892 lines
30 KiB
Markdown
892 lines
30 KiB
Markdown
- [FETCHING DATA](#fetching-data)
|
|
- [REINDEX to main session](#reindex-to-main-session)
|
|
- [indexing](#indexing)
|
|
- [Data manipulation](#data-manipulation)
|
|
- [DISCOVERY](#discovery)
|
|
- [DATA/WRAPPER](#datawrapper)
|
|
- [create WRAPPER manually](#create-wrapper-manually)
|
|
- [RESAMPLING](#resampling)
|
|
- [config](#config)
|
|
- [REALIGN](#realign)
|
|
- [REALIGN\_CLOSING accessors](#realign_closing-accessors)
|
|
- [SIGNALS](#signals)
|
|
- [ENTRIES/EXITS time based](#entriesexits-time-based)
|
|
- [STOPS](#stops)
|
|
- [OHLCSTX Module](#ohlcstx-module)
|
|
- [Entry Window and Forced Exit Window](#entry-window-and-forced-exit-window)
|
|
- [END OF DAY EXITS](#end-of-day-exits)
|
|
- [REGULAR EXITS](#regular-exits)
|
|
- [DF/SR ACCESSORS](#dfsr-accessors)
|
|
- [Generic](#generic)
|
|
- [SIGNAL ACCESSORS](#signal-accessors)
|
|
- [RANKING - partitioning](#ranking---partitioning)
|
|
- [Base Accessors](#base-accessors)
|
|
- [Stoploss/Takeprofit](#stoplosstakeprofit)
|
|
- [SL - ATR based](#sl---atr-based)
|
|
- [EXIT after time](#exit-after-time)
|
|
- [CALLBACKS -](#callbacks--)
|
|
- [MEMORY](#memory)
|
|
- [Portfolio](#portfolio)
|
|
- [INDICATORS DEV](#indicators-dev)
|
|
- [Custom ind](#custom-ind)
|
|
- [register custom ind](#register-custom-ind)
|
|
- [VWAP anchored example](#vwap-anchored-example)
|
|
- [Use ttols indicators](#use-ttols-indicators)
|
|
- [FAV INDICATORS](#fav-indicators)
|
|
- [GROUPING](#grouping)
|
|
- [SPLITTING](#splitting)
|
|
- [CHARTING](#charting)
|
|
- [MULTIACCOUNT](#multiaccount)
|
|
- [CUSTOM SIMULATION](#custom-simulation)
|
|
- [ANALYSIS](#analysis)
|
|
- [ROBUSTNESS](#robustness)
|
|
- [UTILS](#utils)
|
|
- [Market calendar](#market-calendar)
|
|
|
|
|
|
```python
|
|
import vectorbtpro as vbt
|
|
from lightweight_charts import Panel, chart, PlotDFAccessor, PlotSRAccessor
|
|
t15data = None
|
|
|
|
if not hasattr(pd.Series, 'lw'):
|
|
pd.api.extensions.register_series_accessor("lw")(PlotSRAccessor)
|
|
|
|
if not hasattr(pd.DataFrame, 'lw'):
|
|
pd.api.extensions.register_dataframe_accessor("lw")(PlotDFAccessor)
|
|
```
|
|
|
|
|
|
# FETCHING DATA
|
|
```python
|
|
#fetching from remote db
|
|
from lib.db import Connection
|
|
SYMBOL = "BAC"
|
|
SCHEMA = "ohlcv_1s" #time based 1s other options ohlcv_vol_200 (volume based ohlcv with resolution of 200), ohlcv_renko_20 (renko with 20 bricks size) ...
