23 KiB
23 KiB
Multi timeframe momentum¶
Cílen je nalézt kombinaci trendu, kdy je velmi pravdě+podobné, že trend bude o určitou hodnootu ještě pokračovat.
jsou počítány linregression úhly pro více timeframů a délku oken
Pro každou kombinaci je daný parametr nad kterým musí být. Pokud je nad všemi pak je entry (short/long).
Zvážit i nějaký kumulativní počítadlo anglů - něco jako trend kummulátor.
In [ ]:
from v2realbot.tools.loadbatch import load_batch from v2realbot.utils.utils import zoneNY import pandas as pd import numpy as np import vectorbtpro as vbt from itables import init_notebook_mode, show import datetime from itertools import product from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR init_notebook_mode(all_interactive=True) vbt.settings.set_theme("dark") vbt.settings['plotting']['layout']['width'] = 1280 vbt.settings.plotting.auto_rangebreaks = True # Set the option to display with pagination pd.set_option('display.notebook_repr_html', True) pd.set_option('display.max_rows', 10) # Number of rows per page # Define the market open and close times market_open = datetime.time(9, 30) market_close = datetime.time(16, 0) entry_window_opens = 1 entry_window_closes = 370 forced_exit_start = 380 forced_exit_end = 390 #LOAD FROM BATCH # res, df = load_batch(batch_id="f1ac6651", #138170bc 0fb5043a bde6d0be f1ac6651 # space_resolution_evenly=False, # indicators_columns=["Rsi14"], # main_session_only=True, # verbose = False) # if res < 0: # print("Error" + str(res) + str(df)) # df = df["bars"] # basic_data = vbt.Data.from_data(vbt.symbol_dict({"BAC": df}), tz_convert=zoneNY) # #m1_data = basic_data[['Open', 'High', 'Low', 'Close', 'Volume']] # basic_data = basic_data.transform(lambda df: df.between_time('09:30', '16:00')) # #basic_data.info() #LOAD FROM PARQUET #list all files is dir directory with parquet extension dir = DATA_DIR + "/notebooks/" import os files = [f for f in os.listdir(dir) if f.endswith(".parquet")] print('\n'.join(map(str, files))) file_name = "ohlcv_df-BAC-2023-01-01T09_30_00-2024-05-25T15_30_00-47BCFOPUVWZ-100.parquet" ohlcv_df = pd.read_parquet(dir+file_name,engine='pyarrow') #filter ohlcv_df to certain date range (assuming datetime index) ohlcv_df = ohlcv_df.loc["2024-02-12 10:30":"2024-02-14 12:00"] #add vwap column to ohlcv_df #ohlcv_df["hlcc4"] = (ohlcv_df["close"] + ohlcv_df["high"] + ohlcv_df["low"] + ohlcv_df["close"]) / 4 basic_data = vbt.Data.from_data(vbt.symbol_dict({"BAC": ohlcv_df}), tz_convert=zoneNY) ohlcv_df= None
Add resample function to custom columns¶
In [ ]:
from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig from vectorbtpro import _typing as tp from vectorbtpro.generic import nb as generic_nb _feature_config: tp.ClassVar[Config] = HybridConfig( { "buyvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ), "sellvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ) } ) basic_data._feature_config = _feature_config
In [ ]:
In [ ]:
#asic_data.stats() basic_data.wrapper.index.normalize().nunique()
In [ ]:
t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','sellvolume']].resample("1T")
In [ ]:
t1data.data["BAC"].buyvolume
In [ ]:
t1data.data["BAC"].sellvolume
In [ ]:
buyvolume = t1data.data["BAC"].buyvolume sellvolume = t1data.data["BAC"].sellvolume totalvolume = buyvolume + sellvolume #adjust to minimal value to avoid division by zero sellvolume_adjusted = sellvolume.replace(0, 1e-10) oibratio = buyvolume / sellvolume #cumulative order flow (net difference) cof = buyvolume - sellvolume # Calculate the order imbalance (net differene) normalize the order imbalance by calculating the difference between buy and sell volumes and then scaling it by the total volume. order_imbalance = cof / totalvolume order_imbalance_allvolume = cof / t1data.data["BAC"].volume
In [ ]:
order_imbalance
In [ ]:
