager-table" class="flex-items">
|
||||
<label data-bs-toggle="collapse" data-bs-target="#runmanager-table-inner">
|
||||
<h4>Run Manager</h4>
|
||||
</label>
|
||||
<div id="runmanager-table-inner" class="collapse show collapsible-section" style="width:58%">
|
||||
<div id="controls">
|
||||
<button title="Create new" id="button_add_sched" class="btn btn-outline-success btn-sm">Add</button>
|
||||
<button title="Edit selected" id="button_edit_sched" class="btn btn-outline-success btn-sm">Edit</button>
|
||||
<button title="Delete selected" id="button_delete_sched" class="btn btn-outline-success btn-sm">Delete</button>
|
||||
<button title="History" id="button_history_sched" class="btn btn-outline-success btn-sm">History</button>
|
||||
<button title="Refresh" id="button_refresh_sched" class="btn btn-outline-success btn-sm">Refresh</button>
|
||||
<div class="btn-group btn-group-toggle" data-toggle="buttons">
|
||||
<!-- <input type="radio" class="btn-check" name="filterOptions" id="filterNone" autocomplete="off" checked>
|
||||
<label class="btn btn-outline-primary" for="filterNone">All</label> -->
|
||||
|
||||
<input type="radio" class="btn-check" name="filterOptions" id="filterSchedule" autocomplete="off" checked>
|
||||
<label class="btn btn-outline-primary" for="filterSchedule">Scheduled</label>
|
||||
|
||||
<input type="radio" class="btn-check" name="filterOptions" id="filterQueue" autocomplete="off">
|
||||
<label class="btn btn-outline-primary" for="filterQueue">Queued</label>
|
||||
</div>
|
||||
</div>
|
||||
<table id="runmanagerTable" class="table-striped table dataTable" style="width:100%; border-color: #dce1dc;">
|
||||
<thead>
|
||||
<tr>
|
||||
<th>Id</th>
|
||||
<th>Type</th>
|
||||
<th>Strat_Id</th>
|
||||
<th>Symbol</th>
|
||||
<th>Account</th>
|
||||
<th>Mode</th>
|
||||
<th>Note</th>
|
||||
<th>Log</th>
|
||||
<th>BT_from</th>
|
||||
<th>BT_to</th>
|
||||
<th>days</th>
|
||||
<th>batch_id</th>
|
||||
<th>start</th>
|
||||
<th>stop</th>
|
||||
<th>status</th>
|
||||
<th>last_processed</th>
|
||||
<th>history</th>
|
||||
<th>valid_from</th>
|
||||
<th>valid_to</th>
|
||||
<th>testlist_id</th>
|
||||
<th>Running</th>
|
||||
<th>RunnerId</th>
|
||||
<th>Market</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody></tbody>
|
||||
</table>
|
||||
</div>
|
||||
<div id="delModalRunmanager" class="modal fade">
|
||||
<div class="modal-dialog">
|
||||
<form method="post" id="delFormRunmanager">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title"><i class="fa fa-plus"></i> Delete record</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="delidrunmanager" class="form-label">Id</label>
|
||||
<!-- <div id="listofids"></div> -->
|
||||
<input type="text" class="form-control" id="delidrunmanager" name="id" placeholder="id" readonly>
|
||||
</div>
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<input type="submit" name="delete" id="deleterunmanager" class="btn btn-primary" value="Delete" />
|
||||
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
</div>
|
||||
</div>
|
||||
<div id="addeditModalRunmanager" class="modal fade">
|
||||
<div class="modal-dialog">
|
||||
<form method="post" id="addeditFormRunmanager">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title_run"><i class="fa fa-plus"></i> Add scheduler record</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="runmanid" class="form-label">Record Id</label>
|
||||
<input type="text" class="form-control" id="runmanid" name="id" placeholder="auto generated id" readonly>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="runmanmoddus" class="form-label">Type</label>
|
||||
<input type="text" class="form-control" id="runmanmoddus" name="moddus" readonly>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="runmanstrat_id" class="form-label">StrategyId</label>
|
||||
<input type="text" class="form-control" id="runmanstrat_id" name="strat_id" placeholder="strategy id">
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="runmode" class="form-label">Mode</label>
|
||||
<select class="form-control" id="runmanmode" name="mode"><option value="paper">paper</option><option value="live">live</option><option value="backtest">backtest</option><option value="prep">prep</option></select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="account" class="form-label">Account</label>
|
||||
<select class="form-control" id="runmanaccount" name="account"><option value="ACCOUNT1">ACCOUNT1</option><option value="ACCOUNT2">ACCOUNT2</option></select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="status" class="form-label">Status</label>
|
||||
<select class="form-control" id="runmanstatus" name="status"><option value="active">active</option><option value="suspended">suspended</option></select>
|
||||
</div>
|
||||
<div class="form-group" id="runmanstart_time_div">
|
||||
<label for="start" class="form-label">Start Time</label>
|
||||
<input type="text" class="form-control" id="runmanstart_time" name="start_time" value="9:30" step="1">
|
||||
</div>
|
||||
<div class="form-group" id="runmanstop_time_div">
|
||||
<label for="stop" class="form-label">Stop Time</label>
|
||||
<input type="text-local" class="form-control" id="runmanstop_time" name="stop_time" value="16:00" step="1">
|
||||
</div>
|
||||
|
||||
<!-- pro budouci queueing backtestu -->
|
||||
<div class="form-group" id="runmanbt_from_div">
|
||||
<label for="bt_from" class="form-label">bt_from</label>
|
||||
<input type="datetime-local" class="form-control" id="runmanbt_from" name="bt_from" placeholder="2023-04-06T09:00:00Z" step="1">
|
||||
</div>
|
||||
<div class="form-group" id="runmanbt_to_div">
|
||||
<label for="bt_to" class="form-label">bt_to</label>
|
||||
<input type="datetime-local" class="form-control" id="runmanbt_to" name="bt_to" placeholder="2023-04-06T09:00:00Z" step="1">
|
||||
</div>
|
||||
<div class="form-group" id="runmantestlist_id_div">
|
||||
<label for="test_batch_id" class="form-label">Test List ID</label>
|
||||
<input type="text" class="form-control" id="runmantestlist_id" name="testlist_id" placeholder="test intervals ID">
|
||||
</div>
|
||||
<!-- pro budouci queueing backtestu -->
|
||||
|
||||
<!-- Initial Checkbox for Enabling Weekday Selection -->
|
||||
<div class="form-group">
|
||||
<div style="display:inline-flex">
|
||||
<label for="runman_enable_weekdays" class="form-label">Limit to Weekdays</label>
|
||||
<input type="checkbox" class="form-check" id="runman_enable_weekdays" name="enable_weekdays" aria-label="Enable Weekday Selection">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<!-- Weekday Checkboxes -->
|
||||
<div class="form-group weekday-checkboxes" style="display:none;">
|
||||
<!-- <label class="form-label">Select Weekdays:</label> -->
|
||||
<div>
|
||||
<input type="checkbox" id="monday" name="weekdays" value="monday">
|
||||
<label for="monday">Monday</label>
|
||||
</div>
|
||||
<div>
|
||||
<input type="checkbox" id="tuesday" name="weekdays" value="tuesday">
|
||||
<label for="tuesday">Tuesday</label>
|
||||
</div>
|
||||
<div>
|
||||
<input type="checkbox" id="wednesday" name="weekdays" value="wednesday">
|
||||
<label for="wednesday">Wednesday</label>
|
||||
</div>
|
||||
<div>
|
||||
<input type="checkbox" id="thursday" name="weekdays" value="thursday">
|
||||
<label for="thursday">Thursday</label>
|
||||
</div>
|
||||
<div>
|
||||
<input type="checkbox" id="friday" name="weekdays" value="friday">
|
||||
<label for="friday">Friday</label>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="form-group" id="runmanvalid_from_div">
|
||||
<label for="runmanvalid_from" class="form-label">Valid from</label>
|
||||
<input type="datetime-local" class="form-control" id="runmanvalid_from" name="valid_from" placeholder="2023-04-06T09:00:00Z" step="1">
|
||||
</div>
|
||||
<div class="form-group" id="runmanvalid_to_div">
|
||||
<label for="runmanvalid_to" class="form-label">Valid to</label>
|
||||
<input type="datetime-local" class="form-control" id="runmanvalid_to" name="valid_to" placeholder="2023-04-06T09:00:00Z" step="1">
|
||||
</div>
|
||||
|
||||
<div class="form-group">
|
||||
<label for="batch_id" class="form-label">Batch ID</label>
|
||||
<input type="text" class="form-control" id="runmanbatch_id" name="batch_id" placeholder="batch id">
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<div style="display:inline-flex">
|
||||
<label for="ilog_save" class="form-label">Enable logs</label>
|
||||
<input type="checkbox" class="form-check" id="runmanilog_save" name="ilog_save" aria-label="Enable logs">
|
||||
</div>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="note" class="form-label">note</label>
|
||||
<textarea class="form-control" rows="1" id="runmannote" name="note"></textarea>
|
||||
</div>
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<input type="hidden" name="runner_id" id="runmanrunner_id" />
|
||||
<input type="hidden" name="history" id="runmanhistory" />
|
||||
<input type="hidden" name="last_processed" id="runmanlast_processed" />
|
||||
<!--<input type="hidden" name="action" id="action" value="" />-->
|
||||
<input type="submit" id="runmanagersubmit" class="btn btn-primary" value="Add" />
|
||||
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
</div>
|
||||
</div>
|
||||
<div id="historyModalRunmanager" class="modal fade">
|
||||
<div class="modal-dialog">
|
||||
<form method="post" id="historyModalRunmanagerForm">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title"><i class="fa fa-plus"></i>View History</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="RunmanId" class="form-label">Id</label>
|
||||
<input type="text" class="form-control" id="RunmanId" name="id" placeholder="id" readonly>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="Runmanlast_processed" class="form-label">Last processed</label>
|
||||
<input type="text" class="form-control" id="Runmanlast_processed" name="last_processed" readonly>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="Runmanhistory" class="form-label">History</label>
|
||||
<textarea class="form-control" rows="8" id="Runmanhistory" name="history" readonly></textarea>
|
||||
</div>
|
||||
<!-- <div class="form-group">
|
||||
<label for="metrics" class="form-label">Metrics</label>
|
||||
<textarea class="form-control" rows="8" id="metrics" name="metrics"></textarea>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="stratvars" class="form-label">Stratvars</label>
|
||||
<textarea class="form-control" rows="8" id="editstratvars" name="stratvars"></textarea>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="strat_json" class="form-label">Strat JSON</label>
|
||||
<textarea class="form-control" rows="6" id="editstratjson" name="stratjson"></textarea>
|
||||
</div> -->
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<!-- <input type="submit" name="delete" id="editarchive" class="btn btn-primary" value="Edit" /> -->
|
||||
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="archive-table" class="flex-items">
|
||||
<label data-bs-toggle="collapse" data-bs-target="#archive-table-inner">
|
||||
<h4>Past Runs</h4>
|
||||
</label>
|
||||
<div id="archive-table-inner" class="collapse show" style="width:58%">
|
||||
<div id="archive-table-inner" class="collapse show collapsible-section" style="width:58%">
|
||||
<!-- <div id="archive-chart">
|
||||
<div id="chartArchive" style="position: relative;"></div>
|
||||
<div class="legend" id="legendArchive"></div>
|
||||
@ -316,6 +562,7 @@
|
||||
<button id="button_refresh" class="refresh btn btn-outline-success btn-sm">Refresh</button>
|
||||
<button title="Compare selected days" id="button_compare_arch" class="refresh btn btn-outline-success btn-sm">Compare</button>
|
||||
<button title="Run selected day" id="button_runagain_arch" class="refresh btn btn-outline-success btn-sm">Run Again(r)</button>
|
||||
<button title="Runs LIVE/PAPER in BT mode with same dates" id="button_runbt_arch" class="refresh btn btn-outline-success btn-sm">Backtest same period</button>
|
||||
<button title="Select all days on the page" id="button_selpage" class="btn btn-outline-success btn-sm">Select all</button>
|
||||
<button title="Export selected days to XML" id="button_export_xml" class="btn btn-outline-success btn-sm">Export xml</button>
|
||||
<button title="Export selected days to CSV" id="button_export_csv" class="btn btn-outline-success btn-sm">Export csv</button>
|
||||
@ -350,7 +597,9 @@
|
||||
<th>pos</th>
|
||||
<th>avgp</th>
|
||||
<th>metrics</th>
|
||||
<th>batchid</th>
|
||||
<th>batchid</th>
|
||||
<th>batchprofit</th>
|
||||
<th>batchcount</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody></tbody>
|
||||
@ -403,27 +652,34 @@
|
||||
</div>
|
||||
<div id="logModal" class="modal fade" style="--bs-modal-width: 825px;">
|
||||
<div class="modal-dialog">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title"><i class="fa fa-plus"></i>Log</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title"><i class="fa fa-plus"></i>Log</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="logFileSelect" class="form-label">Select Log File</label>
|
||||
<select class="form-select" id="logFileSelect" aria-label="Log file select">
|
||||
<!-- <option selected>Select a log file</option> -->
|
||||
<option value="strat.log" selected>strat.log</option>
|
||||
<option value="job.log">job.log</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="logHere" class="form-label">Log</label>
|
||||
<div id="log-container">
|
||||
<pre id="log-content"></pre>
|
||||
</div>
|
||||
<!-- <input type="text" class="form-control" id="delidarchive" name="delidarchive" placeholder="id"> -->
|
||||
</div>
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<button type="button" class="btn btn-primary" id="logRefreshButton" value="Refresh">Refresh</button>
|
||||
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
|
||||
<div class="form-group mt-3">
|
||||
<label for="logHere" class="form-label">Log</label>
|
||||
<div id="log-container"style="height:700px;border:1px solid black;">
|
||||
<!-- <pre id="log-content"></pre> -->
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<button type="button" class="btn btn-primary" id="logRefreshButton" value="Refresh">Refresh</button>
|
||||
<button type="button" class="btn btn-secondary" id="closeLogModal" data-bs-dismiss="modal">Close</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="editModalArchive" class="modal fade">
|
||||
<div class="modal-dialog">
|
||||
<form method="post" id="editFormArchive">
|
||||
@ -449,6 +705,10 @@
|
||||
<label for="stratvars" class="form-label">Stratvars</label>
|
||||
<textarea class="form-control" rows="8" id="editstratvars" name="stratvars"></textarea>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="stratvars" class="form-label">Transferables</label>
|
||||
<textarea class="form-control" rows="8" id="edittransferables" name="stratvars"></textarea>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="strat_json" class="form-label">Strat JSON</label>
|
||||
<textarea class="form-control" rows="6" id="editstratjson" name="stratjson"></textarea>
|
||||
@ -467,7 +727,7 @@
|
||||
<label data-bs-toggle="collapse" data-bs-target="#stratin-table-inner">
|
||||
<h4>Strategies</h4>
|
||||
</label>
|
||||
<div id="stratin-table-inner" class="collapse show" style="width:58%">
|
||||
<div id="stratin-table-inner" class="collapse show collapsible-section" style="width:40%">
|
||||
<div id="controlsStratin">