|
|
DB = "market_data"
|
|
|
|
con = Connection(db_name=DB, default_schema=SCHEMA, create_db=True)
|
|
basic_data = con.pull(symbols=[SYMBOL], schema=SCHEMA,start="2024-08-01", end="2024-08-08", tz_convert='America/New_York')
|
|
|
|
|
|
#Fetching from YAHOO
|
|
symbols = ["AAPL", "MSFT", "AMZN", "TSLA", "AMD", "NVDA", "SPY", "QQQ", "META", "GOOG"]
|
|
data = vbt.YFData.pull(symbols, start="2024-09-28", end="now", timeframe="1H", missing_columns="nan")
|
|
|
|
|
|
#Fetching from local cache
|
|
dir = DATA_DIR + "/notebooks/"
|
|
import os
|
|
files = [f for f in os.listdir(dir) if f.endswith(".parquet")]
|
|
print('\n'.join(map(str, files)))
|
|
file_name = "ohlcv_df-BAC-2024-10-03T09:30:00-2024-10-16T16:00:00-['4', '7', 'B', 'C', 'F', 'O', 'P', 'U', 'V', 'W', 'Z']-100.parquet"
|
|
ohlcv_df = pd.read_parquet(dir+file_name,engine='pyarrow')
|
|
basic_data = vbt.Data.from_data(vbt.symbol_dict({"BAC": ohlcv_df}), tz_convert=zoneNY)
|
|
basic_data.wrapper.index.normalize().nunique() #numdays
|
|
|
|
#Fetching Trades and Aggregating custom OHLCV
|
|
TBD
|
|
```
|
|
|
|
## REINDEX to main session
|
|
Get trading days main sessions from `pandas_market_calendars` and reindex fetched data to main session only.
|
|
```python
|
|
import vectorbtpro as vbt
|
|
|
|
# Start and end dates to use across both the calendar and data fetch
|
|
start=data.index[0].to_pydatetime()
|
|
end=tata.index[-1].to_pydatetime()
|
|
timeframe="1m"
|
|
|
|
import pandas_market_calendars as mcal
|
|
# Get the NYSE calendar
|
|
nyse = mcal.get_calendar("NYSE")
|
|
# Get the market hours data
|
|
market_hours = nyse.schedule(start_date=start, end_date=end, tz=nyse.tz)
|
|
#market_hours = market_hours.tz_localize(nyse.tz)
|
|
# Create a DatetimeIndex at our desired frequency for that schedule. Because the calendar hands back the end of
|
|
# the window, you need to subtract that size timeframe to get back to the start
|
|
market_klines = mcal.date_range(market_hours, frequency=timeframe) - pd.Timedelta(timeframe)
|
|
|
|
testData = vbt.YFData.fetch(['MSFT'], start=start, end=end, timeframe=timeframe, tz_convert="US/Eastern")
|
|
# Finally, take our DatetimeIndex and use that to pull just the data we're interested in (and ensuring we have rows
|
|
# for any empty klines in there, which helps for some time based algorithms that need to have time not exist outside
|
|
# of market hours)
|
|
testData = testData.transform(lambda x: x.reindex(market_klines))
|
|
```
|
|
## indexing
|
|
```python
|
|
entries.vbt.xloc[slice("2024-08-01","2024-08-03")].obj.info()
|
|
|
|
data.xloc[slice("9:30","10:00")] #targeting only morning rush
|
|
```
|
|
|
|
## Data manipulation
|
|
|
|
```python
|
|
#add/rename/delete symbols
|
|
s12_data = s12_data.rename_symbols("BAC", "BAC-LONG")
|
|
s12_data = s12_data.add_symbol("BAC-SHORT", s12_data.data["BAC-LONG"])
|
|
s12_adata.symbols
|
|
s12_data = s12_data.remove_symbols(["BAC-SHORT"])
|
|
```
|
|
# DISCOVERY
|
|
|
|
```python
|
|
#get parameters of method
|
|
vbt.IF.list_locations() #lists categories
|
|
vbt.IF.list_indicators(pattern="vbt") #all in category vbt
|
|
vbt.IF.list_indicators("*sma")
|
|
vbt.phelp(vbt.indicator("talib:MOM").run)
|
|
```
|
|
|
|
|
|
# DATA/WRAPPER
|
|
|
|
Available [methods for data](http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.Data)
|
|
|
|
**Main data container** (servees as a wrapper for symbol oriented or feature oriented data)
|
|
```python
|
|
data.transform()
|
|
data.dropna()
|
|
data.feature_oriented vs data.symbol_oriented #returns True/False if cols are features or symbols
|
|
data.data #dictionary either feature oriented or
|
|
data.ohlcv #OHLCV mixin filters only ohlcv feature and offers methods http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.OHLCDataMixin
|
|
data.base #base mixin - implicit offers functions wrapper methods http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.BaseDataMixin
|
|
- data.symbol_wrapper
|
|
- data.feature_wrapper
|
|
- data.features
|
|
|
|
|
|
show(t1data.data["BAC"])
|
|
|
|
#display returns on top of ohlcv
|
|
t1data.ohlcv.data["BAC"].lw.plot(left=[(t1data.returns, "returns")], precision=4)
|
|
```
|
|
|
|
## create WRAPPER manually
|
|
|
|
[wrapper methods](http://5.161.179.223:8000/vbt-doc/api/base/wrapping/index.html#vectorbtpro.base.wrapping.ArrayWrapper)
|
|
|
|
```python
|
|
#create wrapper from existing objects
|
|
wrapper = data.symbol_wrapper # one column for each symbol
|
|
wrapper = data.get_symbol_wrapper() # symbol - level, one column for each symbol (BAC a pod tim series)
|
|
wrapper = data.get_feature_wrapper() #feature level, one column for each feature (open,high...)