#priminds list (cena), secinds list (napr. rsi), close, voluminds (volume based) def plot_2y_close(priminds, secinds, close, volume): fig = vbt.make_subplots(rows=2, cols=1, shared_xaxes=True, specs=[[{"secondary_y": True}], [{"secondary_y": False}]], vertical_spacing=0.02, subplot_titles=("Price and Indicators", "Volume")) # Plotting the close price close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False,row=1, col=1), trace_kwargs=dict(line=dict(color="blue"))) # Plotting primary indicators on the first row for ind in priminds: if isinstance(ind, pd.Series): ind = ind.vbt ind.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False, row=1, col=1)) # Plotting secondary indicators on the first row for ind in secinds: #ind = ind.rename(str(ind.name)) if isinstance(ind, pd.Series): ind = ind.vbt ind.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True, row=1, col=1)) for indvolume in volume: # Plotting the volume on the second row indvolume.rename(str(indvolume.name)).vbt.barplot(fig=fig, add_trace_kwargs=dict(secondary_y=False, row=2, col=1)) #vbt.Bar(indvolume, fig=fig, add_trace_kwargs=dict(secondary_y=False, row=2, col=1)) return fig plot_2y_close([], [cof,oibratio], t1data.close, [t1data.data["BAC"].buyvolume, t1data.data["BAC"].sellvolume, t1data.volume])
In [ ]:
%matplotlib inline t0data = basic_data t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap']].resample("1T") t2data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap']].resample("15T") t3data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap']].resample("30T") t4data = basic_data[['open', 'high', 'low', 'close', 'volume', 'vwap']].resample("D").dropna() t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) t2data = t2data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) t3data = t3data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) #30min data to daily # t4data = t3data.resample("D").dropna() #t4data = t4data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) #m1data.data["SPY"].info() #m1data.data["SPY"].vbt.ohlcv.plot() #h2data.data["SPY"].vbt.ohlcv.plot() #ddata.data["SPY"] t2data.data["BAC"].vbt.ohlcv.plot().show() #t4data.data["BAC"]
In [ ]:
t2data.close #in df remove rows with nan
In [ ]:
#realign na 1T = t1data + oriznout main session t2data_vwap = t2data.vwap.vbt.realign_closing("1T").between_time('09:30', '16:00').dropna() t3data_vwap = t3data.vwap.vbt.realign_closing("1T").between_time('09:30', '16:00').dropna() t4data_vwap = t4data.vwap.vbt.realign_closing("1T").dropna()
In [ ]:
t2data_vwap
In [ ]:
def plot_2y_close(priminds, secinds, close): fig = vbt.make_subplots(rows=1, cols=1, shared_xaxes=True, specs=[[{"secondary_y": True}]], vertical_spacing=0.02, subplot_titles=("MOM", "Price" )) close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False), trace_kwargs=dict(line=dict(color="blue"))) for ind in priminds: if isinstance(ind, pd.Series): ind = ind.vbt ind.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False)) for ind in secinds: if isinstance(ind, pd.Series): ind = ind.vbt ind.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True)) return fig
In [ ]:
t4data.clos.vbt
In [ ]:
obvind = vbt.indicator.obv.run(t1data.close, t1data.volume)
In [ ]:
t1_lengtgh = 15 t2_length = 15 t3_length = 15 t4_length = 5 t1_th = 0.1 t2_th = 0.1 t3_th = 0.1 t4_th = 0.1 #minute t1slope = vbt.indicator("talib:LINEARREG_SLOPE ").run(t1data.close, timeperiod=t1_lengtgh) # -0.09, 0.09 t2slope = vbt.indicator("talib:LINEARREG_SLOPE ").run(t2data.vwap, timeperiod=t2_length) # -0.08 , 0.079 t3slope = vbt.indicator("talib:LINEARREG_SLOPE ").run(t3data.vwap, timeperiod=t3_length) # -0.08, 0.08 #daily t4slope = vbt.indicator("talib:LINEARREG_SLOPE ").run(t4data.vwap, timeperiod=t4_length) # -0.1, 0.09 plot_2y_close(priminds=[], secinds=[t1slope, t2slope, t3slope, t4slope], close=t1data.close).show()
In [ ]:
#thirtymin_slope = thirtymin_slope.real.rename("30min") #timto se prejmenuje real na 30min t3slope = t3slope.real.vbt.realign_closing("1T").between_time('09:30', '16:00').dropna() ##filter daily_slope_to_compare to only monday to friday t3slope = t3slope[t3slope.index.dayofweek < 5] #t3slope.info() t2slope = t2slope.real.vbt.realign_closing("1T").between_time('09:30', '16:00').dropna() ##filter daily_slope_to_compare to only monday to friday t2slope = t2slope[t2slope.index.dayofweek < 5] t2slope.info()
In [ ]:
oibratio
In [ ]:
# short_entries = order_imbalance.vbt < 0.0002 #short_entries = oibratio.vbt < 0.01 short_entries.value_counts() entries = order_imbalance.vbt > 0.7 #entries = oibratio.vbt > 10 entries.value_counts()
In [ ]:
fig = vbt.make_subplots(rows=3, cols=1, shared_xaxes=True, specs=[[{"secondary_y": True}], [{"secondary_y": True}], [{"secondary_y": False}]], vertical_spacing=0.02, subplot_titles=("Price and Indicators", "Volume")) t1data.data["BAC"].vbt.ohlcv.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False, row=1, col=1)) #oibratio.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True, row=1, col=1)) order_imbalance.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True, row=1, col=1)) entries.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="LONGS", line=dict(color="#ffe476"), marker=dict(color="limegreen"), fill=None, connectgaps=True, ), add_trace_kwargs=dict(secondary_y=False, row=1, col=1)) short_entries.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="SHORTS", line=dict(color="#ffe476"), marker=dict(color="red"), fill=None, connectgaps=True, ), add_trace_kwargs=dict(secondary_y=False, row=1, col=1))
In [ ]:
# thirtymin_slope_to_compare.vbt.xloc["04-16-2024"].get() thirty_down_signal.vbt.xloc["04-16-2024"].get()
In [ ]:
#short_signal = t1slope.real_below(t1_th) & t2slope.real_below(t2_th) & t3slope.real_below(t3_th) & t4slope.real_below(t4_th) #long_signal = t1slope.real_above(t1_th) & t2slope.real_above(t2_th) & t3slope.real_above(t3_th) & t4slope.real_above(t4_th) #test na daily s reversem crossed 0 short_signal = t2slope.vbt < -0.01 & t3slope.vbt < -0.01 #min value of threshold long_signal = t2slope.vbt > 0.01 & t3slope.vbt > 0.01 #min # thirty_up_signal = t3slope.vbt.crossed_above(0.01) # thirty_down_signal = t3slope.vbt.crossed_below(-0.01) fig = plot_2y_close(priminds=[], secinds=[t3slope], close=t1data.close) #short_signal.vbt.signals.plot_as_entries(basic_data.close, fig=fig) short_signal.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="SHORTS", line=dict(color="#ffe476"), marker=dict(color="red", symbol="triangle-down"), fill=None, connectgaps=True, )) long_signal.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="LONGS", line=dict(color="#ffe476"), marker=dict(color="limegreen"), fill=None, connectgaps=True, )) # thirty_down_signal.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="DOWN30", # line=dict(color="#ffe476"), # marker=dict(color="yellow", symbol="triangle-down"), # fill=None, # connectgaps=True, # )) # thirty_up_signal.vbt.signals.plot_as_entries(t1data.close, fig=fig, trace_kwargs=dict(name="UP30", # line=dict(color="#ffe476"), # marker=dict(color="grey"), # fill=None, # connectgaps=True, # )) # thirtymin_slope_to_compare.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True), trace_kwargs=dict(name="30min slope", # line=dict(color="yellow"), # fill=None, # connectgaps=True, # )) fig.show() # print("short signal") # print(short_signal.value_counts()) #forced_exit = pd.Series(False, index=close.index) forced_exit = basic_data.symbol_wrapper.fill(False) #entry_window_open = pd.Series(False, index=close.index) entry_window_open= basic_data.symbol_wrapper.fill(False) # Calculate the time difference in minutes from market open for each timestamp elapsed_min_from_open = (forced_exit.index.hour - market_open.hour) * 60 + (forced_exit.index.minute - market_open.minute) entry_window_open[(elapsed_min_from_open >= entry_window_opens) & (elapsed_min_from_open < entry_window_closes)] = True #print(entry_window_open.value_counts()) forced_exit[(elapsed_min_from_open >= forced_exit_start) & (elapsed_min_from_open < forced_exit_end)] = True short_entries = (short_signal & entry_window_open) short_exits = forced_exit entries = (long_signal & entry_window_open) exits = forced_exit #long_entries.info() #number of trues and falses in long_entries # print(short_exits.value_counts()) # print(short_entries.value_counts()) #fig = plot_2y_close([],[momshort, rocp], close) #short_signal.vbt.signals.plot_as_entries(close, fig=fig, add_trace_kwargs=dict(secondary_y=False)) #print(sl_stop) #short_entries=short_entries, short_exits=short_exits, # pf = vbt.Portfolio.from_signals(close=basic_data, entries=short_entries, exits=exits, tsl_stop=0.005, tp_stop = 0.05, fees=0.0167/100, freq="1s") #sl_stop=sl_stop, tp_stop = sl_stop, # pf.stats()
In [ ]:
# pf.plot()
In [ ]:
pf.get_drawdowns().records_readable
In [ ]:
pf.orders.records_readable