9.2 KiB
9.2 KiB
Robustness evaluation¶
Input is backtest results in the format:
- Parameter combination (multiindex)
- Profitability metrics (columns)
Lets explore various way to evaluate robustness.
In [5]:
#!pip install git+https://github.com/drew2323/lightweight-charts-python.git #!pip install git+https://gitea.stratlab.dev/Stratlab/db.git from lightweight_charts import Panel, chart, PlotSRAccessor, PlotDFAccessor import pandas as pd import numpy as np import vectorbtpro as vbt # from itables import init_notebook_mode, show import datetime from itertools import product from IPython.display import display # init_notebook_mode(all_interactive=True) vbt.settings.set_theme("dark") vbt.settings['plotting']['layout']['width'] = 1280 vbt.settings.plotting.auto_rangebreaks = True # Set the option to display with pagination pd.set_option('display.notebook_repr_html', True) pd.set_option('display.max_rows', 10) # Number of rows per page
In [ ]:
#fetching US-STOCKS ohlcv_1s from lib.db import Connection SYMBOL = "BAC" SCHEMA = "ohlcv_1s" #time based 1s other options ohlcv_vol_200 (volume based ohlcv with resolution of 200), ohlcv_renko_20 (renko with 20 bricks size) ... DB = "market_data" con = Connection(db_name=DB, default_schema=SCHEMA, create_db=True) basic_data = con.pull(symbols=[SYMBOL], schema=SCHEMA,start="2024-08-01", end="2024-08-05", tz_convert='America/New_York') basic_data.data[SYMBOL].info() #1month 1s data - 15s - 24MB
In [ ]:
#basic_data.ohlcv.data[SYMBOL].lw.plot() basic_data.data[SYMBOL].lw.plot(size="s")
In [ ]:
basic_data.data[SYMBOL].vwap.lw.plot()
In [ ]:
basic_data.data[SYMBOL].vwap.lw.plot(histogram=(basic_data.data[SYMBOL].trades, "trades")) #xloc["2024-08-05":"2024-08-10"]
In [ ]:
# Define the market open and close times market_open = datetime.time(9, 30) market_close = datetime.time(16, 0) entry_window_opens = 1 entry_window_closes = 370 forced_exit_start = 380 forced_exit_end = 390 #NUMDAYS basic_data.wrapper.index.normalize().nunique()
Add resample function to custom columns
In [8]:
from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig from vectorbtpro import _typing as tp from vectorbtpro.generic import nb as generic_nb _feature_config: tp.ClassVar[Config] = HybridConfig( { "buyvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ), "sellvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ), "trades": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ) } ) basic_data._feature_config = _feature_config
In [ ]:
s1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']] # s5data = s1data.resample("12s") # s5data = s5data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']].resample("1T") t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) # t1data.data["BAC"].info() # t30data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']].resample("30T") # t30data = t30data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) # # t30data.data["BAC"].info() s1close = s1data.close t1close = t1data.close t1data.data["BAC"].close.lw.plot()
In [ ]:
from lightweight_charts import JupyterChart, chart, Panel, PlotAccessor s5data.close.lw.plot() # pane1 = Panel( # ohlcv=(s5data.ohlcv.get(),)) # # Create the chart with the panel # ch = chart([pane1], title="Chart", sync=True, session=None, size="s")
In [ ]:
s1data.data["BAC"].head()
In [7]:
#resample on specific index resampler = vbt.Resampler(t30data.index, s1data.index, source_freq="30T", target_freq="1s") t30close_realigned = t30close.vbt.realign_closing(resampler) #resample 1min to s resampler_s = vbt.Resampler(t1data.index, s1data.index, source_freq="1T", target_freq="1s") t1close_realigned = t1close.vbt.realign_closing(resampler_s)
In [ ]:
vbt.IF.list_indicators("*vwap") vbt.phelp(vbt.VWAP.run)
VWAP¶
In [9]:
t1vwap_h = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="H") t1vwap_d = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="D") t1vwap_t = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="T") t1vwap_h_real = t1vwap_h.vwap.vbt.realign_closing(resampler_s) t1vwap_d_real = t1vwap_d.vwap.vbt.realign_closing(resampler_s) t1vwap_t_real = t1vwap_t.vwap.vbt.realign_closing(resampler_s) #t1vwap_5t.xloc["2024-01-3 09:30:00":"2024-01-03 16:00:00"].plot()
In [ ]:
#m30data.close.lw.plot() #quick few liner pane1 = Panel( histogram=[ #(s1data.volume, "volume",None, 0.8), #(m30volume, "m30volume",None, 1) ], # [(series, name, "rgba(53, 94, 59, 0.6)", opacity)] right=[ (s1data.close, "1s close"), (t1data.close, "1min close"), (t1vwap_t, "1mvwap_t"), (t1vwap_h, "1mvwap_h"), (t1vwap_d, "1mvwap_d"), (t1vwap_t_real, "1mvwap_t_real"), (t1vwap_h_real, "1mvwap_h_real"), (t1vwap_d_real, "1mvwap_d_real") # (t1close_realigned, "1min close realigned"), # (m30data.close, "30min-close"), # (m30close_realigned, "30min close realigned"), ], ) ch = chart([pane1], size="s" ) #xloc=slice("2024-05-1 09:30:00","2024-05-25 16:00:00"))