|
|
wrapper = df.vbt.wrapper
|
|
|
|
#Create an empty array with the same shape, index, and columns as in another array
|
|
new_float_df = wrapper.fill(np.nan)
|
|
new_bool_df = wrapper.fill(False)
|
|
new_int_df = wrapper.fill(-1)
|
|
|
|
#display df/series
|
|
from itables import show
|
|
show(t1data.close)
|
|
```
|
|
|
|
# RESAMPLING
|
|
## config
|
|
```python
|
|
from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig
|
|
from vectorbtpro import _typing as tp
|
|
from vectorbtpro.generic import nb as generic_nb
|
|
|
|
_feature_config: tp.ClassVar[Config] = HybridConfig(
|
|
{
|
|
"buyvolume": dict(
|
|
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
|
|
resampler,
|
|
generic_nb.sum_reduce_nb,
|
|
)
|
|
),
|
|
"sellvolume": dict(
|
|
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
|
|
resampler,
|
|
generic_nb.sum_reduce_nb,
|
|
)
|
|
),
|
|
"trades": dict(
|
|
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
|
|
resampler,
|
|
generic_nb.sum_reduce_nb,
|
|
)
|
|
)
|
|
}
|
|
)
|
|
|
|
basic_data._feature_config = _feature_config
|
|
```
|
|
ddd
|
|
#1s to 1T
|
|
t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']].resample("1T")
|
|
t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna())
|
|
|
|
#using resampler (with more control over target index)
|
|
resampler_s = vbt.Resampler(target_data.index, source_data.index, source_freq="1T", target_freq="1s")
|
|
basic_data.resample(resampler_s)
|
|
|
|
|
|
# REALIGN
|
|
|
|
`REALIGN` method - runs on data object (OHLCV) - (open feature realigns leftbound, rest of features rightboud) .resample("1T").first().ffill()
|
|
|
|
```python
|
|
ffill=True = same frequency as t1data.index
|
|
ffill=False = keeps original frequency but moved to where data are available ie. instead of 15:30 to 15:44 for 15T bar
|
|
t15data_realigned = t15data.realign(t1data.index, ffill=True, freq="1T") #freq - target frequency
|
|
```
|
|
|
|
## REALIGN_CLOSING accessors
|
|
```python
|
|
t15data_realigned_close = t15data.close.vbt.realign_closing(t1data.index, ffill=True, freq="1T")
|
|
t15data_realigned_open = t15data.open.vbt.realign_open(t1data.index, ffill=True, freq="1T")
|
|
```
|
|
|
|
#realign_closing accessor just calls
|
|
#return self.realign(*args, source_rbound=False, target_rbound=False, **kwargs)
|
|
#realign opening
|
|
#return self.realign(*args, source_rbound=True, target_rbound=True, **kwargs)
|
|
|
|
#using RESAMPLER
|
|
#or
|
|
resampler_s = vbt.Resampler(t15data.index, t1data.index, source_freq="1T", target_freq="1s")
|
|
t15close_realigned_with_resampler = t1data.data["BAC"].realign_closing(resampler_s)
|
|
|
|
|
|
# SIGNALS
|
|
```python
|
|
cond1 = data.get("Low") < bb.lowerband
|
|
#comparing with previous value
|
|
cond2 = bandwidth > bandwidth.shift(1)
|
|
#comparing with value week ago
|
|
cond2 = bandwidth > bandwidth.vbt.ago("7d")
|
|
mask = cond1 & cond2
|
|
mask.sum()
|
|
```
|
|
|
|
## ENTRIES/EXITS time based
|
|
```python
|
|
#create entries/exits based on open of first symbol
|
|
entries = pd.DataFrame.vbt.signals.empty_like(data.open.iloc[:,0])
|
|
exits = pd.DataFrame.vbt.signals.empty_like(entries)
|
|
|
|
#OR create entries/exits based on symbol level if needed (for each columns)
|
|
symbol_wrapper = data.get_symbol_wrapper()
|
|
entries = symbol_wrapper.fill(False)
|
|
exits = symbol_wrapper.fill(False)
|
|
|
|
entries.vbt.set(
|
|
True,
|
|
every="W-MON",
|
|
at_time="00:00:00",
|
|
indexer_method="bfill", # this time or after
|
|
inplace=True
|
|
)
|
|
exits.vbt.set(
|
|
True,
|
|
every="W-MON",
|
|
at_time="23:59:59",
|
|
indexer_method="ffill", # this time or before
|
|
inplace=True
|
|
)
|
|
```
|
|
|
|
## STOPS
|
|
[doc from_signal](http://5.161.179.223:8000/vbt-doc/api/portfolio/base/#vectorbtpro.portfolio.base.Portfolio.from_signals)
|
|
|
|
- StopExitPrice (Which price to use when exiting a position upon a stop signal?)