|
||||
<button id="button_add" class="btn btn-outline-success btn-sm">Add</button>
|
||||
<button id="button_add_json" class="btn btn-outline-success btn-sm">Add JSON</button>
|
||||
@ -696,8 +956,8 @@
|
||||
<input type="text" class="form-control" id="runid" name="runid" placeholder="id" readonly>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="mode" class="form-label">Mode</label>
|
||||
<select class="form-control" id="mode" name="mode"><option value="paper">paper</option><option value="live">live</option><option value="backtest">backtest</option><option value="prep">prep</option></select>
|
||||
<label for="runmode" class="form-label">Mode</label>
|
||||
<select class="form-control" id="runmode" name="mode"><option value="paper">paper</option><option value="live">live</option><option value="backtest">backtest</option><option value="prep">prep</option></select>
|
||||
</div>
|
||||
<div class="form-group">
|
||||
<label for="account" class="form-label">Account</label>
|
||||
@ -785,11 +1045,51 @@
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="MLContainer" class="flex-items">
|
||||
<label data-bs-toggle="collapse" data-bs-target="#MLContainerInner" aria-expanded="true">
|
||||
<h4>Model Configuration</h4>
|
||||
</label>
|
||||
<div id="MLContainerInner" class="collapse show collapsible-section">
|
||||
<button id="ml-refresh-button" class="btn btn-outline-success btn-sm">Refresh Models</button>
|
||||
<div id="model-list" class="scrollable-div"></div>
|
||||
<!-- Upload Form -->
|
||||
<form id="upload-form" enctype="multipart/form-data" style="width: 262px;">
|
||||
<input type="file" class="form-control form-control-sm" id="model-file" name="model-file">
|
||||
<button type="submit" class="btn btn-outline-success btn-sm">Upload Model</button>
|
||||
</form>
|
||||
</div>
|
||||
<!-- modal na inspekci -->
|
||||
<div id="modelModal" class="modal fade" style="--bs-modal-width: 900px;">
|
||||
<div class="modal-dialog">
|
||||
<div class="modal-content">
|
||||
<div class="modal-header">
|
||||
<h4 class="modal-title_json"><i class="fa fa-plus"></i>Model metadata</h4>
|
||||
<button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
|
||||
</div>
|
||||
<div class="modal-body">
|
||||
<div class="form-group">
|
||||
<label for="metadata-container" id="metadata_label" class="form-label">Metadata</label>
|
||||
<div id="metadata-container" style="height:700px;border:1px solid black;">
|
||||
<div id="metadata-container-info"></div>
|
||||
<div id="toml-editor-container"></div>
|
||||
<div id="python-editor-container"></div>
|
||||
</div>
|
||||
<!-- <div id="metadata-container" style="height:200px;border:1px solid black;"></div> -->
|
||||
</div>
|
||||
</div>
|
||||
<div class="modal-footer">
|
||||
<button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="TestListContainer" class="flex-items">
|
||||
<label data-bs-toggle="collapse" data-bs-target="#TestListInner" aria-expanded="true">
|
||||
<h4>TestList Configuration</h4>
|
||||
</label>
|
||||
<div id="TestListInner" class="collapse show">
|
||||
<div id="TestListInner" class="collapse show collapsible-section">
|
||||
<div>
|
||||
<form id="recordFormTestList">
|
||||
<input type="hidden" id="recordId">
|
||||
@ -823,7 +1123,7 @@
|
||||
<label data-bs-toggle="collapse" data-bs-target="#configInner" aria-expanded="true">
|
||||
<h4>Config</h4>
|
||||
</label>
|
||||
<div id="configInner" class="collapse show">
|
||||
<div id="configInner" class="collapse show collapsible-section">
|
||||
<form id="configForm">
|
||||
<label for="configList">Select an Item:</label>
|
||||
<select id="configList"></select><br><br>
|
||||
@ -847,37 +1147,43 @@
|
||||
<BR>
|
||||
</div>
|
||||
</div>
|
||||
<script src="/static/js/config.js"></script>
|
||||
<script src="/static/js/config.js?v=1.04"></script>
|
||||
<!-- tady zacina polska docasna lokalizace -->
|
||||
<!-- <script type="text/javascript" src="https://unpkg.com/lightweight-charts/dist/lightweight-charts.standalone.production.js"></script> -->
|
||||
<script type="text/javascript" src="/static/js/libs/lightweightcharts/lightweight-charts.standalone.production410.js"></script>
|
||||
<script src="/static/js/dynamicbuttons.js"></script>
|
||||
<script type="text/javascript" src="/static/js/libs/lightweightcharts/lightweight-charts.standalone.production413.js"></script>
|
||||
<script src="/static/js/dynamicbuttons.js?v=1.05"></script>
|
||||
|
||||
|
||||
<!-- <script src="/static/js/utils.js?v=1.01"></script> -->
|
||||
<!-- new util structure and exports and colors -->
|
||||
<script src="/static/js/utils/utils.js?v=1.01"></script>
|
||||
<script src="/static/js/utils/exports.js?v=1.01"></script>
|
||||
<script src="/static/js/utils/colors.js?v=1.01"></script>
|
||||
<script src="/static/js/utils/utils.js?v=1.06"></script>
|
||||
<script src="/static/js/utils/exports.js?v=1.04"></script>
|
||||
<script src="/static/js/utils/colors.js?v=1.04"></script>
|
||||
|
||||
|
||||
<script src="/static/js/instantindicators.js?v=1.01"></script>
|
||||
<script src="/static/js/archivechart.js?v=1.03"></script>
|
||||
<script src="/static/js/instantindicators.js?v=1.04"></script>
|
||||
<script src="/static/js/archivechart.js?v=1.05"></script>
|
||||
|
||||
<!-- <script src="/static/js/archivetables.js?v=1.05"></script> -->
|
||||
<!-- archiveTables split into separate files -->
|
||||
<script src="/static/js/tables/archivetable/init.js?v=1.03"></script>
|
||||
<script src="/static/js/tables/archivetable/functions.js?v=1.03"></script>
|
||||
<script src="/static/js/tables/archivetable/modals.js?v=1.03"></script>
|
||||
<script src="/static/js/tables/archivetable/handlers.js?v=1.03"></script>
|
||||
<script src="/static/js/tables/archivetable/init.js?v=1.12"></script>
|
||||
<script src="/static/js/tables/archivetable/functions.js?v=1.11"></script>
|
||||
<script src="/static/js/tables/archivetable/modals.js?v=1.07"></script>
|
||||
<script src="/static/js/tables/archivetable/handlers.js?v=1.11"></script>
|
||||
|
||||
<!-- Runmanager functionality -->
|
||||
<script src="/static/js/tables/runmanager/init.js?v=1.1"></script>
|
||||
<script src="/static/js/tables/runmanager/functions.js?v=1.08"></script>
|
||||
<script src="/static/js/tables/runmanager/modals.js?v=1.07"></script>
|
||||
<script src="/static/js/tables/runmanager/handlers.js?v=1.07"></script>
|
||||
|
||||
|
||||
<script src="/static/js/livewebsocket.js?v=1.01"></script>
|
||||
<script src="/static/js/realtimechart.js?v=1.01"></script>
|
||||
<script src="/static/js/mytables.js?v=1.01"></script>
|
||||
<script src="/static/js/livewebsocket.js?v=1.02"></script>
|
||||
<script src="/static/js/realtimechart.js?v=1.02"></script>
|
||||
<script src="/static/js/mytables.js?v=1.03"></script>
|
||||
<script src="/static/js/testlist.js?v=1.01"></script>
|
||||
<script src="/static/js/ml.js?v=1.02"></script>
|
||||
<script src="/static/js/common.js?v=1.01"></script>
|
||||
<script src="/static/js/configform.js?v=1.01"></script>
|
||||
|
||||
<!-- <script src="/static/js/scheduler.js?v=1.01"></script> -->
|
||||
</body>
|
||||
</html>
|
||||
@ -16,6 +16,7 @@ var slLine = []
|
||||
//input array object bars = { high: [1,2,3], time: [1,2,3], close: [2,2,2]...}
|
||||
//output array [{ time: 111, open: 11, high: 33, low: 333, close: 333},..]
|
||||
function transform_data(data) {
|
||||
//console.log(data)
|
||||
var SHOW_SL_DIGITS = get_from_config("SHOW_SL_DIGITS", true)
|
||||
transformed = []
|
||||
//get basic bars, volume and vvwap
|
||||
@ -174,7 +175,9 @@ function transform_data(data) {
|
||||
data.trades.forEach((trade, index, array) => {
|
||||
obj = {};
|
||||
a_markers = {}
|
||||
timestamp = Date.parse(trade.order.filled_at)/1000
|
||||
//tady z predchozi verze muze byt string (pak je to date v iso) a nebo v novejsi uz mame timestamp
|
||||
|
||||
timestamp = (typeof trade.order.filled_at === 'string') ? Date.parse(trade.order.filled_at)/1000 : trade.order.filled_at
|
||||
//light chart neumi vice zaznamu ve stejny cas
|
||||
//protoze v BT se muze stat vice tradu v jeden cas, testujeme stejne hodnoty a pripadne pricteme jednu ms
|
||||
//tradu s jednim casem muze byt za sebou vic, proto iterator
|
||||
@ -266,9 +269,10 @@ function transform_data(data) {
|
||||
markers.push(marker)
|
||||
|
||||
//prevedeme iso data na timestampy
|
||||
trade.order.submitted_at = Date.parse(trade.order.submitted_at)/1000
|
||||
trade.order.filled_at = Date.parse(trade.order.filled_at)/1000
|
||||
trade.timestamp = Date.parse(trade.order.timestamp)/1000
|
||||
//open bud zde je iso string (predchozi verze) nebo rovnou float - podporime oboji
|
||||
trade.order.submitted_at = (typeof trade.order.submitted_at === 'string') ? Date.parse(trade.order.submitted_at)/1000 : trade.order.submitted_at
|
||||
trade.order.filled_at = (typeof trade.order.filled_at === 'string') ? Date.parse(trade.order.filled_at)/1000 : trade.order.filled_at
|
||||
trade.timestamp = (typeof trade.timestamp === 'string') ? Date.parse(trade.order.timestamp)/1000 : trade.order.timestamp
|
||||
tradeDetails.set(timestamp, trade)
|
||||
|
||||
//line pro buy/sell markery
|
||||
@ -363,6 +367,7 @@ function prepare_data(archRunner, timeframe_amount, timeframe_unit, archivedRunn
|
||||
|
||||
//pomocna sluzba pro naplneni indListu a charting indikatoru
|
||||
function chart_indicators(data, visible, offset) {
|
||||
console.log(data)
|
||||
//console.log("indikatory", JSON.stringify(data.indicators,null,2))
|
||||
//podobne v livewebsokcets.js - dat do jedne funkce
|
||||
if (data.hasOwnProperty("indicators")) {
|
||||
@ -381,10 +386,13 @@ function chart_indicators(data, visible, offset) {
|
||||
//console.log("ZPETNE STRINGIFIED", TOML.stringify(TOML.parse(data.archRecord.stratvars_toml), {newline: '\n'}))
|
||||
//indicatory
|
||||
//console.log("indicatory TOML", stratvars_toml.stratvars.indicators)
|
||||
|
||||
indId = 1
|
||||
var multiOutsCnf = {}
|
||||
indicatorList.forEach((indicators, index, array) => {
|
||||
|
||||
//var indicators = data.indicators
|
||||
//index 0 - bar indikatory
|
||||
//index 1 - tick based indikatory
|
||||
//if there are indicators it means there must be at least two keys (time which is always present)
|
||||
if (Object.keys(indicators).length > 1) {
|
||||
for (const [key, value] of Object.entries(indicators)) {
|
||||
@ -394,6 +402,7 @@ function chart_indicators(data, visible, offset) {
|
||||
//pokud je v nastaveni scale, pouzijeme tu
|
||||
var scale = null
|
||||
var instant = null
|
||||
var returns = null
|
||||
//console.log(key)
|
||||
//zkusime zda nejde o instantni indikator z arch runneru
|
||||
if ((data.ext_data !== null) && (data.ext_data.instantindicators)) {
|
||||
@ -403,6 +412,7 @@ function chart_indicators(data, visible, offset) {
|
||||
cnf = instantIndicator.toml
|
||||
scale = TOML.parse(cnf).scale
|
||||
instant = 1
|
||||
returns = TOML.parse(cnf).returns
|
||||
}
|
||||
}
|
||||
//pokud nenalezeno, pak bereme standard
|
||||
@ -411,6 +421,7 @@ function chart_indicators(data, visible, offset) {
|
||||
if (stratvars_toml.stratvars.indicators[key]) {
|
||||
cnf = "#[stratvars.indicators."+key+"]"+TOML.stringify(stratvars_toml.stratvars.indicators[key], {newline: '\n'})
|
||||
scale = stratvars_toml.stratvars.indicators[key].scale
|
||||
returns = stratvars_toml.stratvars.indicators[key].returns
|
||||
}
|
||||
}
|
||||
// //kontriolujeme v addedInds
|
||||
@ -430,13 +441,31 @@ function chart_indicators(data, visible, offset) {
|
||||
// }
|
||||
// }
|
||||
|
||||
//pro multioutput childs dotahneme scale z parenta
|
||||
if (multiOutsCnf.hasOwnProperty(key)) {
|
||||
scale = multiOutsCnf[key];
|
||||
}
|
||||
|
||||
//initialize indicator and store reference to array
|
||||
var obj = {name: key, series: null, cnf:cnf, instant: instant}
|
||||
var obj = {name: key, type: index, series: null, cnf:cnf, instant: instant, returns: returns, indId:indId++}
|
||||
|
||||
//start
|
||||
//pokud jde o multioutput parenta ukladam scale parenta pro children
|
||||
//varianty - scale je jeden, ukladam jako scale pro vsechny parenty
|
||||
// - scale je list - pouzijeme pro kazdy output scale v listu na stejnem indexu jako output
|
||||
if (returns) {
|
||||
returns.forEach((returned, index, array) => {
|
||||
//
|
||||
if (Array.isArray(scale)) {
|
||||
multiOutsCnf[returned] = scale[index]
|
||||
}
|
||||
else {
|
||||
multiOutsCnf[returned] = scale
|
||||
}
|
||||
})
|
||||
} //start
|
||||
//console.log(key)
|
||||
//get configuation of indicator to display
|
||||
conf = get_ind_config(key)
|
||||
conf = get_ind_config(key, index)
|
||||
|
||||
//pokud neni v configuraci - zobrazujeme defaultne
|
||||
|
||||
@ -591,7 +620,12 @@ function chart_indicators(data, visible, offset) {
|
||||
//console.log("true",active?active:conf.display)
|
||||
active = true
|
||||
}
|
||||
else {active = false}
|
||||
else {active = false}
|
||||
|
||||
//pro main s multioutputem nezobrazujeme
|
||||
if (returns) {
|
||||
active = false
|
||||
}
|
||||
//add options
|
||||
obj.series.applyOptions({
|
||||
visible: active?active:visible,
|
||||
@ -615,19 +649,67 @@ function chart_indicators(data, visible, offset) {
|
||||
})
|
||||
}
|
||||
|
||||
indList.sort((a, b) => {
|
||||
const nameA = a.name.toUpperCase(); // ignore upper and lowercase
|
||||
const nameB = b.name.toUpperCase(); // ignore upper and lowercase
|
||||
if (nameA < nameB) {
|
||||
return -1;
|
||||
}
|
||||
if (nameA > nameB) {
|
||||
return 1;
|
||||
}
|
||||
// names must be equal
|
||||
return 0;
|
||||
//sort by type first (0-bar,1-cbar inds) and then alphabetically
|
||||
// indList.sort((a, b) => {
|
||||
// if (a.type !== b.type) {
|
||||
// return a.type - b.type;
|
||||
// } else {
|
||||
// let nameA = a.name.toUpperCase();
|
||||
// let nameB = b.name.toUpperCase();
|
||||
// if (nameA < nameB) {
|
||||
// return -1;
|
||||
// } else if (nameA > nameB) {
|
||||
// return 1;
|
||||
// } else {
|
||||
// // If uppercase names are equal, compare original names to prioritize uppercase
|
||||
// return a.name < b.name ? -1 : 1;
|
||||
// }
|
||||
// }
|
||||
// });
|
||||
|
||||
//SORTING tak, aby multioutputs atributy byly vzdy na konci dane skupiny (tzn. v zobrazeni jsou zpracovany svými rodiči)
|
||||
// Step 1: Create a Set of all names in 'returns' arrays
|
||||
const namesInReturns = new Set();
|
||||
indList.forEach(item => {
|
||||
if (Array.isArray(item.returns)) {
|
||||
item.returns.forEach(name => namesInReturns.add(name));
|
||||
}
|
||||
});
|
||||
|
||||
// Step 2: Custom sort function
|
||||
indList.sort((a, b) => {
|
||||
// First, sort by 'type'
|
||||
if (a.type !== b.type) {
|
||||
return a.type - b.type;
|
||||
}
|
||||
|
||||
// For items with the same 'type', apply secondary sorting
|
||||
const aInReturns = namesInReturns.has(a.name);
|
||||
const bInReturns = namesInReturns.has(b.name);
|
||||
|
||||
if (aInReturns && !bInReturns) return 1; // 'a' goes after 'b'
|
||||
if (!aInReturns && bInReturns) return -1; // 'a' goes before 'b'
|
||||
|
||||
// If both or neither are in 'returns', sort alphabetically by 'name'
|
||||
return a.name.localeCompare(b.name);
|
||||
});
|
||||
|
||||
|
||||
|
||||
//puvodni funkce
|
||||
// indList.sort((a, b) => {
|
||||
// const nameA = a.name.toUpperCase(); // ignore upper and lowercase
|
||||
// const nameB = b.name.toUpperCase(); // ignore upper and lowercase
|
||||
// if (nameA < nameB) {
|
||||
// return -1;
|
||||
