update
This commit is contained in:
@ -44,9 +44,10 @@ exits = exits | forced_exits_window
|
||||
|
||||
exits.tail(20)
|
||||
```
|
||||
## is rising/is falling
|
||||
`isrising(series,n)`,`isfalling(series, n)` - returns mask where the condition is satisfied of rising or falling elements including equal values
|
||||
|
||||
`isrising(series,n)`,`isfalling(series, n)` - returns mask where the condition is satisfied of consecutive rising or falling elements
|
||||
|
||||
`isrisingc(series,n)`,`isfallingc(series, n)` - same as above but scritly rising/fallinf (no equal values)
|
||||
# Indicators
|
||||
|
||||
Custom indicators in the `indicators` folder.
|
||||
|
||||
2
setup.py
2
setup.py
@ -2,7 +2,7 @@ from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='ttools',
|
||||
version='0.3.4',
|
||||
version='0.3.5',
|
||||
packages=find_packages(),
|
||||
install_requires=[
|
||||
'vectorbtpro',
|
||||
|
||||
@ -24,22 +24,28 @@ DIVERGENCE - of two time series, same like in v2realbot
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
def divergence(series1, series2, divtype):
|
||||
def divergence(series1, series2, divtype, round):
|
||||
#div = a+b / a-b will give value between -1 and 1
|
||||
if divtype == "reln":
|
||||
return (series1 - series2) / (series1 + series2)
|
||||
out = (series1 - series2) / (series1 + series2)
|
||||
elif divtype == "rel":
|
||||
return series1 - series2
|
||||
out = series1 - series2
|
||||
elif divtype == "abs":
|
||||
return np.abs(series1 - series2)
|
||||
out = np.abs(series1 - series2)
|
||||
elif divtype == "absn":
|
||||
return np.abs(series1 - series2) / series1
|
||||
out = np.abs(series1 - series2) / series1
|
||||
elif divtype == "pctabs":
|
||||
return np.abs(((series1 - series2) / series1) * 100)
|
||||
out = np.abs(((series1 - series2) / series1) * 100)
|
||||
elif divtype == "pct":
|
||||
return ((series1 - series2) / series1) * 100
|
||||
out = ((series1 - series2) / series1) * 100
|
||||
else:
|
||||
return np.full_like(series1, np.nan)
|
||||
out = np.full_like(series1, np.nan)
|
||||
|
||||
for i in range(out.shape[0]):
|
||||
if not np.isnan(out[i]):
|
||||
out[i] = np.round(out[i], round)
|
||||
|
||||
return out
|
||||
|
||||
"""
|
||||
Divergence indicator - various divergences between two series
|
||||
@ -48,11 +54,12 @@ IND_DIVERGENCE = vbt.IF(
|
||||
class_name='DIVERGENCE',
|
||||
module_name='ttools',
|
||||
input_names=['series1', 'series2'],
|
||||
param_names=["divtype"],
|
||||
param_names=["divtype", "round"],
|
||||
output_names=['div']
|
||||
).with_apply_func(divergence,
|
||||
takes_1d=True,
|
||||
param_settings=dict(
|
||||
),
|
||||
divtype="reln"
|
||||
divtype="reln",
|
||||
round=4
|
||||
)
|
||||
@ -4,6 +4,7 @@ import pandas_market_calendars as mcal
|
||||
from typing import Any
|
||||
import datetime
|
||||
|
||||
#TBD create NUMBA alternatives
|
||||
def isrising(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
Checks if a series is rising over a given window size.
|
||||
@ -23,6 +24,32 @@ def isrising(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
return series.rolling(n).apply(lambda x: (x == sorted(x, reverse=False)).all(), raw=False).fillna(False).astype(bool)
|
||||
|
||||
def isrisingc(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
Checks if a series is strictly rising over a given window size.
|
||||
Returns True for windows where values are strictly increasing.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series : pd.Series
|
||||
Input series
|
||||
n : int
|
||||
Window size
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.Series
|
||||
Boolean mask indicating when the series is strictly rising
|
||||
"""
|
||||
# Calculate the difference between consecutive values
|
||||
diffs = series.diff()
|
||||
|
||||
# We check if all values in the window are negative (falling)
|
||||
result = diffs.rolling(n-1).apply(lambda x: (x > 0).all(), raw=True)
|
||||
|
||||
# Fill the first n-1 values with False and return the boolean mask
|
||||
return result.fillna(False).astype(bool)
|
||||
|
||||
def isfalling(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
Checks if a series is falling over a given window size.
|
||||
@ -41,6 +68,33 @@ def isfalling(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
return series.rolling(n).apply(lambda x: (x == sorted(x, reverse=True)).all(), raw=False).fillna(False).astype(bool)
|
||||
|
||||
def isfallingc(series: pd.Series, n: int) -> pd.Series:
|
||||
"""
|
||||
Checks if a series is strictly falling over a given window size.
|
||||
Returns True for windows where values are strictly decreasing.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series : pd.Series
|
||||
Input series
|
||||
n : int
|
||||
Window size
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.Series
|
||||
Boolean mask indicating when the series is strictly falling
|
||||
"""
|
||||
# Calculate the difference between consecutive values
|
||||
diffs = series.diff()
|
||||
|
||||
# We check if all values in the window are negative (falling)
|
||||
result = diffs.rolling(n-1).apply(lambda x: (x < 0).all(), raw=True)
|
||||
|
||||
# Fill the first n-1 values with False and return the boolean mask
|
||||
return result.fillna(False).astype(bool)
|
||||
|
||||
|
||||
def create_mask_from_window(series: Any, entry_window_opens:int, entry_window_closes:int, use_cal: bool = True):
|
||||
"""
|
||||
Accepts series and window range (number of minutes from market start) and returns boolean mask denoting
|
||||
|
||||
Reference in New Issue
Block a user