|
|
- StopEntryPrice (Which price to use as an initial stop price?)
|
|
|
|
price = close.vbt.wrapper.fill()
|
|
price[entries] = entry_price
|
|
price[exits] = exit_price
|
|
|
|
## OHLCSTX Module
|
|
- exit signal generator based on price and stop values
|
|
[doc](ttp://5.161.179.223:8000/vbt-doc/api/signals/generators/ohlcstx/index.html)
|
|
|
|
|
|
## Entry Window and Forced Exit Window
|
|
Applying `entry window `range (denoted by minutes from the session start) to `entries` and applying `forced exit window` to `exits`.
|
|
|
|
`create_mask_from_window` with param `use_cal=True` (default) uses market calendar data for each day to denote session start and end. When disabled it uses just fixed 9:30-16:00 for each day.
|
|
|
|
```python
|
|
from ttools import create_mask_from_window
|
|
|
|
entry_window_opens = 3 #in minutes from start of the market
|
|
entry_window_closes = 388
|
|
forced_exit_start = 387
|
|
forced_exit_end = 390
|
|
|
|
#create mask based on main session that day
|
|
entry_window_opened = create_mask_from_window(entries, entry_window_opens, entry_window_closes, use_cal=True)
|
|
#limit entries to the window
|
|
entries = entries & entry_window_opened
|
|
|
|
#create forced exits mask
|
|
forced_exits_window = create_mask_from_window(exits, forced_exit_start, forced_exit_end, use_cal=True)
|
|
|
|
#add forced_exits to exits
|
|
exits = exits | forced_exits_window
|
|
```
|
|
|
|
## END OF DAY EXITS
|
|
Another way of eod exits according to number of bars at the end of the session. Assuming the last rows each day represents end of the market.
|
|
|
|
```python
|
|
sr = t1data.data["BAC"]
|
|
last_n_daily_rows = sr.groupby(sr.index.date).tail(4) #or N last rows
|
|
second_last_daily_row = sr.groupby(sr.index.date).nth(-2) #or Nth last row
|
|
second_last_two_rows = sr.groupby(sr.index.date).apply(lambda x: x.iloc[-3:-1]).droplevel(0) #or any slice of rows
|
|
#create exit array
|
|
exits = t1data.get_symbol_wrapper().fill(False)
|
|
exits.loc[last_n_daily_rows.index] = True
|
|
#visualize
|
|
t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close",exits)], size="s")
|
|
|
|
#which is ALTERNATIVE to
|
|
exits = create_mask_from_window(t1data.close, 387, 390, use_cal=False)
|
|
t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close",exits)], size="s")
|
|
```
|
|
## REGULAR EXITS
|
|
Time based.