// }
|
||||
// if (nameA > nameB) {
|
||||
// return 1;
|
||||
// }
|
||||
// // names must be equal
|
||||
// return 0;
|
||||
|
||||
// });
|
||||
//vwap a volume zatim jen v detailnim zobrazeni
|
||||
if (!offset) {
|
||||
//display vwap and volume
|
||||
|
||||
@ -638,7 +638,7 @@ $(document).ready(function () {
|
||||
else{
|
||||
$('#editstratvars').val(JSON.stringify(row.stratvars,null,2));
|
||||
}
|
||||
|
||||
$('#edittransferables').val(JSON.stringify(row.transferables,null,2));
|
||||
|
||||
$('#editstratjson').val(row.strat_json);
|
||||
}
|
||||
|
||||
30
v2realbot/static/js/common.js
Normal file
30
v2realbot/static/js/common.js
Normal file
@ -0,0 +1,30 @@
|
||||
$(document).ready(function() {
|
||||
// Function to handle the state of each collapsible section
|
||||
function handleCollapsibleState() {
|
||||
$('.collapsible-section').each(function() {
|
||||
var sectionId = $(this).attr('id');
|
||||
var isExpanded = localStorage.getItem(sectionId + 'State') === 'true';
|
||||
|
||||
if (isExpanded) {
|
||||
$(this).addClass('show');
|
||||
$(this).attr('aria-expanded', 'true');
|
||||
} else {
|
||||
$(this).removeClass('show');
|
||||
$(this).attr('aria-expanded', 'false');
|
||||
}
|
||||
|
||||
// Set up event listener for the toggle
|
||||
$('[data-bs-target="#' + sectionId + '"]').click(function() {
|
||||
setTimeout(function() { // Set timeout to wait for the toggle action to complete
|
||||
var currentState = $('#' + sectionId).hasClass('show');
|
||||
localStorage.setItem(sectionId + 'State', currentState);
|
||||
}, 350); // Adjust timeout as needed based on the collapse animation duration
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
// Apply the function to all elements with the 'collapsible-section' class
|
||||
handleCollapsibleState();
|
||||
|
||||
// Additional functionality such as fetching models (as previously defined)
|
||||
});
|
||||
@ -276,7 +276,7 @@ function populate_dynamic_buttons(targetElement, config, batch_id = null) {
|
||||
// Stop the event from propagating to parent elements
|
||||
event.stopPropagation();
|
||||
// Check if the clicked element or any of its parents is a submit button
|
||||
if (!$(event.target).closest('input[type="submit"], button[type="submit"]').length) {
|
||||
if (!$(event.target).closest('input[type="submit"], button[type="submit"], input[type="checkbox"]').length) {
|
||||
// Stop the event from propagating to parent elements
|
||||
event.preventDefault();
|
||||
}
|
||||
|
||||
@ -56,13 +56,16 @@ $(document).ready(function () {
|
||||
|
||||
if (archData.indicators[0][indname]) {
|
||||
delete archData.indicators[0][indname]
|
||||
//delete addedInds[indname]
|
||||
//get active resolution
|
||||
const element = document.querySelector('.switcher-active-item');
|
||||
resolution = element.textContent
|
||||
//console.log("aktivni rozliseni", resolution)
|
||||
switch_to_interval(resolution, archData)
|
||||
}
|
||||
else if (archData.indicators[1][indname]) {
|
||||
delete archData.indicators[1][indname]
|
||||
}
|
||||
//delete addedInds[indname]
|
||||
//get active resolution
|
||||
const element = document.querySelector('.switcher-active-item');
|
||||
resolution = element.textContent
|
||||
//console.log("aktivni rozliseni", resolution)
|
||||
switch_to_interval(resolution, archData)
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
@ -142,11 +145,35 @@ $(document).ready(function () {
|
||||
success:function(data){
|
||||
//kod pro update/vytvoreni je zde stejny - updatujeme jen zdrojove dictionary
|
||||
window.$('#indicatorModal').modal('hide');
|
||||
//console.log(data)
|
||||
console.log("navrat",data)
|
||||
//indName = $('#indicatorName').val()
|
||||
//updatneme/vytvorime klic v globalni promennou obsahujici vsechny arch data
|
||||
//TBD nebude fungovat az budu mit vic chartů otevřených - předělat
|
||||
archData.indicators[0][indName] = data
|
||||
|
||||
//v ramci podpory multioutputu je navrat nazevind:timeserie a to
|
||||
//pro indicators [0] nebo cbar_indicators [1] list
|
||||
if (Object.keys(data[0]).length > 0) {
|
||||
for (let key in data[0]) {
|
||||
if (data[0].hasOwnProperty(key)) {
|
||||
archData.indicators[0][key] = data[0][key]
|
||||
console.log("barind updatovan " + key)
|
||||
//console.log(data[0][key]);
|
||||
}
|
||||
}
|
||||
//archData.indicators[0][indName] = data[0]
|
||||
} else if (Object.keys(data[1]).length > 0) {
|
||||
for (let key in data[1]) {
|
||||
if (data[1].hasOwnProperty(key)) {
|
||||
archData.indicators[1][key] = data[1][key]
|
||||
console.log("cbarind updatovan " + key)
|
||||
//console.log(data[1][key]);
|
||||
}
|
||||
}
|
||||
//archData.indicators[1][indName] = data[1]
|
||||
}
|
||||
else {
|
||||
alert("neco spatne s response ", data)
|
||||
}
|
||||
|
||||
//pridame pripadne upatneme v ext_data
|
||||
|
||||
|
||||
@ -2,4 +2,4 @@
|
||||
*
|
||||
* ©2020 SpryMedia Ltd, all rights reserved.
|
||||
* License: MIT datatables.net/license/mit
|
||||
*/table.dataTable{clear:both;margin-top:6px !important;margin-bottom:6px !important;max-width:none !important;border-collapse:separate !important;border-spacing:0}table.dataTable td,table.dataTable th{-webkit-box-sizing:content-box;box-sizing:content-box}table.dataTable td.dataTables_empty,table.dataTable th.dataTables_empty{text-align:center}table.dataTable.nowrap th,table.dataTable.nowrap td{white-space:nowrap}table.dataTable.table-striped>tbody>tr:nth-of-type(2n+1)>*{box-shadow:none}table.dataTable>tbody>tr{background-color:transparent}table.dataTable>tbody>tr.selected>*{box-shadow:inset 0 0 0 9999px rgb(13, 110, 253);box-shadow:inset 0 0 0 9999px rgb(var(--dt-row-selected));color:rgb(255, 255, 255);color:rgb(var(--dt-row-selected-text))}table.dataTable>tbody>tr.selected a{color:rgb(9, 10, 11);color:rgb(var(--dt-row-selected-link))}table.dataTable.table-striped>tbody>tr.odd>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.05)}table.dataTable.table-striped>tbody>tr.odd.selected>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.95);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.95)}table.dataTable.table-hover>tbody>tr:hover>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.075)}table.dataTable.table-hover>tbody>tr.selected:hover>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.975);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.975)}div.dataTables_wrapper div.dataTables_length label{font-weight:normal;text-align:left;white-space:nowrap}div.dataTables_wrapper div.dataTables_length select{width:auto;display:inline-block}div.dataTables_wrapper div.dataTables_filter{text-align:right}div.dataTables_wrapper div.dataTables_filter label{font-weight:normal;white-space:nowrap;text-align:left}div.dataTables_wrapper div.dataTables_filter input{margin-left:.5em;display:inline-block;width:auto}div.dataTables_wrapper div.dataTables_info{padding-top:.85em}div.dataTables_wrapper div.dataTables_paginate{margin:0;white-space:nowrap;text-align:right}div.dataTables_wrapper div.dataTables_paginate ul.pagination{margin:2px 0;white-space:nowrap;justify-content:flex-end}div.dataTables_wrapper div.dt-row{position:relative}div.dataTables_scrollHead table.dataTable{margin-bottom:0 !important}div.dataTables_scrollBody>table{border-top:none;margin-top:0 !important;margin-bottom:0 !important}div.dataTables_scrollBody>table>thead .sorting:before,div.dataTables_scrollBody>table>thead .sorting_asc:before,div.dataTables_scrollBody>table>thead .sorting_desc:before,div.dataTables_scrollBody>table>thead .sorting:after,div.dataTables_scrollBody>table>thead .sorting_asc:after,div.dataTables_scrollBody>table>thead .sorting_desc:after{display:none}div.dataTables_scrollBody>table>tbody tr:first-child th,div.dataTables_scrollBody>table>tbody tr:first-child td{border-top:none}div.dataTables_scrollFoot>.dataTables_scrollFootInner{box-sizing:content-box}div.dataTables_scrollFoot>.dataTables_scrollFootInner>table{margin-top:0 !important;border-top:none}@media screen and (max-width: 767px){div.dataTables_wrapper div.dataTables_length,div.dataTables_wrapper div.dataTables_filter,div.dataTables_wrapper div.dataTables_info,div.dataTables_wrapper div.dataTables_paginate{text-align:center}div.dataTables_wrapper div.dataTables_paginate ul.pagination{justify-content:center !important}}table.dataTable.table-sm>thead>tr>th:not(.sorting_disabled){padding-right:20px}table.table-bordered.dataTable{border-right-width:0}table.table-bordered.dataTable thead tr:first-child th,table.table-bordered.dataTable thead tr:first-child td{border-top-width:1px}table.table-bordered.dataTable th,table.table-bordered.dataTable td{border-left-width:0}table.table-bordered.dataTable th:first-child,table.table-bordered.dataTable th:first-child,table.table-bordered.dataTable td:first-child,table.table-bordered.dataTable td:first-child{border-left-width:1px}table.table-bordered.dataTable th:last-child,table.table-bordered.dataTable th:last-child,table.table-bordered.dataTable td:last-child,table.table-bordered.dataTable td:last-child{border-right-width:1px}table.table-bordered.dataTable th,table.table-bordered.dataTable td{border-bottom-width:1px}div.dataTables_scrollHead table.table-bordered{border-bottom-width:0}div.table-responsive>div.dataTables_wrapper>div.row{margin:0}div.table-responsive>div.dataTables_wrapper>div.row>div[class^=col-]:first-child{padding-left:0}div.table-responsive>div.dataTables_wrapper>div.row>div[class^=col-]:last-child{padding-right:0}
|
||||
*/table.dataTable{clear:both;margin-top:6px !important;margin-bottom:6px !important;max-width:none !important;border-collapse:separate !important;border-spacing:0}table.dataTable td,table.dataTable th{-webkit-box-sizing:content-box;box-sizing:content-box}table.dataTable td.dataTables_empty,table.dataTable th.dataTables_empty{text-align:center}table.dataTable.nowrap th,table.dataTable.nowrap td{white-space:nowrap}/*table.dataTable.table-striped>tbody>tr:nth-of-type(2n+1)>*{box-shadow:none}*/table.dataTable>tbody>tr{background-color:transparent}table.dataTable>tbody>tr.selected>*{box-shadow:inset 0 0 0 9999px rgb(13, 110, 253);box-shadow:inset 0 0 0 9999px rgb(var(--dt-row-selected));color:rgb(255, 255, 255);color:rgb(var(--dt-row-selected-text))}table.dataTable>tbody>tr.selected a{color:rgb(9, 10, 11);color:rgb(var(--dt-row-selected-link))}table.dataTable.table-striped>tbody>tr.odd>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.05)}table.dataTable.table-striped>tbody>tr.odd.selected>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.95);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.95)}table.dataTable.table-hover>tbody>tr:hover>*{box-shadow:inset 0 0 0 9999px rgba(0, 0, 0, 0.075)}table.dataTable.table-hover>tbody>tr.selected:hover>*{box-shadow:inset 0 0 0 9999px rgba(13, 110, 253, 0.975);box-shadow:inset 0 0 0 9999px rgba(var(--dt-row-selected), 0.975)}div.dataTables_wrapper div.dataTables_length label{font-weight:normal;text-align:left;white-space:nowrap}div.dataTables_wrapper div.dataTables_length select{width:auto;display:inline-block}div.dataTables_wrapper div.dataTables_filter{text-align:right}div.dataTables_wrapper div.dataTables_filter label{font-weight:normal;white-space:nowrap;text-align:left}div.dataTables_wrapper div.dataTables_filter input{margin-left:.5em;display:inline-block;width:auto}div.dataTables_wrapper div.dataTables_info{padding-top:.85em}div.dataTables_wrapper div.dataTables_paginate{margin:0;white-space:nowrap;text-align:right}div.dataTables_wrapper div.dataTables_paginate ul.pagination{margin:2px 0;white-space:nowrap;justify-content:flex-end}div.dataTables_wrapper div.dt-row{position:relative}div.dataTables_scrollHead table.dataTable{margin-bottom:0 !important}div.dataTables_scrollBody>table{border-top:none;margin-top:0 !important;margin-bottom:0 !important}div.dataTables_scrollBody>table>thead .sorting:before,div.dataTables_scrollBody>table>thead .sorting_asc:before,div.dataTables_scrollBody>table>thead .sorting_desc:before,div.dataTables_scrollBody>table>thead .sorting:after,div.dataTables_scrollBody>table>thead .sorting_asc:after,div.dataTables_scrollBody>table>thead .sorting_desc:after{display:none}div.dataTables_scrollBody>table>tbody tr:first-child th,div.dataTables_scrollBody>table>tbody tr:first-child td{border-top:none}div.dataTables_scrollFoot>.dataTables_scrollFootInner{box-sizing:content-box}div.dataTables_scrollFoot>.dataTables_scrollFootInner>table{margin-top:0 !important;border-top:none}@media screen and (max-width: 767px){div.dataTables_wrapper div.dataTables_length,div.dataTables_wrapper div.dataTables_filter,div.dataTables_wrapper div.dataTables_info,div.dataTables_wrapper div.dataTables_paginate{text-align:center}div.dataTables_wrapper div.dataTables_paginate ul.pagination{justify-content:center !important}}table.dataTable.table-sm>thead>tr>th:not(.sorting_disabled){padding-right:20px}table.table-bordered.dataTable{border-right-width:0}table.table-bordered.dataTable thead tr:first-child th,table.table-bordered.dataTable thead tr:first-child td{border-top-width:1px}table.table-bordered.dataTable th,table.table-bordered.dataTable td{border-left-width:0}table.table-bordered.dataTable th:first-child,table.table-bordered.dataTable th:first-child,table.table-bordered.dataTable td:first-child,table.table-bordered.dataTable td:first-child{border-left-width:1px}table.table-bordered.dataTable th:last-child,table.table-bordered.dataTable th:last-child,table.table-bordered.dataTable td:last-child,table.table-bordered.dataTable td:last-child{border-right-width:1px}table.table-bordered.dataTable th,table.table-bordered.dataTable td{border-bottom-width:1px}div.dataTables_scrollHead table.table-bordered{border-bottom-width:0}div.table-responsive>div.dataTables_wrapper>div.row{margin:0}div.table-responsive>div.dataTables_wrapper>div.row>div[class^=col-]:first-child{padding-left:0}div.table-responsive>div.dataTables_wrapper>div.row>div[class^=col-]:last-child{padding-right:0}
|
||||
|
||||
File diff suppressed because one or more lines are too long
227
v2realbot/static/js/ml.js
Normal file
227
v2realbot/static/js/ml.js
Normal file
@ -0,0 +1,227 @@
|
||||
//ML Model GUI section
|
||||
|
||||
let model_editor_json
|
||||
let model_editor_python
|
||||
|
||||
$(document).ready(function() {
|
||||
function fetchModels() {
|
||||
$.ajax({
|
||||
url: '/model/list-models',
|
||||
type: 'GET',
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
success: function(response) {
|
||||
$('#model-list').empty();
|
||||
if(response.error) {
|
||||
$('#model-list').html('Error: ' + response.error);
|
||||
} else {
|
||||
const models = response.models;
|
||||
models.forEach(function(model) {
|
||||
$('#model-list').append(`
|
||||
<p>${model}
|
||||
<span class="inspect-model" data-model="${model}">[🔍]</span>
|
||||
<span class="download-model" data-model="${model}">[↓]</span>
|
||||
<span class="delete-model" data-model="${model}">[x]</span>
|
||||
</p>
|
||||
`);
|
||||
|
||||
});
|
||||
}
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
$('#model-list').html('An error occurred: ' + error + xhr.responseText + status);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function deleteModel(modelName) {
|
||||
$.ajax({
|
||||
url: '/model/delete-model/' + modelName,
|
||||
type: 'DELETE',
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
success: function(response) {
|
||||
fetchModels(); // Refresh the list after deletion
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
