Files
strategy-lab/to_explore/pyquantnews/109_Expectancy.ipynb
David Brazda e3da60c647 daily update
2024-10-21 20:57:56 +02:00

164 lines
4.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "2b725ab1",
"metadata": {},
"source": [
"<div style=\"background-color:#000;\"><img src=\"pqn.png\"></img></div>"
]
},
{
"cell_type": "markdown",
"id": "c686b10c",
"metadata": {},
"source": [
"This code calculates the expectancy ratio of a series of trades. The expectancy ratio measures the average expected return per trade by considering the win rate, loss rate, and average profit/loss of trades. It is useful in financial trading to evaluate the performance of a trading strategy. The input is a DataFrame of trades with profit or loss values. The output is a single expectancy ratio value."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652ddb60",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "f54264f9",
"metadata": {},
"source": [
"Define a function to calculate the expectancy ratio of trades."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d056583b",
"metadata": {
"lines_to_next_cell": 1
},
"outputs": [],
"source": [
"def calculate_expectancy_ratio(trades):\n",
" \"\"\"Calculate the expectancy ratio of trades.\n",
" \n",
" This function computes the average expected return for a series of trades \n",
" by considering their win rate, loss rate, and average profit/loss.\n",
" \n",
" Parameters\n",
" ----------\n",
" trades : pd.DataFrame\n",
" DataFrame containing trade information with a 'Profit' column.\n",
" \n",
" Returns\n",
" -------\n",
" expectancy_ratio : float\n",
" The calculated expectancy ratio.\n",
" \"\"\"\n",
" \n",
" # Calculate the number of trades\n",
" num_trades = len(trades)\n",
" \n",
" # Separate winning and losing trades\n",
" winners = trades[trades['Profit'] > 0]\n",
" losers = trades[trades['Profit'] <= 0]\n",
" \n",
" # Calculate win rate and loss rate\n",
" win_rate = len(winners) / num_trades\n",
" loss_rate = len(losers) / num_trades\n",
" \n",
" # Calculate average profit for winning trades and average loss for losing trades\n",
" avg_win = winners['Profit'].mean()\n",
" avg_loss = losers['Profit'].mean()\n",
" \n",
" # Compute the expectancy ratio\n",
" expectancy_ratio = (win_rate * avg_win) + (loss_rate * avg_loss)\n",
" \n",
" return expectancy_ratio"
]
},
{
"cell_type": "markdown",
"id": "2611f9e5",
"metadata": {},
"source": [
"Create a dictionary with trade data including trade numbers and corresponding profits/losses."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c26a120",
"metadata": {},
"outputs": [],
"source": [
"trade_data = {\n",
" 'Trade': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],\n",
" 'Profit': [100, -50, 200, -100, 300, -150, 400, -200, 500, -250]\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "b84b5061",
"metadata": {},
"source": [
"Convert the trade data dictionary into a pandas DataFrame."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f057971",
"metadata": {},
"outputs": [],
"source": [
"trades = pd.DataFrame(trade_data)"
]
},
{
"cell_type": "markdown",
"id": "4ce371e5",
"metadata": {},
"source": [
"Calculate the expectancy ratio using the defined function and print the result."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4086f225",
"metadata": {},
"outputs": [],
"source": [
"expectancy_ratio = calculate_expectancy_ratio(trades)\n",
"print(f\"Expectancy Ratio: {expectancy_ratio}\")"
]
},
{
"cell_type": "markdown",
"id": "49299264",
"metadata": {},
"source": [
"<a href=\"https://pyquantnews.com/\">PyQuant News</a> is where finance practitioners level up with Python for quant finance, algorithmic trading, and market data analysis. Looking to get started? Check out the fastest growing, top-selling course to <a href=\"https://gettingstartedwithpythonforquantfinance.com/\">get started with Python for quant finance</a>. For educational purposes. Not investment advise. Use at your own risk."
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all",
"main_language": "python",
"notebook_metadata_filter": "-all"
}
},
"nbformat": 4,
"nbformat_minor": 5
}