|
|
```python
|
|
#REGULAR EXITS -EVERY HOUR/D/WEEK exits
|
|
exits.vbt.set(
|
|
True,
|
|
every="H" # "min" "2min" "2H" "W-MON"+at time "D"+time
|
|
#at_time="23:59:59",
|
|
indexer_method="ffill", # this time or before
|
|
inplace=True
|
|
)
|
|
|
|
```
|
|
|
|
# DF/SR ACCESSORS
|
|
|
|
## Generic
|
|
For common taks ([docs](http://5.161.179.223:8000/vbt-doc/api/generic/accessors/index.html#vectorbtpro.generic.accessors.GenericAccessor))
|
|
|
|
* `rolling_apply` - runs custom function over a rolling window of a fixed size (number of bars or frequency)
|
|
|
|
* `expanding_apply` - runs custome function over expanding the window from the start of the data to the current poin
|
|
|
|
```python
|
|
from numba import njit
|
|
mean_nb = njit(lambda a: np.nanmean(a))
|
|
hourly_anchored_expanding_mean = t1data.close.vbt.rolling_apply("1H", mean_nb) #ROLLING to FREQENCY or with fixed windows rolling_apply(10,mean_nb)
|
|
t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close"),(hourly_anchored_expanding_mean, "hourly_anchored_expanding_mean")], size="s")
|
|
#NOTE for anchored "1D" frequency - it measures timedelta that means requires 1 day between reseting (16:00 end of market, 9:30 start - not a full day, so it is enOugh to set 7H)
|
|
|
|
#HEATMAP OVERLAY
|
|
df['a'].vbt.overlay_with_heatmap(df['b']).show()
|
|
```
|
|
|
|
## SIGNAL ACCESSORS
|
|
- http://5.161.179.223:8000/vbt-doc/api/signals/accessors/#vectorbtpro.signals.accessors.SignalsAccessor
|
|
|
|
|
|
## RANKING - partitioning
|
|
```python
|
|
#pos_rank -1 when False, 0, 1 ... for consecutive Trues, allow_gaps defautlne False
|
|
# sample_mask = pd.Series([True, True, False, True, True])
|
|
ranked = sample_mask.vbt.signals.pos_rank()
|
|
ranked == 1 #select each second signal in each partition
|
|
ranked = sample_mask.vbt.signals.pos_rank(allow_gaps=True)
|
|
(ranked > -1) & (ranked % 2 == 1) #Select each second signal globally
|
|
|
|
entries.vbt.signals.first() #selects only first entries in each group
|
|
entries.vbt.signals.from_nth(n) # pos_rank >= n in each group, all from Nth
|
|
|
|
#AFTER - with variants _after which resets partition each reset array
|
|
#maximum number of exit signals after each entry signal
|
|
exits.vbt.signals.pos_rank_after(entries, reset_wait=0).max() + 1 #Count is the maximum rank plus one since ranks start with zero. We also assume that an entry signal comes before an exit signal if both are at the same timestamp by passing reset_wait=0.
|
|
|
|
entries.vbt.signals.total_partitions
|
|
|
|
|
|
#partition_pos_rank - all members of each partition have the same rank
|
|
ranked = sample_mask.vbt.signals.partition_pos_rank(allow_gaps=True) #0,0,-1,1,1
|
|
ranked == 1 # the whole second partition
|
|
```
|
|
|
|
## Base Accessors
|
|
* low level accessors - http://5.161.179.223:8000/vbt-doc/api/base/accessors/index.html#vectorbtpro.base.accessors.BaseAccessor
|
|
|
|
```python
|
|
exits.vbt.set(
|
|
True,
|
|
every="W-MON",
|
|
at_time="23:59:59",
|
|
indexer_method="ffill", # this time or before
|
|
inplace=True
|
|
)
|
|
```
|
|
|
|
# Stoploss/Takeprofit
|
|
[doc StopOrders](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/index.html#stop-orders)
|
|
|
|
## SL - ATR based
|
|
```
|
|
atr = data.run("atr").atr
|
|
pf = vbt.Portfolio.from_signals(
|
|
data,
|
|
entries=entries,
|
|
sl_stop=atr / sub_data.close
|
|
)
|
|
```
|
|
|
|
## EXIT after time
|
|
using [from signals](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#from-signals)
|
|
|
|
```python
|
|
f = vbt.PF.from_signals(..., td_stop="7 days")
|
|
pf = vbt.PF.from_signals(..., td_stop=pd.Timedelta(days=7))
|
|
pf = vbt.PF.from_signals(..., td_stop=td_arr)
|
|
#EXIT at time
|
|
pf = vbt.PF.from_signals(..., dt_stop="16:00") #exit at 16 and later
|
|
pf = vbt.PF.from_signals(..., dt_stop=datetime.time(16, 0))
|
|
pf = vbt.PF.from_signals( #exit last bar before
|
|
...,
|
|
dt_stop="16:00",
|
|
arg_config=dict(dt_stop=dict(last_before=True))
|
|
)
|
|
```
|
|
|
|
## CALLBACKS -
|
|
- a signal function (`signal_func_nb`)
|
|
- can dynamically generate signals (True, True, False,False)
|
|
- runs at beginning of bar
|
|
- an adjustment function (`adjust_func_nb`) - [doc](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/#adjustment)
|
|
- runs only if signal function above was not provided, but entry,exit arrays
|
|
- runs before default signal function [ls_signal_func_nb](http://5.161.179.223:8000/vbt-doc/api/portfolio/nb/from_signals/index.html#vectorbtpro.portfolio.nb.from_signals.ls_signal_func_nb)
|
|
- can change pending limit orders etc.