alert('Error deleting model: ' + error + xhr.responseText + status);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function uploadModel(formData) {
|
||||
$.ajax({
|
||||
url: '/model/upload-model',
|
||||
type: 'POST',
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
data: formData,
|
||||
processData: false,
|
||||
contentType: false,
|
||||
success: function(response) {
|
||||
fetchModels(); // Refresh the list after uploading
|
||||
alert('Model uploaded successfully');
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
alert('Error uploading model: ' + error + xhr.responseText + status);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// function downloadModel(modelName) {
|
||||
// $.ajax({
|
||||
// url: '/model/download-model/' + modelName,
|
||||
// type: 'GET',
|
||||
// processData: false,
|
||||
// contentType: false,
|
||||
// responseType: 'blob', // This is important
|
||||
// beforeSend: function (xhr) {
|
||||
// xhr.setRequestHeader('X-API-Key', API_KEY);
|
||||
// },
|
||||
// success: function(data, status, xhr) {
|
||||
// // Get a URL for the blob to download
|
||||
// var blob = new Blob([data], { type: 'application/octet-stream' });
|
||||
// //var blob = new Blob([data], { type: xhr.getResponseHeader('Content-Type') });
|
||||
// var downloadUrl = URL.createObjectURL(blob);
|
||||
// var a = document.createElement('a');
|
||||
// a.href = downloadUrl;
|
||||
// a.download = modelName;
|
||||
// document.body.appendChild(a);
|
||||
// a.click();
|
||||
// // Clean up
|
||||
// window.URL.revokeObjectURL(downloadUrl);
|
||||
// a.remove();
|
||||
// },
|
||||
// error: function(xhr, status, error) {
|
||||
// alert('Error downloading model: ' + error + xhr.responseText + status);
|
||||
// }
|
||||
// });
|
||||
// }
|
||||
|
||||
function downloadModel(modelName) {
|
||||
fetch('/model/download-model/' + modelName, {
|
||||
method: 'GET', // GET is the default method, but it's good to be explicit
|
||||
headers: {
|
||||
'X-API-Key': API_KEY
|
||||
}
|
||||
})
|
||||
.then(response => {
|
||||
if (response.ok) return response.blob();
|
||||
throw new Error('Network response was not ok.');
|
||||
})
|
||||
.then(blob => {
|
||||
// Check the size of the blob here; it should match the Content-Length from the server
|
||||
console.log('Size of downloaded blob:', blob.size);
|
||||
|
||||
// Create a link element, use it for download, and remove it
|
||||
let url = window.URL.createObjectURL(blob);
|
||||
let a = document.createElement('a');
|
||||
a.style.display = 'none';
|
||||
a.href = url;
|
||||
a.download = modelName;
|
||||
document.body.appendChild(a);
|
||||
a.click();
|
||||
window.setTimeout(() => {
|
||||
document.body.removeChild(a);
|
||||
window.URL.revokeObjectURL(url);
|
||||
}, 100); // Cleanup after a small delay
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Download error:', error);
|
||||
});
|
||||
}
|
||||
|
||||
// Function to fetch metadata
|
||||
function fetchMetadata(modelName) {
|
||||
$.ajax({
|
||||
url: '/model/metadata/' + modelName,
|
||||
type: 'GET',
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key', API_KEY);
|
||||
},
|
||||
success: function(response) {
|
||||
$('#metadata-container-info').html("");
|
||||
show_metadata(response, modelName)
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
$('#metadata-container-info').html('Error fetching metadata: ' + error + xhr.responseText + status);
|
||||
show_metadata(xhr, modelName, true)
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function show_metadata(response, name, error = false) {
|
||||
// var formattedMetadata = '<pre>cfg:' + JSON.stringify(response.cfg, null, 4) + '</pre>';
|
||||
// formattedMetadata += '<pre>arch_function:' + response.arch_function + '</pre>';
|
||||
// $('#metadata-container').html(formattedMetadata);
|
||||
//console.log(response)
|
||||
console.log(JSON.stringify(response,null,4))
|
||||
$('#metadata_label').html(name);
|
||||
|
||||
if (!error) {
|
||||
console.log("init editoru", error)
|
||||
require(["vs/editor/editor.main"], () => {
|
||||
model_editor_json = monaco.editor.create(document.getElementById('toml-editor-container'), {
|
||||
value: response.cfg_toml ? response.cfg_toml + ((response.history) ? "\nHISTORY:\n" + JSON.stringify(response.history,null,4) : "") : JSON.stringify(response,null,4),
|
||||
language: 'toml',
|
||||
theme: 'tomlTheme-dark',
|
||||
automaticLayout: true,
|
||||
readOnly: true
|
||||
});
|
||||
model_editor_python = monaco.editor.create(document.getElementById('python-editor-container'), {
|
||||
value: response.arch_function ? response.arch_function : '',
|
||||
language: 'python',
|
||||
theme: 'tomlTheme-dark',
|
||||
automaticLayout: true,
|
||||
readOnly: true
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Fetch models on page load
|
||||
fetchModels();
|
||||
|
||||
// Refresh models on button click
|
||||
$('#ml-refresh-button').click(function() {
|
||||
fetchModels();
|
||||
});
|
||||
|
||||
$('#model-list').on('click', '.delete-model', function() {
|
||||
const modelName = $(this).data('model');
|
||||
if (confirm('Are you sure you want to delete ' + modelName + '?')) {
|
||||
deleteModel(modelName);
|
||||
}
|
||||
});
|
||||
|
||||
$('#upload-form').submit(function(e) {
|
||||
e.preventDefault();
|
||||
var formData = new FormData(this);
|
||||
if (!$('#model-file')[0].files[0]) {
|
||||
console.log("prazdne")
|
||||
alert("No file selected.")
|
||||
return
|
||||
}
|
||||
formData.append('file', $('#model-file')[0].files[0]); // Make sure 'file' matches the FastAPI parameter
|
||||
uploadModel(formData);
|
||||
});
|
||||
|
||||
// Event handler for the inspect icon
|
||||
$('#model-list').on('click', '.inspect-model', function() {
|
||||
if (model_editor_json) {model_editor_json.dispose()}
|
||||
if (model_editor_python) {model_editor_python.dispose()}
|
||||
const modelName = $(this).data('model');
|
||||
fetchMetadata(modelName);
|
||||
window.$('#modelModal').modal('show');
|
||||
});
|
||||
|
||||
//Handler to download the model
|
||||
$('#model-list').on('click', '.download-model', function() {
|
||||
const modelName = $(this).data('model');
|
||||
downloadModel(modelName);
|
||||
});
|
||||
|
||||
});
|
||||
@ -88,9 +88,57 @@ $(document).ready(function () {
|
||||
|
||||
require(["vs/editor/editor.main"], () => {
|
||||
|
||||
monaco.languages.register({ id: 'python' });
|
||||
monaco.languages.register({ id: 'json' });
|
||||
//Register mylogs language
|
||||
monaco.languages.register({ id: 'mylogs' });
|
||||
// Register the TOML language
|
||||
monaco.languages.setLanguageConfiguration('mylogs', {
|
||||
comments: {
|
||||
lineComment: '//', // Adjust if your logs use a different comment symbol
|
||||
},
|
||||
brackets: [['[', ']'], ['{', '}']], // Array and object brackets
|
||||
autoClosingPairs: [
|
||||
{ open: '{', close: '}', notIn: ['string'] },
|
||||
{ open: '"', close: '"', notIn: ['string', 'comment'] },
|
||||
{ open: "'", close: "'", notIn: ['string', 'comment'] },
|
||||
],
|
||||
});
|
||||
monaco.languages.setMonarchTokensProvider('mylogs', {
|
||||
tokenizer: {
|
||||
root: [
|
||||
[/#.*/, 'comment'], // Comments (if applicable)
|
||||
|
||||
// Timestamps
|
||||
[/\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d+/, 'timestamp'],
|
||||
|
||||
// Log Levels
|
||||
[/\b(INFO|DEBUG|WARNING|ERROR|CRITICAL)\b/, 'log-level'],
|
||||
|
||||
// Strings
|
||||
[/".*"/, 'string'],
|
||||
[/'.*'/, 'string'],
|
||||
|
||||
// Key-Value Pairs
|
||||
[/[A-Za-z_]+\s*:/, 'key'],
|
||||
[/-?\d+\.\d+/, 'number.float'], // Floating-point
|
||||
[/-?\d+/, 'number.integer'], // Integers
|
||||
[/\btrue\b/, 'boolean.true'],
|
||||
[/\bfalse\b/, 'boolean.false'],
|
||||
|
||||
// Other Words and Symbols
|
||||
[/[A-Za-z_]+/, 'identifier'],
|
||||
[/[ \t\r\n]+/, 'white'],
|
||||
[/[\[\]{}(),]/, 'delimiter'], // Expand if more delimiters exist
|
||||
]
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
monaco.languages.register({ id: 'toml' });
|
||||
|
||||
|
||||
|
||||
// Define the TOML language configuration
|
||||
monaco.languages.setLanguageConfiguration('toml', {
|
||||
comments: {
|
||||
@ -619,7 +667,6 @@ $(document).ready(function () {
|
||||
})
|
||||
});
|
||||
|
||||
|
||||
//button run
|
||||
$('#button_run').click(function () {
|
||||
row = stratinRecords.row('.selected').data();
|
||||
@ -634,7 +681,7 @@ $(document).ready(function () {
|
||||
$('#bt_to').val(localStorage.getItem("bt_to"));
|
||||
//console.log(localStorage.getItem("bt_to"))
|
||||
$('#test_batch_id').val(localStorage.getItem("test_batch_id"));
|
||||
$('#mode').val(localStorage.getItem("mode"));
|
||||
$('#runmode').val(localStorage.getItem("runmode"));
|
||||
$('#account').val(localStorage.getItem("account"));
|
||||
$('#debug').val(localStorage.getItem("debug"));
|
||||
$('#ilog_save').val(localStorage.getItem("ilog_save"));
|
||||
@ -951,7 +998,18 @@ var runnerRecords =
|
||||
render: function ( data, type, row ) {
|
||||
return format_date(data)
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [4], //symbol
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
//console.log("arch")
|
||||
var color = getColorForId(row.strat_id);
|
||||
return '<span style="color:' + color + ';">'+data+'</span>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
],
|
||||
// select: {
|
||||
// style: 'multi'
|
||||
@ -963,7 +1021,9 @@ $("#runModal").on('submit','#runForm', function(event){
|
||||
localStorage.setItem("bt_from", $('#bt_from').val());
|
||||
localStorage.setItem("bt_to", $('#bt_to').val());
|
||||
localStorage.setItem("test_batch_id", $('#test_batch_id').val());
|
||||
localStorage.setItem("mode", $('#mode').val());
|
||||
localStorage.setItem("runmode", $('#runmode').val());
|
||||
console.log("mode set to", $('#runmode').val())
|
||||
console.log("mode loaded value", localStorage.getItem("runmode"))
|
||||
localStorage.setItem("account", $('#account').val());
|
||||
localStorage.setItem("debug", $('#debug').val());
|
||||
localStorage.setItem("ilog_save", $('#ilog_save').val());
|
||||
|
||||
@ -6,6 +6,7 @@ let editor_diff_arch1
|
||||
let editor_diff_arch2
|
||||
var archData = null
|
||||
var batchHeaders = []
|
||||
var editorLog = null
|
||||
|
||||
function refresh_arch_and_callback(row, callback) {
|
||||
//console.log("entering refresh")
|
||||
@ -63,6 +64,10 @@ function get_detail_and_chart(row) {
|
||||
//console.log(JSON.stringify(data,null,2));
|
||||
//if lower res is required call prepare_data otherwise call chart_archived_run()
|
||||
//get other base resolutions
|
||||
|
||||
// console.log("received detail", data)
|
||||
// data = JSON.parse(data)
|
||||
// console.log("parsed detail", data)
|
||||
prepare_data(row, 1, "Min", data)
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
@ -74,10 +79,11 @@ function get_detail_and_chart(row) {
|
||||
})
|
||||
}
|
||||
|
||||
//rerun stratin
|
||||
function run_day_again() {
|
||||
//rerun stratin (use to rerun strategy and also to rerun live/paper as bt on same period)
|
||||
function run_day_again(turnintobt=false) {
|
||||
row = archiveRecords.row('.selected').data();
|
||||
$('#button_runagain_arch').attr('disabled',true);
|
||||
var button_name = turnintobt ? '#button_runbt_arch' : '#button_runagain_arch'
|
||||
$(button_name).attr('disabled',true)
|
||||
|
||||
var record1 = new Object()
|
||||
//console.log(JSON.stringify(rows))
|
||||
@ -138,7 +144,7 @@ function run_day_again() {
|
||||
//console.log("Result from second request:", result2);
|
||||
|
||||
//console.log("calling compare")
|
||||
rerun_strategy(result1, result2)
|
||||
rerun_strategy(result1, result2, turnintobt)
|
||||
// Perform your action with the results from both requests
|
||||
// Example:
|
||||
|
||||
@ -150,13 +156,22 @@ function run_day_again() {
|
||||
});
|
||||
|
||||
|
||||
function rerun_strategy(archRunner, stratData) {
|
||||
function rerun_strategy(archRunner, stratData, turnintobt) {
|
||||
record1 = archRunner
|
||||
//console.log(record1)
|
||||
|
||||
var note_prefix = "RERUN "
|
||||
if ((turnintobt) && ((record1.mode == 'live') || (record1.mode == 'paper'))) {
|
||||
record1.mode = 'backtest'
|
||||
record1.bt_from = record1.started
|
||||
record1.bt_to = record1.stopped
|
||||
note_prefix = "BT SAME PERIOD "
|
||||
}
|
||||
|
||||
record1.note = note_prefix + record1.note
|
||||
//nebudeme muset odstanovat pri kazdem pridani noveho atributu v budoucnu
|
||||
//smazeneme nepotrebne a pridame potrebne
|
||||
//do budoucna predelat na vytvoreni noveho objektu
|
||||
//nebudeme muset odstanovat pri kazdem pridani noveho atributu v budoucnu
|
||||
delete record1["end_positions"];
|
||||
delete record1["end_positions_avgp"];
|
||||
delete record1["profit"];
|
||||
@ -168,8 +183,6 @@ function run_day_again() {
|
||||
delete record1["settings"];
|
||||
delete record1["stratvars"];
|
||||
|
||||
record1.note = "RERUN " + record1.note
|
||||
|
||||
if (record1.bt_from == "") {delete record1["bt_from"];}
|
||||
if (record1.bt_to == "") {delete record1["bt_to"];}
|
||||
|
||||
@ -208,7 +221,7 @@ function run_day_again() {
|
||||
contentType: "application/json",
|
||||
data: jsonString,
|
||||
success:function(data){
|
||||
$('#button_runagain_arch').attr('disabled',false);
|
||||
$(button_name).attr('disabled',false);
|
||||
setTimeout(function () {
|
||||
runnerRecords.ajax.reload();
|
||||
stratinRecords.ajax.reload();
|
||||
@ -218,7 +231,7 @@ function run_day_again() {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
window.alert(JSON.stringify(xhr));
|
||||
//console.log(JSON.stringify(xhr));
|
||||
$('#button_runagain_arch').attr('disabled',false);
|
||||
$(button_name).attr('disabled',false);
|
||||
}
|
||||
})
|
||||
}
|
||||
@ -377,6 +390,7 @@ function get_selected_or_batch(batch_id = null) {
|
||||
});
|
||||
//console.log("batch rows",batch_id, rows)
|
||||
}
|
||||
return rows
|
||||
}
|
||||
|
||||
//prepares export data, either for selected rows or based on batch_id
|
||||
@ -448,8 +462,10 @@ function display_batch_report(batch_id) {
|
||||
}
|
||||
|
||||
function refresh_logfile() {
|
||||
logfile = $("#logFileSelect").val()
|
||||
lines = 1200
|
||||
$.ajax({
|
||||
url:"/log?lines=30",
|
||||
url:"/log?lines="+lines+"&logfile="+logfile,
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
@ -457,12 +473,34 @@ function refresh_logfile() {
|
||||
contentType: "application/json",
|
||||
dataType: "json",
|
||||
success:function(response){
|
||||
if (editorLog) {
|
||||
editorLog.dispose();
|
||||
}
|
||||
if (response.lines.length == 0) {
|
||||
$('#log-content').html("no records");
|
||||
value = "no records";
|
||||
// $('#log-content').html("no records");
|
||||
}
|
||||
else {
|
||||
$('#log-content').html(response.lines.join('\n'));
|
||||
}
|
||||
//console.log(response.lines)
|
||||
//var escapedLines = response.lines.map(line => escapeHtml(line));
|
||||
value = response.lines.join('\n')
|
||||
// $('#log-content').html(escapedLines.join('\n'));
|
||||
}
|
||||
require(["vs/editor/editor.main"], () => {
|
||||
editorLog = monaco.editor.create(document.getElementById('log-container'), {
|
||||
value: value,
|
||||
language: 'mylogs',
|
||||
theme: 'tomlTheme-dark',
|
||||
automaticLayout: true,
|
||||
readOnly: true
|
||||
});
|
||||
});
|
||||
// Focus at the end of the file:
|
||||
const model = editorLog.getModel();
|
||||
const lastLineNumber = model.getLineCount();
