This commit is contained in:
David Brazda
2024-10-21 20:15:58 +02:00
parent 39e4591d6a
commit 609a2846c2
4 changed files with 75 additions and 13 deletions

View File

@ -44,9 +44,10 @@ exits = exits | forced_exits_window
exits.tail(20)
```
## is rising/is falling
`isrising(series,n)`,`isfalling(series, n)` - returns mask where the condition is satisfied of rising or falling elements including equal values
`isrising(series,n)`,`isfalling(series, n)` - returns mask where the condition is satisfied of consecutive rising or falling elements
`isrisingc(series,n)`,`isfallingc(series, n)` - same as above but scritly rising/fallinf (no equal values)
# Indicators
Custom indicators in the `indicators` folder.

View File

@ -2,7 +2,7 @@ from setuptools import setup, find_packages
setup(
name='ttools',
version='0.3.4',
version='0.3.5',
packages=find_packages(),
install_requires=[
'vectorbtpro',

View File

@ -24,22 +24,28 @@ DIVERGENCE - of two time series, same like in v2realbot
@jit(nopython=True)
def divergence(series1, series2, divtype):
def divergence(series1, series2, divtype, round):
#div = a+b / a-b will give value between -1 and 1
if divtype == "reln":
return (series1 - series2) / (series1 + series2)
out = (series1 - series2) / (series1 + series2)
elif divtype == "rel":
return series1 - series2
out = series1 - series2
elif divtype == "abs":
return np.abs(series1 - series2)
out = np.abs(series1 - series2)
elif divtype == "absn":
return np.abs(series1 - series2) / series1
out = np.abs(series1 - series2) / series1
elif divtype == "pctabs":
return np.abs(((series1 - series2) / series1) * 100)
out = np.abs(((series1 - series2) / series1) * 100)
elif divtype == "pct":
return ((series1 - series2) / series1) * 100
out = ((series1 - series2) / series1) * 100
else:
return np.full_like(series1, np.nan)
out = np.full_like(series1, np.nan)
for i in range(out.shape[0]):
if not np.isnan(out[i]):
out[i] = np.round(out[i], round)
return out
"""
Divergence indicator - various divergences between two series
@ -48,11 +54,12 @@ IND_DIVERGENCE = vbt.IF(
class_name='DIVERGENCE',
module_name='ttools',
input_names=['series1', 'series2'],
param_names=["divtype"],
param_names=["divtype", "round"],
output_names=['div']
).with_apply_func(divergence,
takes_1d=True,
param_settings=dict(
),
divtype="reln"
divtype="reln",
round=4
)

View File

@ -4,6 +4,7 @@ import pandas_market_calendars as mcal
from typing import Any
import datetime
#TBD create NUMBA alternatives
def isrising(series: pd.Series, n: int) -> pd.Series:
"""
Checks if a series is rising over a given window size.
@ -23,6 +24,32 @@ def isrising(series: pd.Series, n: int) -> pd.Series:
"""
return series.rolling(n).apply(lambda x: (x == sorted(x, reverse=False)).all(), raw=False).fillna(False).astype(bool)
def isrisingc(series: pd.Series, n: int) -> pd.Series:
"""
Checks if a series is strictly rising over a given window size.
Returns True for windows where values are strictly increasing.
Parameters
----------
series : pd.Series
Input series
n : int
Window size
Returns
-------
pd.Series
Boolean mask indicating when the series is strictly rising
"""
# Calculate the difference between consecutive values
diffs = series.diff()
# We check if all values in the window are negative (falling)
result = diffs.rolling(n-1).apply(lambda x: (x > 0).all(), raw=True)
# Fill the first n-1 values with False and return the boolean mask
return result.fillna(False).astype(bool)
def isfalling(series: pd.Series, n: int) -> pd.Series:
"""
Checks if a series is falling over a given window size.
@ -41,6 +68,33 @@ def isfalling(series: pd.Series, n: int) -> pd.Series:
"""
return series.rolling(n).apply(lambda x: (x == sorted(x, reverse=True)).all(), raw=False).fillna(False).astype(bool)
def isfallingc(series: pd.Series, n: int) -> pd.Series:
"""
Checks if a series is strictly falling over a given window size.
Returns True for windows where values are strictly decreasing.
Parameters
----------
series : pd.Series
Input series
n : int
Window size
Returns
-------
pd.Series
Boolean mask indicating when the series is strictly falling
"""
# Calculate the difference between consecutive values
diffs = series.diff()
# We check if all values in the window are negative (falling)
result = diffs.rolling(n-1).apply(lambda x: (x < 0).all(), raw=True)
# Fill the first n-1 values with False and return the boolean mask
return result.fillna(False).astype(bool)
def create_mask_from_window(series: Any, entry_window_opens:int, entry_window_closes:int, use_cal: bool = True):
"""
Accepts series and window range (number of minutes from market start) and returns boolean mask denoting