|
|
- a post-signal function (`post_signal_func_nb`)
|
|
- post-segment function (`post_segment_func_nb`)
|
|
|
|
all of them are accessing [SignalContext](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/index.html#vectorbtpro.portfolio.enums.SignalContext) `(c)` as named tuple
|
|
SignalContaxt (contains various metrics) such as:
|
|
* last_limit_info - 1D with latest limit order per column
|
|
* order_counts
|
|
* last_return ...
|
|
|
|
"""
|
|
|
|
### MEMORY
|
|
save an information piece at one timestamp and re-use at a later timestamp when using [callbacks memory](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks)
|
|
|
|
Usecases:
|
|
* [MULTIPLE simultaneuos LIMIT ORDERS at TIME](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks)
|
|
|
|
* [IGNORE ENTRIES number of DAYS after losing trade](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks) - signal function
|
|
|
|
# Portfolio
|
|
|
|
group_by=True to put all columns to the same group and cash_sharing=True to share capital among them
|
|
|
|
|
|
# INDICATORS DEV
|
|
|
|
```python
|
|
#REGISTER CUSTOM INDICATOR
|
|
vbt.IndicatorFactory.register_custom_indicator(
|
|
SupportResistance,
|
|
name="SUPPRES",
|
|
location=None,
|
|
if_exists='raise'
|
|
)
|
|
|
|
#RUN INDICATOR on DATA WRAPPER
|
|
cdlbreakaway = s1data.run(vbt.indicator("talib:CDLHAMMER"), skipna=True, timeframe=["12s"])
|
|
|
|
#FROM EXPRESSION http://5.161.179.223:8000/vbt-doc/api/indicators/factory/#vectorbtpro.indicators.factory.IndicatorFactory.from_expr
|
|
WMA = vbt.IF(
|
|
class_name='WMA',
|
|
input_names=['close'],
|
|
param_names=['window'],
|
|
output_names=['wma']
|
|
).from_expr("wm_mean_nb(close, window)")
|
|
|
|
wma = WMA.run(t1data.close, window=10)
|
|
wma.wma
|
|
```
|
|
## Custom ind
|
|
|
|
```python
|
|
#simple
|
|
from numba import jit
|
|
@jit
|
|
def apply_func(high, low, close):
|
|
return (high + low + close + close) / 4
|
|
|
|
HLCC4 = vbt.IF(
|
|
class_name='hlcc4',
|
|
input_names=['high', 'low', 'close'],
|
|
output_names=['out']
|
|
).with_apply_func(
|
|
apply_func,
|
|
timeperiod=10, #single default
|
|
high=vbt.Ref('close')) #default from another input)
|
|
|
|
ind = HLCC4.run(s12_data.high, s12_data.low, s12_data.close)
|
|
|
|
#1D apply function
|
|
import talib
|
|
|
|
def apply_func_1d(close, timeperiod):
|
|
return talib.SMA(close.astype(np.double), timeperiod)
|
|
|
|
SMA = vbt.IF(
|
|
input_names=['ts'],
|
|
param_names=['timeperiod'],
|
|
output_names=['sma']
|
|
).with_apply_func(apply_func_1d, takes_1d=True)
|
|
|
|
sma = SMA.run(ts, [3, 4])
|
|
sma.sma
|
|
|
|
#with grouping and keep_pd (inputs are pd.series)
|
|
def apply_func(ts, group_by):
|
|
return ts.vbt.demean(group_by=group_by)
|
|
|
|
Demeaner = vbt.IF(
|
|
input_names=['ts'],
|
|
param_names=['group_by'],
|
|
output_names=['out']
|
|
).with_apply_func(apply_func, keep_pd=True) #if takes_1D it sends pd.series, otherwise df with symbol as columns
|
|
|
|
ts_wide = pd.DataFrame({
|
|
'a': [1, 2, 3, 4, 5],
|
|