|
||||
const lastLineColumn = model.getLineMaxColumn(lastLineNumber);
|
||||
editorLog.setPosition({ lineNumber: lastLineNumber, column: lastLineColumn });
|
||||
editorLog.revealPosition({ lineNumber: lastLineNumber, column: lastLineColumn });
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
@ -471,6 +509,14 @@ function refresh_logfile() {
|
||||
})
|
||||
}
|
||||
|
||||
function escapeHtml(text) {
|
||||
return text
|
||||
.replace(/&/g, "&")
|
||||
.replace(/</g, "<")
|
||||
.replace(/>/g, ">")
|
||||
.replace(/"/g, """)
|
||||
.replace(/'/g, "'");
|
||||
}
|
||||
function delete_arch_rows(ids) {
|
||||
$.ajax({
|
||||
url:"/archived_runners/",
|
||||
@ -525,6 +571,7 @@ function generateStorageKey(batchId) {
|
||||
function disable_arch_buttons() {
|
||||
//disable buttons (enable on row selection)
|
||||
$('#button_runagain_arch').attr('disabled','disabled');
|
||||
$('#button_runbt_arch').attr('disabled','disabled');
|
||||
$('#button_show_arch').attr('disabled','disabled');
|
||||
$('#button_delete_arch').attr('disabled','disabled');
|
||||
$('#button_delete_batch').attr('disabled','disabled');
|
||||
@ -547,4 +594,10 @@ function enable_arch_buttons() {
|
||||
$('#button_report').attr('disabled',false);
|
||||
$('#button_export_xml').attr('disabled',false);
|
||||
$('#button_export_csv').attr('disabled',false);
|
||||
|
||||
//Backtest same period button is displayed only when row with mode paper/live is selected
|
||||
row = archiveRecords.row('.selected').data();
|
||||
if ((row.mode == 'paper') || (row.mode == 'live')) {
|
||||
$('#button_runbt_arch').attr('disabled',false);
|
||||
}
|
||||
}
|
||||
@ -265,8 +265,8 @@ $(document).ready(function () {
|
||||
|
||||
$('#diff_first').text(record1.name);
|
||||
$('#diff_second').text(record2.name);
|
||||
$('#diff_first_id').text(data1.id);
|
||||
$('#diff_second_id').text(data2.id);
|
||||
$('#diff_first_id').text(data1.id + ' Batch: ' + data1.batch_id);
|
||||
$('#diff_second_id').text(data2.id + ' Batch: ' + data2.batch_id);
|
||||
|
||||
//monaco
|
||||
require(["vs/editor/editor.main"], () => {
|
||||
@ -358,11 +358,20 @@ $(document).ready(function () {
|
||||
})
|
||||
});
|
||||
|
||||
$('#closeLogModal').click(function () {
|
||||
editorLog.dispose()
|
||||
});
|
||||
|
||||
//button to query log
|
||||
$('#logRefreshButton').click(function () {
|
||||
editorLog.dispose()
|
||||
refresh_logfile()
|
||||
});
|
||||
|
||||
$('#logFileSelect').change(function() {
|
||||
refresh_logfile();
|
||||
});
|
||||
|
||||
//button to open log modal
|
||||
$('#button_show_log').click(function () {
|
||||
window.$('#logModal').modal('show');
|
||||
@ -441,7 +450,7 @@ $(document).ready(function () {
|
||||
$('#editstratvars').val(JSON.stringify(row.stratvars,null,2));
|
||||
}
|
||||
|
||||
|
||||
$('#edittransferables').val(JSON.stringify(row.transferables,null,2));
|
||||
$('#editstratjson').val(row.strat_json);
|
||||
}
|
||||
});
|
||||
@ -458,6 +467,11 @@ $(document).ready(function () {
|
||||
//run again button
|
||||
$('#button_runagain_arch').click(run_day_again)
|
||||
|
||||
//run in bt mode
|
||||
$('#button_runbt_arch').click(function() {
|
||||
run_day_again(true);
|
||||
});
|
||||
|
||||
//workaround pro spatne oznacovani selectu i pro group-headery
|
||||
// $('#archiveTable tbody').on('click', 'tr.group-header', function(event) {
|
||||
// var $row = $(this);
|
||||
|
||||
@ -42,6 +42,8 @@ function initialize_archiveRecords() {
|
||||
{data: 'end_positions_avgp', visible: true},
|
||||
{data: 'metrics', visible: true},
|
||||
{data: 'batch_id', visible: true},
|
||||
{data: 'batch_profit', visible: false},
|
||||
{data: 'batch_count', visible: false},
|
||||
],
|
||||
paging: true,
|
||||
processing: true,
|
||||
@ -68,30 +70,32 @@ function initialize_archiveRecords() {
|
||||
{
|
||||
targets: [5],
|
||||
render: function ( data, type, row ) {
|
||||
now = new Date(data)
|
||||
if (type == "sort") {
|
||||
return new Date(data).getTime();
|
||||
}
|
||||
//data = "2024-02-26T19:29:13.400621-05:00"
|
||||
// Create a date object from the string, represents given moment in time in UTC time
|
||||
var date = new Date(data);
|
||||
|
||||
tit = date.toLocaleString('cs-CZ', {
|
||||
timeZone: 'America/New_York',
|
||||
})
|
||||
|
||||
if (isToday(now)) {
|
||||
if (isToday(date)) {
|
||||
//console.log("volame isToday s", date)
|
||||
//return local time only
|
||||
return '<div title="'+tit+'">'+ 'dnes ' + format_date(data,false,true)+'</div>'
|
||||
return '<div title="'+tit+'">'+ 'dnes ' + format_date(data,true,true)+'</div>'
|
||||
}
|
||||
else
|
||||
{
|
||||
//return local datetime
|
||||
return '<div title="'+tit+'">'+ format_date(data,false,false)+'</div>'
|
||||
return '<div title="'+tit+'">'+ format_date(data,true,false)+'</div>'
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [6],
|
||||
render: function ( data, type, row ) {
|
||||
now = new Date(data)
|
||||
if (type == "sort") {
|
||||
return new Date(data).getTime();
|
||||
}
|
||||
@ -100,14 +104,14 @@ function initialize_archiveRecords() {
|
||||
timeZone: 'America/New_York',
|
||||
})
|
||||
|
||||
if (isToday(now)) {
|
||||
if (isToday(date)) {
|
||||
//return local time only
|
||||
return '<div title="'+tit+'" class="token level comment">'+ 'dnes ' + format_date(data,false,true)+'</div>'
|
||||
return '<div title="'+tit+'" class="token level comment">'+ 'dnes ' + format_date(data,true,true)+'</div>'
|
||||
}
|
||||
else
|
||||
{
|
||||
//return local datetime
|
||||
return '<div title="'+tit+'" class="token level number">'+ format_date(data,false,false)+'</div>'
|
||||
return '<div title="'+tit+'" class="token level number">'+ format_date(data,true,false)+'</div>'
|
||||
}
|
||||
},
|
||||
},
|
||||
@ -237,13 +241,16 @@ function initialize_archiveRecords() {
|
||||
var groupId = group ? group : 'no-batch-id-' + firstRowData.id;
|
||||
var stateKey = 'dt-group-state-' + groupId;
|
||||
var state = localStorage.getItem(stateKey);
|
||||
var profit = firstRowData.batch_profit
|
||||
var itemCount = firstRowData.batch_count
|
||||
|
||||
// Iterate over each row in the group to set the data attribute
|
||||
// zaroven pro kazdy node nastavime viditelnost podle nastaveni
|
||||
rows.every(function (rowIdx, tableLoop, rowLoop) {
|
||||
var rowNode = $(this.node());
|
||||
rowNode.attr('data-group-name', groupId);
|
||||
if (state == 'collapsed') {
|
||||
//defaultne jsou batche zabalene a nobatche rozbalene, pokud nenastavim jinak
|
||||
if (state == 'collapsed' || (!state) && group) {
|
||||
rowNode.hide();
|
||||
} else {
|
||||
rowNode.show();
|
||||
@ -251,11 +258,13 @@ function initialize_archiveRecords() {
|
||||
});
|
||||
|
||||
// Initialize variables for the group
|
||||
var itemCount = 0;
|
||||
//var itemCount = 0;
|
||||
var period = '';
|
||||
var profit = '';
|
||||
var batch_note = '';
|
||||
//var profit = '';
|
||||
var started = null;
|
||||
var stratinId = null;
|
||||
var symbol = null;
|
||||
|
||||
// // Process each item only once
|
||||
// archiveRecords.rows({ search: 'applied' }).every(function (rowIdx, tableLoop, rowLoop) {
|
||||
@ -281,29 +290,57 @@ function initialize_archiveRecords() {
|
||||
|
||||
//pokud mame batch_id podivame se zda jeho nastaveni uz nema a pokud ano pouzijeme to
|
||||
//pokud nemame tak si ho loadneme
|
||||
//Tento kod parsuje informace do header hlavicky podle notes, je to relevantni pouze pro
|
||||
//backtest batche, nikoliv pro paper a live, kde pocet dni je neznamy a poznamka se muze menit
|
||||
//do budoucna tento parsing na frontendu bude nahrazen batch tabulkou v db, ktera persistuje
|
||||
//tyto data
|
||||
if (group) {
|
||||
const existingBatch = batchHeaders.find(batch => batch.batch_id == group);
|
||||
//jeste neni v poli batchu - udelame hlavicku
|
||||
if (!existingBatch) {
|
||||
itemCount = extractNumbersFromString(firstRowData.note);
|
||||
profit = firstRowData.metrics.profit.batch_sum_profit;
|
||||
// itemCount = extractNumbersFromString(firstRowData.note);
|
||||
// if (!itemCount) {
|
||||
// itemCount="NA"
|
||||
// }
|
||||
|
||||
// try { profit = firstRowData.metrics.profit.batch_sum_profit;}
|
||||
// catch (e) {profit = 'NA'}
|
||||
|
||||
// if (!profit) {profit = 'NA'}
|
||||
period = firstRowData.note ? firstRowData.note.substring(0, 14) : '';
|
||||
try {
|
||||
batch_note = firstRowData.note ? firstRowData.note.split("N:")[1].trim() : ''
|
||||
} catch (e) { batch_note = ''}
|
||||
started = firstRowData.started
|
||||
stratinId = firstRowData.strat_id
|
||||
var newBatchHeader = {batch_id:group, profit:profit, itemCount:itemCount, period:period, started:started, stratinId:stratinId}
|
||||
symbol = firstRowData.symbol
|
||||
if (period.startsWith("SCHED")) {
|
||||
period = "SCHEDULER";
|
||||
}
|
||||
var newBatchHeader = {batch_id:group, batch_note:batch_note, profit:profit, itemCount:itemCount, period:period, started:started, stratinId:stratinId, symbol:symbol};
|
||||
batchHeaders.push(newBatchHeader)
|
||||
}
|
||||
//uz je v poli, ale mame novejsi (pribyl v ramci backtestu napr.) - updatujeme
|
||||
else if (new Date(existingBatch.started) < new Date(firstRowData.started)) {
|
||||
itemCount = extractNumbersFromString(firstRowData.note);
|
||||
profit = firstRowData.metrics.profit.batch_sum_profit;
|
||||
// try {itemCount = extractNumbersFromString(firstRowData.note);}
|
||||
// catch (e) {itemCount = 'NA'}
|
||||
// try {profit = firstRowData.metrics.profit.batch_sum_profit;}
|
||||
// catch (e) {profit = 'NA'}
|
||||
period = firstRowData.note ? firstRowData.note.substring(0, 14) : '';
|
||||
if (period.startsWith("SCHED")) {
|
||||
period = "SCHEDULER";
|
||||
}
|
||||
try {
|
||||
batch_note = firstRowData.note ? firstRowData.note.split("N:")[1].trim() : ''
|
||||
} catch (e) { batch_note = ''}
|
||||
started = firstRowData.started
|
||||
stratinId = firstRowData.id
|
||||
stratinId = firstRowData.strat_id
|
||||
symbol = firstRowData.symbol
|
||||
existingBatch.itemCount = itemCount;
|
||||
existingBatch.profit = profit;
|
||||
existingBatch.period = period;
|
||||
existingBatch.started = started;
|
||||
existingBatch.batch_note = batch_note
|
||||
}
|
||||
//uz je v poli batchu vytahneme
|
||||
else {
|
||||
@ -312,6 +349,8 @@ function initialize_archiveRecords() {
|
||||
period = existingBatch.period
|
||||
started = existingBatch.started
|
||||
stratinId = existingBatch.stratinId
|
||||
symbol = existingBatch.symbol
|
||||
batch_note = existingBatch.batch_note
|
||||
}
|
||||
}
|
||||
|
||||
@ -350,8 +389,9 @@ function initialize_archiveRecords() {
|
||||
//console.log(group, groupId, stratinId)
|
||||
//var groupHeaderContent = '<span class="batchheader-batch-id">'+(group ? '<span class="color-tag" style="background-color:' + getColorForId(stratinId) + ';"></span>Batch ID: ' + group: 'No Batch')+'</span>';
|
||||
var groupHeaderContent = '<span class="batchheader-batch-id">'+ icon + (group ? 'Batch ID: ' + group: 'No Batch')+'</span>';
|
||||
groupHeaderContent += (group ? ' <span class="batchheader-count-info">(' + itemCount + ')</span>' + ' <span class="batchheader-period-info">' + period + '</span> <span class="batchheader-profit-info" style="color:'+profit_icon_color+'">Profit: ' + profit + '</span>' : '');
|
||||
groupHeaderContent += (group ? '<span class="batchheader-symbol-info" style="color:'+icon_color+'">' + symbol + '</span><span class="batchheader-count-info">(' + itemCount + ')</span>' + ' <span class="batchheader-period-info">' + period + '</span> <span class="batchheader-profit-info" style="color:'+profit_icon_color+'">Profit: ' + profit + '</span>' : '');
|
||||
groupHeaderContent += group ? tools : ""
|
||||
groupHeaderContent += group ? '<span class="batchheader-note-info">' + batch_note + '</span>' : ''
|
||||
return $('<tr/>')
|
||||
.append('<td colspan="18">' + groupHeaderContent + '</td>')
|
||||
.attr('data-name', groupId)
|
||||
@ -359,6 +399,7 @@ function initialize_archiveRecords() {
|
||||
.addClass(state);
|
||||
}
|
||||
},
|
||||
lengthMenu: [ [10, 50, 200, 500, -1], [10, 50, 200, 500, "All"] ],
|
||||
drawCallback: function (settings) {
|
||||
//console.log("drawcallback", configData)
|
||||
setTimeout(function(){
|
||||
|
||||
100
v2realbot/static/js/tables/runmanager/functions.js
Normal file
100
v2realbot/static/js/tables/runmanager/functions.js
Normal file
@ -0,0 +1,100 @@
|
||||
function refresh_runmanager_and_callback(row, callback) {
|
||||
//console.log("entering refresh")
|
||||
var request = $.ajax({
|
||||
url: "/run_manager_records/"+row.id,
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
method:"GET",
|
||||
contentType: "application/json",
|
||||
dataType: "json",
|
||||
success:function(data){
|
||||
//console.log("fetched data ok")
|
||||
//console.log(JSON.stringify(data,null,2));
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
window.alert(JSON.stringify(xhr));
|
||||
console.log(JSON.stringify(xhr));
|
||||
}
|
||||
});
|
||||
|
||||
// Handling the responses of both requests
|
||||
$.when(request).then(function(response) {
|
||||
// Both requests have completed successfully
|
||||
//console.log("Result from request:", response);
|
||||
//console.log("Response received. calling callback")
|
||||
//call callback function
|
||||
callback(response)
|
||||
|
||||
}, function(error) {
|
||||
// Handle errors from either request here
|
||||
// Example:
|
||||
console.error("Error from first request:", error);
|
||||
console.log("requesting id error")
|
||||
});
|
||||
}
|
||||
|
||||
function delete_runmanager_row(id) {
|
||||
$.ajax({
|
||||
url:"/run_manager_records/"+id,
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
method:"DELETE",
|
||||
contentType: "application/json",
|
||||
dataType: "json",
|
||||
// data: JSON.stringify(ids),
|
||||
success:function(data){
|
||||
$('#delFormRunmanager')[0].reset();
|
||||
window.$('#delModalRunmanager').modal('hide');
|
||||
$('#deleterunmanager').attr('disabled', false);
|
||||
//console.log(data)
|
||||
runmanagerRecords.ajax.reload();
|
||||
disable_runmanager_buttons()
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
window.alert(JSON.stringify(xhr));
|
||||
console.log(JSON.stringify(xhr));
|
||||
$('#deleterunmanager').attr('disabled', false);
|
||||
//archiveRecords.ajax.reload();
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
//enable/disable based if row(s) selected
|
||||
function disable_runmanager_buttons() {
|
||||
//disable buttons (enable on row selection)
|
||||
//$('#button_add_sched').attr('disabled','disabled');
|
||||
$('#button_edit_sched').attr('disabled','disabled');
|
||||
$('#button_delete_sched').attr('disabled','disabled');
|
||||
$('#button_history_sched').attr('disabled','disabled');
|
||||
}
|
||||
|
||||
function enable_runmanager_buttons() {
|
||||
//enable buttons
|
||||
//$('#button_add_sched').attr('disabled',false);
|
||||
$('#button_edit_sched').attr('disabled',false);
|
||||
$('#button_delete_sched').attr('disabled',false);
|
||||
$('#button_history_sched').attr('disabled',false);
|
||||
}
|
||||
|
||||
// Function to update options
|
||||
function updateSelectOptions(type) {
|
||||
var allOptions = {
|
||||
'paper': '<option value="paper">paper</option>',
|
||||
'live': '<option value="live">live</option>',
|
||||
'backtest': '<option value="backtest">backtest</option>',
|
||||
'prep': '<option value="prep">prep</option>'
|
||||
};
|
||||
|
||||
var allowedOptions = (type === "schedule") ? ['paper', 'live'] : Object.keys(allOptions);