'b': [5, 4, 3, 2, 1],
|
|
'c': [3, 2, 1, 2, 3],
|
|
'd': [1, 2, 3, 2, 1]
|
|
}, index=generate_index(5))
|
|
demeaner = Demeaner.run(ts_wide, group_by=[(0, 0, 1, 1), True])
|
|
demeaner.out
|
|
```
|
|
### register custom ind
|
|
[indicator registration](http://5.161.179.223:8000/vbt-doc/cookbook/indicators/#registration)
|
|
|
|
```python
|
|
vbt.IF.register_custom_indicator(sma_indicator) #name=classname
|
|
vbt.IF.register_custom_indicator(sma_indicator, "rolling:SMA")
|
|
|
|
vbt.IF.deregister_custom_indicator("rolling:SMA")
|
|
```
|
|
### VWAP anchored example
|
|
|
|
```python
|
|
import numpy as np
|
|
from vectorbtpro import _typing as tp
|
|
from vectorbtpro.base.wrapping import ArrayWrapper
|
|
from vectorbtpro.utils.template import RepFunc
|
|
|
|
def substitute_anchor(wrapper: ArrayWrapper, anchor: tp.Optional[tp.FrequencyLike]) -> tp.Array1d:
|
|
"""Substitute reset frequency by group lens. It is array of number of elements of each group."""
|
|
if anchor is None:
|
|
return np.array([wrapper.shape[0]])
|
|
return wrapper.get_index_grouper(anchor).get_group_lens()
|
|
|
|
@jit(nopython=True)
|
|
def vwap_cum(high, low, close, volume, group_lens):
|
|
#anchor based grouping - prepare group indexes
|
|
group_end_idxs = np.cumsum(group_lens)
|
|
group_start_idxs = group_end_idxs - group_lens
|
|
|
|
#prepare output
|
|
out = np.full(volume.shape, np.nan, dtype=np.float_)
|
|
|
|
hlcc4 = (high + low + close + close) / 4
|
|
|
|
#iterate over groups
|
|
for group in range(len(group_lens)):
|
|
from_i = group_start_idxs[group]
|
|
to_i = group_end_idxs[group]
|
|
nom_cumsum = 0
|
|
denum_cumsum = 0
|
|
#for each group do this (it is just np.cumsum(hlcc4 * volume) / np.sum(volume) iteratively)
|
|
for i in range(from_i, to_i):
|
|
nom_cumsum += volume[i] * hlcc4[i]
|
|
denum_cumsum += volume[i]
|
|
if denum_cumsum == 0:
|
|
out[i] = np.nan
|
|
else:
|
|
out[i] = nom_cumsum / denum_cumsum
|
|
return out
|
|
|
|
vwap_ind = vbt.IF(
|
|
class_name='CUVWAP',
|
|
input_names=['high', 'low', 'close', 'volume'],
|
|
param_names=['anchor'],
|
|
output_names=['vwap']
|
|
).with_apply_func(vwap_cum,
|
|
takes_1d=True,
|
|
param_settings=dict(
|
|
anchor=dict(template=RepFunc(substitute_anchor)),
|
|
),
|
|
anchor="D",
|
|
)
|
|
|
|
%timeit vwap_cum = vwap_ind.run(s12_data.high, s12_data.low, s12_data.close, s12_data.volume, anchor="min")
|
|
vbt.IF.register_custom_indicator(vwap_ind)
|
|
```
|
|
### Use ttols indicators
|
|
|
|
```python
|
|
from ttools.vbtindicators import register_custom_inds
|
|
register_custom_inds(if_exists="skip") #register all, skip or override when exists
|
|
#register_custom_inds("CVWAP", "skip") #register one, skip if exists
|
|
#register_custom_inds() #deregister all
|
|
vbt.IF.list_indicators("ttools")
|
|
|
|
vwap_cum = vbt.indicator("ttools:CUVWAP").run(s12_data.high, s12_data.low, s12_data.close, s12_data.volume, anchor="D")
|
|
vwap_cum.vwap
|
|
|
|
div_vwap_cum = vbt.indicator("ttools:DIVERGENCE").run(s12_data.close, vwap_cum_d.vwap, divtype=vbt.Default(valeu="reln"), hide_default=True) #hide default levels