|
||||
|
||||
var $select = $('#runmanmode');
|
||||
$select.empty(); // Clear current options
|
||||
|
||||
allowedOptions.forEach(function(opt) {
|
||||
$select.append(allOptions[opt]); // Append allowed options
|
||||
});
|
||||
}
|
||||
296
v2realbot/static/js/tables/runmanager/handlers.js
Normal file
296
v2realbot/static/js/tables/runmanager/handlers.js
Normal file
@ -0,0 +1,296 @@
|
||||
/* <button title="Create new" id="button_add_sched" class="btn btn-outline-success btn-sm">Add</button>
|
||||
<button title="Edit selected" id="button_edit_sched" class="btn btn-outline-success btn-sm">Edit</button>
|
||||
<button title="Delete selected" id="button_delete_sched" class="btn btn-outline-success btn-sm">Delete</button>
|
||||
|
||||
|
||||
id="delModalRunmanager"
|
||||
id="addeditModalRunmanager" id="runmanagersubmit" == "Add vs Edit"
|
||||
*/
|
||||
|
||||
// Function to apply filter
|
||||
function applyFilter(filter) {
|
||||
switch (filter) {
|
||||
case 'filterSchedule':
|
||||
runmanagerRecords.column(1).search('schedule').draw();
|
||||
break;
|
||||
case 'filterQueue':
|
||||
runmanagerRecords.column(1).search('queue').draw();
|
||||
break;
|
||||
// default:
|
||||
// runmanagerRecords.search('').columns().search('').draw();
|
||||
// break;
|
||||
}
|
||||
}
|
||||
|
||||
// Function to get the ID of current active filter
|
||||
function getCurrentFilter() {
|
||||
var activeFilter = $('input[name="filterOptions"]:checked').attr('id');
|
||||
console.log("activeFilter", activeFilter)
|
||||
return activeFilter;
|
||||
}
|
||||
|
||||
// Function to show/hide input fields based on the current filter
|
||||
function updateInputFields() {
|
||||
var activeFilter = getCurrentFilter();
|
||||
|
||||
switch (activeFilter) {
|
||||
case 'filterSchedule':
|
||||
$('#runmantestlist_id_div').hide();
|
||||
$('#runmanbt_from_div').hide();
|
||||
$('#runmanbt_to_div').hide();
|
||||
|
||||
$('#runmanvalid_from_div').show();
|
||||
$('#runmanvalid_to_div').show();
|
||||
$('#runmanstart_time_div').show();
|
||||
$('#runmanstop_time_div').show();
|
||||
break;
|
||||
case 'filterQueue':
|
||||
$('#runmantestlist_id_div').show();
|
||||
$('#runmanbt_from_div').show();
|
||||
$('#runmanbt_to_div').show();
|
||||
|
||||
$('#runmanvalid_from_div').hide();
|
||||
$('#runmanvalid_to_div').hide();
|
||||
$('#runmanstart_time_div').hide();
|
||||
$('#runmanstop_time_div').hide();
|
||||
break;
|
||||
default:
|
||||
//$('#inputForSchedule, #inputForQueue').hide();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//event handlers for runmanager table
|
||||
$(document).ready(function () {
|
||||
initialize_runmanagerRecords();
|
||||
runmanagerRecords.ajax.reload();
|
||||
disable_runmanager_buttons();
|
||||
|
||||
//on click on #button_refresh_sched call runmanagerRecords.ajax.reload()
|
||||
$('#button_refresh_sched').click(function () {
|
||||
runmanagerRecords.ajax.reload();
|
||||
});
|
||||
|
||||
// Event listener for changes in the radio buttons
|
||||
$('input[name="filterOptions"]').on('change', function() {
|
||||
var selectedFilter = $(this).attr('id');
|
||||
applyFilter(selectedFilter);
|
||||
// Save the selected filter to local storage
|
||||
localStorage.setItem('selectedFilter', selectedFilter);
|
||||
});
|
||||
|
||||
|
||||
// Load the last selected filter from local storage and apply it
|
||||
var lastSelectedFilter = localStorage.getItem('selectedFilter');
|
||||
if (lastSelectedFilter) {
|
||||
$('#' + lastSelectedFilter).prop('checked', true).change();
|
||||
}
|
||||
|
||||
//listen for changes on weekday enabling button
|
||||
$('#runman_enable_weekdays').change(function() {
|
||||
if ($(this).is(':checked')) {
|
||||
$('.weekday-checkboxes').show();
|
||||
} else {
|
||||
$('.weekday-checkboxes').hide();
|
||||
}
|
||||
});
|
||||
|
||||
//selectable rows in runmanager table
|
||||
$('#runmanagerTable tbody').on('click', 'tr', function () {
|
||||
if ($(this).hasClass('selected')) {
|
||||
//$(this).removeClass('selected');
|
||||
//aadd here condition that disable is called only when there is no other selected class on tr[data-group-name]
|
||||
// Check if there are no other selected rows before disabling buttons
|
||||
if ($('#runmanagerTable tr.selected').length === 1) {
|
||||
disable_runmanager_buttons();
|
||||
}
|
||||
//disable_arch_buttons()
|
||||
} else {
|
||||
//archiveRecords.$('tr.selected').removeClass('selected');
|
||||
$(this).addClass('selected');
|
||||
enable_runmanager_buttons()
|
||||
}
|
||||
});
|
||||
|
||||
|
||||
//delete button
|
||||
$('#button_delete_sched').click(function () {
|
||||
row = runmanagerRecords.row('.selected').data();
|
||||
window.$('#delModalRunmanager').modal('show');
|
||||
$('#delidrunmanager').val(row.id);
|
||||
// $('#action').val('delRecord');
|
||||
// $('#save').val('Delete');
|
||||
});
|
||||
|
||||
//button add
|
||||
$('#button_add_sched').click(function () {
|
||||
window.$('#addeditModalRunmanager').modal('show');
|
||||
$('#addeditFormRunmanager')[0].reset();
|
||||
//$("#runmanid").prop('readonly', false);
|
||||
if (getCurrentFilter() == 'filterQueue') {
|
||||
mode = 'queue';
|
||||
} else {
|
||||
mode = 'schedule';
|
||||
}
|
||||
//set modus
|
||||
$('#runmanmoddus').val(mode);
|
||||
//updates fields according to selected type
|
||||
updateInputFields();
|
||||
updateSelectOptions(mode);
|
||||
// Initially, check the value of "batch" and enable/disable "btfrom" and "btto" accordingly
|
||||
if ($("#runmantestlist_id").val() !== "") {
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", true);
|
||||
} else {
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", false);
|
||||
}
|
||||
|
||||
// Listen for changes in the "batch" input and diasble/enable "btfrom" and "btto" accordingly
|
||||
$("#runmantestlist_id").on("input", function() {
|
||||
if ($(this).val() !== "") {
|
||||
// If "batch" is not empty, disable "from" and "to"
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", true);
|
||||
} else {
|
||||
// If "batch" is empty, enable "from" and "to"
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", false);
|
||||
}
|
||||
});
|
||||
|
||||
$('.modal-title_run').html("<i class='fa fa-plus'></i> Add Record");
|
||||
$('#runmanagersubmit').val('Add');
|
||||
$('#runmanager_enable_weekdays').prop('checked', false);
|
||||
$('.weekday-checkboxes').hide();
|
||||
});
|
||||
|
||||
//edit button
|
||||
$('#button_edit_sched').click(function () {
|
||||
row = runmanagerRecords.row('.selected').data();
|
||||
if (row == undefined) {
|
||||
return
|
||||
}
|
||||
window.$('#addeditModalRunmanager').modal('show');
|
||||
//set fields as readonly
|
||||
//$("#runmanid").prop('readonly', true);
|
||||
//$("#runmanmoddus").prop('readonly', true);
|
||||
console.log("pred editem puvodni row", row)
|
||||
refresh_runmanager_and_callback(row, show_edit_modal)
|
||||
|
||||
function show_edit_modal(row) {
|
||||
console.log("pred editem refreshnuta row", row);
|
||||
$('#addeditFormRunmanager')[0].reset();
|
||||
$('.modal-title_run').html("<i class='fa fa-plus'></i> Edit Record");
|
||||
$('#runmanagersubmit').val('Edit');
|
||||
|
||||
//updates fields according to selected type
|
||||
updateInputFields();
|
||||
// get shared attributess
|
||||
$('#runmanid').val(row.id);
|
||||
$('#runmanhistory').val(row.history);
|
||||
$('#runmanlast_processed').val(row.last_processed);
|
||||
$('#runmanstrat_id').val(row.strat_id);
|
||||
$('#runmanmode').val(row.mode);
|
||||
$('#runmanmoddus').val(row.moddus);
|
||||
$('#runmanaccount').val(row.account);
|
||||
$('#runmanstatus').val(row.status);
|
||||
$('#runmanbatch_id').val(row.batch_id);
|
||||
$('#runmanrunner_id').val(row.runner_id);
|
||||
$("#runmanilog_save").prop("checked", row.ilog_save);
|
||||
$('#runmannote').val(row.note);
|
||||
|
||||
$('#runmantestlist_id').val(row.testlist_id);
|
||||
$('#runmanbt_from').val(row.bt_from);
|
||||
$('#runmanbt_to').val(row.bt_to);
|
||||
|
||||
$('#runmanvalid_from').val(row.valid_from);
|
||||
$('#runmanvalid_to').val(row.valid_to);
|
||||
$('#runmanstart_time').val(row.start_time);
|
||||
$('#runmanstop_time').val(row.stop_time);
|
||||
|
||||
// Initially, check the value of "batch" and enable/disable "from" and "to" accordingly
|
||||
if ($("#runmantestlist_id").val() !== "") {
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", true);
|
||||
} else {
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", false);
|
||||
}
|
||||
|
||||
// Listen for changes in the "batch" input
|
||||
$("#runmantestlist_id").on("input", function() {
|
||||
if ($(this).val() !== "") {
|
||||
// If "batch" is not empty, disable "from" and "to"
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", true);
|
||||
} else {
|
||||
// If "batch" is empty, enable "from" and "to"
|
||||
$("#runmanbt_from, #runmanbt_to").prop("disabled", false);
|
||||
}
|
||||
});
|
||||
|
||||
type = $('#runmanmoddus').val();
|
||||
updateSelectOptions(type);
|
||||
|
||||
//add weekdays_filter transformation from string "1,2,3" to array [1,2,3]
|
||||
|
||||
// Assuming you have row.weekend_filter available here
|
||||
var weekdayFilter = row.weekdays_filter;
|
||||
|
||||
//
|
||||
|
||||
if (weekdayFilter) {
|
||||
$('#runman_enable_weekdays').prop('checked', true);
|
||||
$(".weekday-checkboxes").show();
|
||||
|
||||
// Map numbers to weekday names
|
||||
var dayOfWeekMap = {
|
||||
"0": "monday",
|
||||
"1": "tuesday",
|
||||
"2": "wednesday",
|
||||
"3": "thursday",
|
||||
"4": "friday",
|
||||
"5": "saturday", // Adjust if needed for your mapping
|
||||
"6": "sunday" // Adjust if needed for your mapping
|
||||
};
|
||||
|
||||
// Iterate through the selected days
|
||||
$.each(weekdayFilter, function(index, dayIndex) {
|
||||
var dayOfWeek = dayOfWeekMap[dayIndex];
|
||||
if (dayOfWeek) { // Make sure the day exists in the map
|
||||
$("#" + dayOfWeek).prop("checked", true);
|
||||
}
|
||||
});
|
||||
}
|
||||
else {
|
||||
$('#runman_enable_weekdays').prop('checked', false);
|
||||
$(".weekday-checkboxes").hide();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
});
|
||||
|
||||
//edit button
|
||||
$('#button_history_sched').click(function () {
|
||||
row = runmanagerRecords.row('.selected').data();
|
||||
if (row == undefined) {
|
||||
return
|
||||
}
|
||||
window.$('#historyModalRunmanager').modal('show');
|
||||
//set fields as readonly
|
||||
//$("#runmanid").prop('readonly', true);
|
||||
//$("#runmanmoddus").prop('readonly', true);
|
||||
//console.log("pred editem puvodni row", row)
|
||||
refresh_runmanager_and_callback(row, show_history_modal)
|
||||
|
||||
function show_history_modal(row) {
|
||||
//console.log("pred editem refreshnuta row", row);
|
||||
$('#historyModalRunmanagerForm')[0].reset();
|
||||
// get shared attributess
|
||||
$('#RunmanId').val(row.id);
|
||||
var date = new Date(row.last_processed);
|
||||
formatted = date.toLocaleString('cs-CZ', {
|
||||
timeZone: 'America/New_York',
|
||||
})
|
||||
$('#Runmanlast_processed').val(formatted);
|
||||
$('#Runmanhistory').val(row.history);
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
322
v2realbot/static/js/tables/runmanager/init.js
Normal file
322
v2realbot/static/js/tables/runmanager/init.js
Normal file
@ -0,0 +1,322 @@
|
||||
var runmanagerRecords = null
|
||||
|
||||
//ekvivalent to ready
|
||||
function initialize_runmanagerRecords() {
|
||||
|
||||
//archive table
|
||||
runmanagerRecords =
|
||||
$('#runmanagerTable').DataTable( {
|
||||
ajax: {
|
||||
url: '/run_manager_records/',
|
||||
dataSrc: '',
|
||||
method:"GET",
|
||||
contentType: "application/json",
|
||||
// dataType: "json",
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
data: function (d) {
|
||||
return JSON.stringify(d);
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
//var err = eval("(" + xhr.responseText + ")");
|
||||
//window.alert(JSON.stringify(xhr));
|
||||
console.log(JSON.stringify(xhr));
|
||||
}
|
||||
},
|
||||
columns: [ { data: 'id' },
|
||||
{ data: 'moddus' },
|
||||
{ data: 'strat_id' },
|
||||
{data: 'symbol'},
|
||||
{data: 'account'},
|
||||
{data: 'mode'},
|
||||
{data: 'note'},
|
||||
{data: 'ilog_save'},
|
||||
{data: 'bt_from'},
|
||||
{data: 'bt_to'},
|
||||
{data: 'weekdays_filter', visible: true},
|
||||
{data: 'batch_id', visible: true},
|
||||
{data: 'start_time', visible: true},
|
||||
{data: 'stop_time', visible: true},
|
||||
{data: 'status'},
|
||||
{data: 'last_processed', visible: true},
|
||||
{data: 'history', visible: false},
|
||||
{data: 'valid_from', visible: true},
|
||||
{data: 'valid_to', visible: true},
|
||||
{data: 'testlist_id', visible: true},
|
||||
{data: 'strat_running', visible: true},
|
||||
{data: 'runner_id', visible: true},
|
||||
{data: 'market', visible: true},
|
||||
],
|
||||
paging: true,
|
||||
processing: true,
|
||||
serverSide: false,
|
||||
columnDefs: [
|
||||
{ //history
|
||||
targets: [6],
|
||||
render: function(data, type, row, meta) {
|
||||
if (!data) return data;
|
||||
var stateClass = 'truncated-text';
|
||||
var uniqueId = 'note-' + row.id;
|
||||
|
||||
if (localStorage.getItem(uniqueId) === 'expanded') {
|
||||
stateClass = 'expanded-text';
|
||||
}
|
||||
|
||||
if (type === 'display') {
|
||||
return '<div class="' + stateClass + '" id="' + uniqueId + '">' + data + '</div>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{ //iloc_save
|
||||
targets: [7],
|
||||
render: function ( data, type, row ) {
|
||||
//if ilog_save true
|
||||
if (data) {
|
||||
return '<span class="material-symbols-outlined">done_outline</span>'
|
||||
}
|
||||
else {
|
||||
return null
|
||||
}
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [10], //weekdays
|
||||
render: function (data, type, row) {
|
||||
if (!data) return data;
|
||||
// Map each number in the array to a weekday
|
||||
var weekdays = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday"];
|
||||
return data.map(function(dayNumber) {
|
||||
return weekdays[dayNumber];
|
||||
}).join(', ');
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [0, 21], //interni id, runner_id
|
||||
render: function ( data, type, row ) {
|
||||
if (!data) return data;
|
||||
if (type === 'display') {
|
||||
return '<div class="tdnowrap" data-bs-toggle="tooltip" data-bs-placement="top" title="'+data+'">'+data+'</div>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [2], //strat_id
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
//console.log("arch")
|
||||
var color = getColorForId(data);
|
||||
return '<div class="tdnowrap" data-bs-toggle="tooltip" data-bs-placement="top" title="'+data+'"><span class="color-tag" style="background-color:' + color + ';"></span>'+data+'</div>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [3,12,13], //symbol, start_time, stop_time
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
//console.log("arch")
|
||||
var color = getColorForId(row.strat_id);
|
||||
return '<span style="color:' + color + ';">'+data+'</span>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [16], //history
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
if (!data) data = "";
|
||||
return '<div data-bs-toggle="tooltip" data-bs-placement="top" title="'+data+'">'+data+'</div>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [14], //status
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
//console.log("arch")
|
||||
var color = data == "active" ? "#3f953f" : "#f84c4c";
|
||||
return '<span style="color:' + color + ';">'+data+'</span>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [20], //strat_running
|
||||
render: function ( data, type, row ) {
|
||||
if (type === 'display') {
|
||||
if (!data) data = "";
|
||||
console.log("running", data)
|
||||
//var color = data == "active" ? "#3f953f" : "#f84c4c";
|
||||
data = data ? "running" : ""
|
||||
return '<div title="' + row.runner_id + '" style="color:#3f953f;">'+data+'</div>';
|
||||
}
|
||||
return data;
|
||||
},
|
||||
},
|
||||
// {
|
||||
// targets: [0,17],
|
||||
// render: function ( data, type, row ) {
|
||||
// if (!data) return data
|
||||
// return '<div class="tdnowrap" title="'+data+'">'+data+'</i>'
|
||||
// },
|
||||
// },
|
||||
{
|
||||
targets: [15,17, 18, 8, 9], //start, stop, valid_from, valid_to, bt_from, bt_to, last_proccessed
|
||||
render: function ( data, type, row ) {
|
||||
if (!data) return data
|
||||
if (type == "sort") {
|
||||
return new Date(data).getTime();
|
||||
}
|
||||
var date = new Date(data);
|
||||
tit = date.toLocaleString('cs-CZ', {
|
||||
timeZone: 'America/New_York',
|
||||
})
|
||||
return '<div title="'+tit+'">'+ format_date(data,true,false)+'</div>'
|
||||
// if (isToday(now)) {
|
||||
// //return local time only
|
||||
// return '<div title="'+tit+'">'+ 'dnes ' + format_date(data,true,true)+'</div>'
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// //return local datetime
|
||||
// return '<div title="'+tit+'">'+ format_date(data,true,false)+'</div>'
|
||||
// }
|
||||
},
|
||||
},
|
||||
// {
|
||||
// targets: [6],
|
||||
// render: function ( data, type, row ) {
|
||||
// now = new Date(data)
|
||||
// if (type == "sort") {
|
||||
// return new Date(data).getTime();
|
||||
// }
|
||||
// var date = new Date(data);
|
||||
// tit = date.toLocaleString('cs-CZ', {
|
||||
// timeZone: 'America/New_York',
|
||||
// })
|
||||
|
||||
// if (isToday(now)) {
|
||||
// //return local time only
|
||||
// return '<div title="'+tit+'" class="token level comment">'+ 'dnes ' + format_date(data,false,true)+'</div>'
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// //return local datetime
|
||||
// return '<div title="'+tit+'" class="token level number">'+ format_date(data,false,false)+'</div>'
|
||||
// }
|
||||
// },
|
||||
// },
|
||||
// {
|
||||
// targets: [9,10],
|
||||
// render: function ( data, type, row ) {
|
||||
// if (type == "sort") {
|
||||
// return new Date(data).getTime();
|
||||
// }
|
||||
// //console.log(data)
|
||||
// //market datetime
|
||||
// return data ? format_date(data, true) : data
|
||||
// },
|
||||
// },
|
||||
// {
|
||||
// targets: [2],
|
||||
// render: function ( data, type, row ) {
|
||||
// return '<div class="tdname tdnowrap" title="'+data+'">'+data+'</div>'
|
||||
// },
|
||||
// },
|
||||
// // {
|
||||
// // targets: [4],
|
||||
// // render: function ( data, type, row ) {
|
||||
// // return '<div class="tdname tdnowrap" title="'+data+'">'+data+'</div>'
|
||||
// // },
|
||||
// // },
|
||||
// {
|
||||
// targets: [16],
|
||||
// render: function ( data, type, row ) {
|
||||
// //console.log("metrics", data)
|
||||
// try {
|
||||
// data = JSON.parse(data)
|
||||
// }
|
||||
// catch (error) {
|
||||
// //console.log(error)
|
||||
// }
|
||||
// var res = JSON.stringify(data)
|
||||
// var unquoted = res.replace(/"([^"]+)":/g, '$1:')
|
||||
|
||||
// //zobrazujeme jen kratkou summary pokud mame, jinak davame vse, do titlu davame vzdy vse
|
||||
// //console.log(data)
|
||||
// short = null
|
||||
// if ((data) && (data.profit) && (data.profit.sum)) {
|
||||
// short = data.profit.sum
|
||||
// }
|
||||
// else {
|
||||
// short = unquoted
|
||||
// }
|
||||
// return '<div class="tdmetrics" title="'+unquoted+'">'+short+'</div>'
|
||||
// },
|
||||
// },
|
||||
// {
|
||||
// targets: [4],
|
||||
// render: function ( data, type, row ) {
|
||||
// return '<div class="tdnote" title="'+data+'">'+data+'</div>'
|
||||
// },
|
||||
// },
|
||||
// {
|
||||
// targets: [13,14,15],
|
||||
// render: function ( data, type, row ) {
|
||||
// return '<div class="tdsmall">'+data+'</div>'
|
||||
// },
|
||||
// },
|
||||
// {
|
||||
// targets: [11],
|
||||
// render: function ( data, type, row ) {
|
||||
// //if ilog_save true
|
||||
// if (data) {
|
||||
// return '<span class="material-symbols-outlined">done_outline</span>'
|
||||
// }
|
||||
// else {
|
||||
// return null
|
||||
// }
|
||||
// },
|
||||
// },
|
||||
{
|
||||
targets: [4], //account
|
||||
render: function ( data, type, row ) {
|
||||
//if ilog_save true
|
||||
if (data == "ACCOUNT1") {
|
||||
res="ACC1"
|
||||
}
|
||||
else if (data == "ACCOUNT2") {
|
||||
res="ACC2"
|
||||
}
|
||||
else { res=data}
|
||||
return res
|
||||
},
|
||||
},
|
||||
{
|
||||
targets: [5], //mode
|
||||
render: function ( data, type, row ) {
|
||||
//if ilog_save true
|
||||
if (data == "backtest") {
|
||||
res="bt"
|
||||
}
|
||||
else { res=data}
|
||||
return res
|
||||
},
|
||||
}
|
||||
],
|
||||
order: [[1, 'asc']],
|
||||
select: {
|
||||
info: true,
|
||||
style: 'multi',
|
||||
//selector: 'tbody > tr:not(.group-header)'
|
||||
selector: 'tbody > tr:not(.group-header)'
|
||||
},
|
||||
paging: true
|
||||
});
|
||||
|
||||
}
|
||||
195
v2realbot/static/js/tables/runmanager/modals.js
Normal file
195
v2realbot/static/js/tables/runmanager/modals.js
Normal file
@ -0,0 +1,195 @@
|
||||
//delete modal
|
||||
$("#delModalRunmanager").on('submit','#delFormRunmanager', function(event){
|
||||
event.preventDefault();
|
||||
$('#deleterunmanager').attr('disabled','disabled');
|
||||
|
||||
//get val from #delidrunmanager
|
||||
id = $('#delidrunmanager').val();
|
||||
delete_runmanager_row(id);
|
||||
});
|
||||
|
||||
//add api
|
||||
// fetch(`/run_manager_records/`, {
|
||||
// method: 'POST',
|
||||
// headers: {
|
||||
// 'Content-Type': 'application/json',
|
||||
// 'X-API-Key': API_KEY
|
||||
// },
|
||||
// body: JSON.stringify(newRecord)
|
||||
// })
|
||||
|
||||
// fetch(`/run_manager_records/${recordId}`, {
|
||||
// method: 'PATCH',
|
||||
// headers: {
|
||||
// 'Content-Type': 'application/json',
|
||||
// 'X-API-Key': API_KEY
|
||||
// },
|
||||
// body: JSON.stringify(updatedData)
|
||||
// })
|
||||
|
||||
function getCheckedWeekdays() {
|
||||
const checkboxes = document.querySelectorAll('input[name="weekdays_filter[]"]:checked');
|
||||
const selectedDays = Array.from(checkboxes).map(checkbox => checkbox.value);
|
||||
return selectedDays;
|
||||
}
|
||||
|
||||
|
||||
//submit form
|
||||
$("#addeditModalRunmanager").on('submit','#addeditFormRunmanager', function(event){
|
||||
//event.preventDefault();
|
||||
//code for add
|
||||
if ($('#runmanagersubmit').val() == "Add") {
|
||||
|
||||
event.preventDefault();
|
||||
//set id as editable
|
||||
$('#runmanagersubmit').attr('disabled','disabled');
|
||||
//trow = runmanagerRecords.row('.selected').data();
|
||||
//note = $('#editnote').val()
|
||||
|
||||
// Handle weekdays functionality
|
||||
var weekdays = [];
|
||||
if ($('#runman_enable_weekdays').is(':checked')) {
|
||||
$('#addeditFormRunmanager input[name="weekdays"]:checked').each(function() {
|
||||
var weekday = $(this).val();
|
||||
switch(weekday) {
|
||||
case 'monday': weekdays.push(0); break;
|
||||
case 'tuesday': weekdays.push(1); break;
|
||||
case 'wednesday': weekdays.push(2); break;
|
||||
case 'thursday': weekdays.push(3); break;
|
||||
case 'friday': weekdays.push(4); break;
|
||||
// Add cases for Saturday and Sunday if needed
|
||||
}
|
||||
});
|
||||
}
|
||||
console.log("weekdays pole", weekdays)
|
||||
|
||||
var formData = $(this).serializeJSON();
|
||||
console.log("formData", formData)
|
||||
|
||||
delete formData["enable_weekdays"]
|
||||
delete formData["weekdays"]
|
||||
|
||||
//pokud je zatrzeno tak aplikujeme filter, jinak nevyplnujeme
|
||||
if (weekdays.length > 0) {
|
||||
formData.weekdays_filter = weekdays
|
||||
}
|
||||
console.log(formData)
|
||||
if ($('#runmanilog_save').prop('checked')) {
|
||||
formData.ilog_save = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
formData.ilog_save = false;
|
||||
}
|
||||
|
||||
//if (formData.batch_id == "") {delete formData["batch_id"];}
|
||||
|
||||
//projede vsechny atributy a kdyz jsou "" tak je smaze, default nahradi backend
|
||||
for (let key in formData) {
|
||||
if (formData.hasOwnProperty(key) && formData[key] === "") {
|
||||
delete formData[key];
|
||||
}
|
||||
}
|
||||
|
||||
jsonString = JSON.stringify(formData);
|
||||
console.log("json string pro formData pred odeslanim", jsonString)
|
||||
$.ajax({
|
||||
url:"/run_manager_records/",
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
method:"POST",
|
||||
contentType: "application/json",
|
||||
// dataType: "json",
|
||||
data: jsonString,
|
||||
success:function(data){
|
||||
$('#addeditFormRunmanager')[0].reset();
|
||||
window.$('#addeditModalRunmanager').modal('hide');
|
||||
$('#runmanagersubmit').attr('disabled', false);
|
||||
runmanagerRecords.ajax.reload();
|
||||
disable_runmanager_buttons();
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
window.alert(JSON.stringify(xhr));
|
||||
console.log(JSON.stringify(xhr));
|
||||
$('#runmanagersubmit').attr('disabled', false);
|
||||
}
|
||||
})
|
||||
}
|
||||
//code for edit
|
||||
else {
|
||||
event.preventDefault();
|
||||
$('#runmanagersubmit').attr('disabled','disabled');
|
||||
//trow = runmanagerRecords.row('.selected').data();
|
||||
//note = $('#editnote').val()
|
||||
|
||||
// Handle weekdays functionality
|
||||
var weekdays = [];
|
||||
if ($('#runman_enable_weekdays').is(':checked')) {
|
||||
$('#addeditFormRunmanager input[name="weekdays"]:checked').each(function() {
|
||||
var weekday = $(this).val();
|
||||
switch(weekday) {
|
||||
case 'monday': weekdays.push(0); break;
|
||||
case 'tuesday': weekdays.push(1); break;
|
||||
case 'wednesday': weekdays.push(2); break;
|
||||
case 'thursday': weekdays.push(3); break;
|
||||
case 'friday': weekdays.push(4); break;
|
||||
// Add cases for Saturday and Sunday if needed
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
var formData = $(this).serializeJSON();
|
||||
delete formData["enable_weekdays"]
|
||||
delete formData["weekdays"]
|
||||
|
||||
//pokud je zatrzeno tak aplikujeme filter, jinak nevyplnujeme
|
||||
if (weekdays.length > 0) {
|
||||
formData.weekdays_filter = weekdays
|
||||
}
|
||||
console.log(formData)
|
||||
if ($('#runmanilog_save').prop('checked')) {
|
||||
formData.ilog_save = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
formData.ilog_save = false;
|
||||
}
|
||||
|
||||
//projede formatributy a kdyz jsou "" tak je smaze, default nahradi backend - tzn. smaze se puvodni hodnota
|
||||
for (let key in formData) {
|
||||
if (formData.hasOwnProperty(key) && formData[key] === "") {
|
||||
delete formData[key];
|
||||
}
|
||||
}
|
||||
|
||||
jsonString = JSON.stringify(formData);
|
||||
console.log("EDIT json string pro formData pred odeslanim", jsonString);
|
||||
$.ajax({
|
||||
url:"/run_manager_records/"+formData.id,
|
||||
beforeSend: function (xhr) {
|
||||
xhr.setRequestHeader('X-API-Key',
|
||||
API_KEY); },
|
||||
method:"PATCH",
|
||||
contentType: "application/json",
|
||||
// dataType: "json",
|
||||
data: jsonString,
|
||||
success:function(data){
|
||||
console.log("EDIT success data", data);
|
||||
$('#addeditFormRunmanager')[0].reset();
|
||||
window.$('#addeditModalRunmanager').modal('hide');
|
||||
$('#runmanagersubmit').attr('disabled', false);
|
||||
runmanagerRecords.ajax.reload();
|
||||
disable_runmanager_buttons();
|
||||
},
|
||||
error: function(xhr, status, error) {
|
||||
var err = eval("(" + xhr.responseText + ")");
|
||||
window.alert(JSON.stringify(xhr));
|
||||
console.log(JSON.stringify(xhr));
|
||||
$('#runmanagersubmit').attr('disabled', false);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
});
|
||||
@ -206,11 +206,25 @@ function initialize_statusheader() {
|
||||
|
||||
}
|
||||
|
||||
//pokud neni v configuraci vracime default
|
||||
function get_ind_config(indName) {
|
||||
//pokud neni v configuraci vracime default, pro tickbased (1) vracime embed false pokud je globalni ()
|
||||
function get_ind_config(indName, tick_based = 0) {
|
||||
|
||||
//def settings
|
||||
def = {name: "ema", titlevisible: false, embed: true, display: true, priceScaleId: "middle", lastValueVisible: false}
|
||||
|
||||
|
||||
//WORKAROUND to DISABLE TICK INDS - skip config
|
||||
var hideTickIndicators = localStorage.getItem('hideTickIndicators');
|
||||
console.log("jsme v IND CONFIG. hodnota hideTickIndicators =",hideTickIndicators)
|
||||
//pokud jde tick_based a mam v local storage nastaveno hideTickInds pak nastavuju embed na false - coz nezobrazi tickindikatory
|
||||
|
||||
if ((tick_based == 1) && hideTickIndicators && hideTickIndicators == "true") {
|
||||
def.embed = false
|
||||
console.log("pro",indName,"vracime embed false")
|
||||
return def
|
||||
}
|
||||
//END WORKAROUND
|
||||
|
||||
if (indConfig == null) {
|
||||
indConfig = get_from_config("indConfig", indConfig_default)
|
||||
}
|
||||
@ -357,9 +371,10 @@ function initialize_chart() {
|
||||
}
|
||||
|
||||
chart = LightweightCharts.createChart(document.getElementById('chart'), chartOptions);
|
||||
chart.applyOptions({ timeScale: { visible: true, timeVisible: true, secondsVisible: true }, crosshair: {
|
||||
chart.applyOptions({ timeScale: { visible: true, timeVisible: true, secondsVisible: true, minBarSpacing: 0.003}, crosshair: {
|
||||
mode: LightweightCharts.CrosshairMode.Normal, labelVisible: true
|
||||
}})
|
||||
console.log("chart intiialized")
|
||||
}
|
||||
|
||||
//mozna atributy last value visible
|
||||
@ -405,14 +420,16 @@ function remove_indicator_buttons() {
|
||||
}
|
||||
|
||||
//pomocna funkce pro vytvoreni buttonu indiaktoru
|
||||
function create_indicator_button(item, index, def) {
|
||||
function create_indicator_button(item, def, noaction = false) {
|
||||
// //div pro kazdy button
|
||||
// var buttonContainer = document.createElement('div');
|
||||
// buttonContainer.classList.add('button-container');
|
||||
|
||||
index = item.indId
|
||||
|
||||
var itemEl = document.createElement('button');
|
||||
itemEl.innerText = item.name;
|
||||
itemEl.id = "IND"+index;
|
||||
itemEl.id = "IND"+item.indId;
|
||||
itemEl.title = item.cnf
|
||||
itemEl.style.color = item.series.options().color;
|
||||
//pokud jde o pridanou on the fly - vybarvime jinak
|
||||
@ -436,9 +453,12 @@ function create_indicator_button(item, index, def) {
|
||||
// actionShow.id = "actionShow";
|
||||
// actionShow.textContent = "Show";
|
||||
|
||||
itemEl.addEventListener('click', function() {
|
||||
onItemClickedToggle(index);
|
||||
});
|
||||
//nepouzivat pro urcite pripady (napr. u hlavnich multioutputu indikatoru) - pouze nese predpis(right click) a left clickem zobrazi outputy
|
||||
if (!noaction) {
|
||||
itemEl.addEventListener('click', function() {
|
||||
onItemClickedToggle(item.indId);
|
||||
});
|
||||
}
|
||||
|
||||
// const actionEdit = document.createElement("div");
|
||||
// actionEdit.id = "actionEdit";
|
||||
@ -446,7 +466,7 @@ function create_indicator_button(item, index, def) {
|
||||
|
||||
itemEl.addEventListener('contextmenu', function(e) {
|
||||
//edit modal zatim nemame
|
||||
onItemClickedEdit(e, index);
|
||||
onItemClickedEdit(e, item.indId);
|
||||
});
|
||||
|
||||
// // Append the action buttons to the overlay.
|
||||
@ -466,13 +486,13 @@ function create_indicator_button(item, index, def) {
|
||||
function onResetClicked() {
|
||||
indList.forEach(function (item, index) {
|
||||
vis = true;
|
||||
const elem = document.getElementById("IND"+index);
|
||||
const elem = document.getElementById("IND"+item.indId);
|
||||
if (elem.classList.contains("switcher-active-item")) {
|
||||
vis = false;
|
||||
}
|
||||
elem.classList.toggle("switcher-active-item");
|
||||
if (indList[index].series) {
|
||||
indList[index].series.applyOptions({
|
||||
if (obj.series) {
|
||||
obj.series.applyOptions({
|
||||
visible: vis });
|
||||
}
|
||||
})
|
||||
@ -599,6 +619,27 @@ function toggleVolume() {
|
||||
}
|
||||
}
|
||||
|
||||
//togle profit line
|
||||
function toggleTick() {
|
||||
const elem = document.getElementById("tickToggle");
|
||||
if (elem.classList.contains("switcher-active-item")) {
|
||||
localStorage.setItem('hideTickIndicators', 'false');
|
||||
}
|
||||
else {
|
||||
localStorage.setItem('hideTickIndicators', 'true');
|
||||
}
|
||||
elem.classList.toggle("switcher-active-item");
|
||||
|
||||
//toggle repaint - click on change resolution
|
||||
var activeButton = document.querySelector('#changeResolution .switcher-active-item');
|
||||
|
||||
// Click the button programmatically
|
||||
if (activeButton) {
|
||||
activeButton.click();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//togle profit line
|
||||
function mrkLineToggle() {
|
||||
vis = true;
|
||||
@ -621,6 +662,10 @@ function mrkLineToggle() {
|
||||
}
|
||||
|
||||
|
||||
function get_ind_by_id(indId) {
|
||||
return indList.find(obj => obj.indId === indId);
|
||||
}
|
||||
|
||||
//toggle indiktoru
|
||||
function onItemClickedToggle(index) {
|
||||
vis = true;
|
||||
@ -630,25 +675,80 @@ function onItemClickedToggle(index) {
|
||||
}
|
||||
elem.classList.toggle("switcher-active-item");
|
||||
//v ifu kvuli workaroundu
|
||||
if (indList[index].series) {
|
||||
//console.log(indList[index].name, indList[index].series)
|
||||
indList[index].series.applyOptions({
|
||||
obj = get_ind_by_id(index)
|
||||
if (obj.series) {
|
||||
//console.log(obj.name, obj.series)
|
||||
obj.series.applyOptions({
|
||||
visible: vis });
|
||||
}
|
||||
//zatim takto workaround, pak vymyslet systemove pro vsechny tickbased indikatory
|
||||
tickIndicatorList = ["tick_price", "tick_volume"]
|
||||
if (tickIndicatorList.includes(indList[index].name)) {
|
||||
if (!vis && indList[index].series) {
|
||||
//console.log("pred", indList[index].name, indList[index].series)
|
||||
chart.removeSeries(indList[index].series)
|
||||
if (tickIndicatorList.includes(obj.name)) {
|
||||
if (!vis && obj.series) {
|
||||
//console.log("pred", obj.name, obj.series)
|
||||
chart.removeSeries(obj.series)
|
||||
chart.timeScale().fitContent();
|
||||
indList[index].series = null
|
||||
//console.log("po", indList[index].name, indList[index].series)
|
||||
obj.series = null
|
||||
//console.log("po", obj.name, obj.series)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//obalka pro collapsovatelny multioutput indicator button
|
||||
function create_multioutput_button(item, def, active) {
|
||||
//encapsulating dic
|
||||
var multiOutEl = document.createElement('div');
|
||||
//multiOutEl.id = "tickIndicatorsButtons"
|
||||
multiOutEl.classList.add('multiOut');
|
||||
multiOutEl.classList.add('switcher-item');
|
||||
//pouze def - u main indikatoru nepamatujeme stav a pozadujeme noaction pro leftclick
|
||||
//def||active - ani def
|
||||
itemEl = create_indicator_button(item, false, true);
|
||||
//hlavni button ridi expand/collapse
|
||||
itemEl.setAttribute('data-bs-toggle', 'collapse');
|
||||
itemEl.setAttribute('data-bs-target', '.'+item.name);
|
||||
itemEl.setAttribute('aria-expanded', 'true');
|
||||
itemEl.setAttribute('role', 'button');
|
||||
//itemEl.setAttribute('aria-controls', 'IND6 IND7 IND8');
|
||||
//itemEl.style.outline = 'dotted';
|
||||
itemEl.style.marginRight = '0px'
|
||||
|
||||
//prirazeni mainu do divu
|
||||
multiOutEl.appendChild(itemEl);
|
||||
|
||||
//pokud nektery z multivstupu je aktivni, pak nastavuju vse expanded
|
||||
const isAnyActive = activatedButtons.some(element => item.returns.includes(element));
|
||||
|
||||
item.returns.forEach(function (output_name,index) {
|
||||
active = false
|
||||
//find and process multioutput parameters
|
||||
const foundObject = indList.find(obj => obj.name == output_name);
|
||||
if (foundObject) {
|
||||
|
||||
//aplikujeme remembered state
|
||||
if ((activatedButtons) && (activatedButtons.includes(output_name))) {
|
||||
active = true
|
||||
}
|
||||
|
||||
console.log(foundObject.content); // Access and use the content
|
||||
itemEl = create_indicator_button(foundObject, def||active);
|
||||
|
||||
itemEl.classList.add('collapse')
|
||||
//pokud je aktivni jakykoliv, expandujeme vsechny
|
||||
if (active || isAnyActive) {
|
||||
itemEl.classList.add('show')
|
||||
}
|
||||
itemEl.classList.add(item.name)
|
||||
itemEl.style.marginRight = '0px'
|
||||
|
||||
multiOutEl.appendChild(itemEl);
|
||||
}
|
||||
});
|
||||
|
||||
return multiOutEl
|
||||
}
|
||||
|
||||
//funkce pro vytvoreni buttonku indikatoru
|
||||
function populate_indicator_buttons(def) {
|
||||
|
||||
@ -657,24 +757,62 @@ function populate_indicator_buttons(def) {
|
||||
buttonElement.id = "indicatorsButtons"
|
||||
buttonElement.classList.add('switcher');
|
||||
|
||||
//incializujeme i div pro cbar indikator sekci
|
||||
var tickButtonElement = document.createElement('div');
|
||||
tickButtonElement.id = "tickIndicatorsButtons"
|
||||
tickButtonElement.classList.add('tickButtons');
|
||||
|
||||
already_processed = [];
|
||||
//iterace nad indikatory a vytvareni buttonků
|
||||
indList.forEach(function (item, index) {
|
||||
index_ind = index
|
||||
active = false
|
||||
index_ind = item.indId
|
||||
if (!already_processed.includes(item.name)) {
|
||||
active = false
|
||||
|
||||
//console.log("activatedButtons", activatedButtons)
|
||||
//console.log("obsahuje item.name", activatedButtons.includes(item.name), item.name)
|
||||
//pokud existuje v aktivnich pak
|
||||
//console.log("vytvarime button",item.name,activatedButtons)
|
||||
if ((activatedButtons) && (activatedButtons.includes(item.name))) {
|
||||
active = true
|
||||
if ((activatedButtons) && (activatedButtons.includes(item.name))) {
|
||||
active = true
|
||||
}
|
||||
//bar indikatory jsou serazeny na zacarku
|
||||
if (item.type == 0) {
|
||||
//pokud jde o multiinput, pridame ihned souvisejici mutiinputy a vse dame do stejneho divu
|
||||
//(Object.keys(data[0]).length > 0)
|
||||
if (item.returns && item.returns.length > 0) {
|
||||
//prirazeni multiOut do buttonu
|
||||
multiOutEl = create_multioutput_button(item, def, active)
|
||||
|
||||
buttonElement.appendChild(multiOutEl);
|
||||
already_processed = already_processed.concat(item.returns)
|
||||
}
|
||||
else {
|
||||
//vytvoreni buttonku
|
||||
itemEl = create_indicator_button(item, def||active);
|
||||
//prirazeni do divu
|
||||
buttonElement.appendChild(itemEl);
|
||||
}
|
||||
}
|
||||
//ted zbyvaji tick barové a ty dáme do separátního divu
|
||||
else
|
||||
{
|
||||
//oper nejdriv multiinput
|
||||
if (item.returns && item.returns.length > 0) {
|
||||
|
||||
//prirazeni multiOut do buttonu
|
||||
multiOutEl = create_multioutput_button(item, def, active)
|
||||
tickButtonElement.appendChild(multiOutEl);
|
||||
already_processed = already_processed.concat(item.returns)
|
||||
}
|
||||
//standardni non multiinput
|
||||
else {
|
||||
//vytvoreni buttonku
|
||||
itemEl = create_indicator_button(item, def||active);
|
||||
tickButtonElement.appendChild(itemEl)
|
||||
}
|
||||
}
|
||||
}
|
||||
//vytvoreni buttonku
|
||||
itemEl = create_indicator_button(item, index, def||active);
|
||||
//prirazeni do divu
|
||||
buttonElement.appendChild(itemEl); ;
|
||||
});
|
||||
});
|
||||
|
||||
//nakonec pripojime cely div s tick based indicatory
|
||||
buttonElement.appendChild(tickButtonElement);
|
||||
|
||||
var funcButtonElement = document.createElement('div');
|
||||
funcButtonElement.id = "funcIndicatorsButtons"
|
||||
@ -727,6 +865,22 @@ function populate_indicator_buttons(def) {
|
||||
});
|
||||
funcButtonElement.appendChild(itemEl);
|
||||
|
||||
//button pro disable tickIndicatoru
|
||||
var itemEl = document.createElement('button');
|
||||
itemEl.innerText = "ticks off"
|
||||
itemEl.classList.add('switcher-item');
|
||||
var hideTickIndicators = localStorage.getItem('hideTickIndicators');
|
||||
console.log("init button, hodnota hideTickIndicators", hideTickIndicators)
|
||||
if (hideTickIndicators && hideTickIndicators == "true") {
|
||||
itemEl.classList.add('switcher-active-item');
|
||||
}
|
||||
itemEl.style.color = "#e0676e"
|
||||
itemEl.id = "tickToggle"
|
||||
itemEl.addEventListener('click', function(e) {
|
||||
toggleTick();
|
||||
});
|
||||
funcButtonElement.appendChild(itemEl);
|
||||
|
||||
// //button pro toggle markeru nakupu/prodeju
|
||||
var itemEl = document.createElement('button');
|
||||
itemEl.innerText = "mrk"
|
||||
@ -790,7 +944,7 @@ function populate_indicator_buttons(def) {
|
||||
function createSimpleSwitcher(items, activeItem, activeItemChangedCallback, data) {
|
||||
var switcherElement = document.createElement('div');
|
||||
switcherElement.classList.add('switcher');
|
||||
|
||||
switcherElement.id = "changeResolution"
|
||||
var intervalElements = items.map(function(item) {
|
||||
var itemEl = document.createElement('button');
|
||||
itemEl.innerText = item;
|
||||
@ -804,9 +958,9 @@ function createSimpleSwitcher(items, activeItem, activeItemChangedCallback, data
|
||||
});
|
||||
|
||||
function onItemClicked(item) {
|
||||
if (item === activeItem) {
|
||||
return;
|
||||
}
|
||||
// if (item === activeItem) {
|
||||
// return;
|
||||
// }
|
||||
|
||||
intervalElements.forEach(function(element, index) {
|
||||
element.classList.toggle('switcher-active-item', items[index] === item);
|
||||
@ -837,12 +991,26 @@ JSON.safeStringify = (obj, indent = 2) => {
|
||||
return retVal;
|
||||
};
|
||||
|
||||
function isToday(someDate) {
|
||||
const today = new Date()
|
||||
return someDate.getDate() == today.getDate() &&
|
||||
someDate.getMonth() == today.getMonth() &&
|
||||
someDate.getFullYear() == today.getFullYear()
|
||||
}
|
||||
|
||||
function isToday(someDate) {
|
||||
// Convert input date to Eastern Time
|
||||
var dateInEastern = new Date(someDate.toLocaleString('en-US', { timeZone: 'America/New_York' }));
|
||||
//console.log("vstupuje ",someDate)
|
||||
//console.log("americky ",dateInEastern)
|
||||
// Get today's date in Eastern Time
|
||||
var todayInEastern = new Date(new Date().toLocaleString('en-US', { timeZone: 'America/New_York' }));
|
||||
|
||||
return dateInEastern.getDate() === todayInEastern.getDate() &&
|
||||
dateInEastern.getMonth() === todayInEastern.getMonth() &&
|
||||
dateInEastern.getFullYear() === todayInEastern.getFullYear();
|
||||
}
|
||||
// function isToday(someDate) {
|
||||
|
||||
// const today = new Date()
|
||||
// return someDate.getDate() == today.getDate() &&
|
||||
// someDate.getMonth() == today.getMonth() &&
|
||||
// someDate.getFullYear() == today.getFullYear()
|
||||
// }
|
||||
|
||||
//https://www.w3schools.com/jsref/jsref_tolocalestring.asp
|
||||
function format_date(datum, markettime = false, timeonly = false) {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user