|
|
|
|
```
|
|
|
|
# FAV INDICATORS
|
|
|
|
```python
|
|
#for TALIB indicator always use skipna=True
|
|
|
|
#TALIB INDICATORS can do realing closing : timeframe=["1T"]
|
|
mom_multi = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=5, timeframe=["1T","5T"], skipna=True) #returned 5T can be directly compared with 1T
|
|
|
|
#ANCHORED indciators vbt.indicator("talib:MOM") becomes AnchoredIndicator("talib:MOM", anchor="D") - freq of pd.Grouper
|
|
from ttools import AnchoredIndicator
|
|
mom_anch_d = AnchoredIndicator("talib:MOM", anchor='30min').run(t1data.data["BAC"].close, timeperiod=10)
|
|
mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True)
|
|
t1data.ohlcv.data["BAC"].lw.plot(auto_scale=[mom_anch_d, mom])
|
|
|
|
#FIBO RETRACEMENT
|
|
fibo = vbt.indicator("technical:FIBONACCI_RETRACEMENTS").run(t1data.close, skipna=True)
|
|
#fibo.fibonacci_retracements
|
|
|
|
fibo_plusclose = t1data.close + fibo.fibonacci_retracements
|
|
fibo_minusclose = t1data.close - fibo.fibonacci_retracements
|
|
#fibo_plusclose
|
|
Panel(
|
|
auto_scale=[fibo_plusclose["BAC"]],
|
|
ohlcv=(t1data.ohlcv.data["BAC"],),
|
|
histogram=[],
|
|
right=[(fibo_plusclose["BAC"],),(fibo_minusclose["BAC"],)],
|
|
left=[],
|
|
middle1=[(fibo.fibonacci_retracements["BAC"],"fibonacci_retracements")],
|
|
middle2=[]
|
|
).chart(size="xs")
|
|
|
|
#CHOPINESS indicator
|
|
chopiness = vbt.indicator("technical:CHOPINESS").run(s1data.open, s1data.high, s1data.low, s1data.close, t1data.volume, skipna=True)
|
|
s1data.ohlcv.data["BAC"].lw.plot(auto_scale=[chopiness])
|
|
|
|
#anchored VWAP
|
|
t1vwap_h = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="H")
|
|
t1vwap_h_real = t1vwap_h.vwap.vbt.realign_closing(resampler_s)
|
|
|
|
#BBANDS = vbt.indicator("pandas_ta:BBANDS")
|
|
mom_anch_d = AnchoredIndicator("talib:MOM", anchor='30min').run(t1data.data["BAC"].close, timeperiod=10)
|
|
mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True)
|
|
#macd = vbt.indicator("talib:MACD").run(t1data.data["BAC"].close) #, timeframe=["1T"]) #,
|
|
t1data.ohlcv.data["BAC"].lw.plot(auto_scale=[mom_anch_d, mom])
|
|
|
|
```
|
|
|
|
# GROUPING
|
|
|
|
Group wrapper index based on freq:
|
|
|
|
```python
|
|
#returns array of number of elements in each consec group
|
|
group_lens = s12_data.wrapper.get_index_grouper("D").get_group_lens()
|
|
#
|
|
group_end_idxs = np.cumsum(group_lens) #end indices of each group
|
|
group_start_idxs = group_end_idxs - group_lens #start indices of each group
|
|
|
|
out = np.full(volume.shape, np.nan, dtype=np.float_)
|
|
|
|
#iterate over groups
|
|
for group in range(len(group_lens)):
|
|
from_i = group_start_idxs[group]
|
|
to_i = group_end_idxs[group]
|
|
|
|
#iterate over elements of the group
|
|
for i in range(from_i, to_i):
|
|
out[i] = np.nan
|
|
return out
|
|
|
|
```
|
|
|
|
|
|
# SPLITTING
|
|
|
|
```python
|
|
#SPLITTER - splitting wrapper based on index
|
|
#http://5.161.179.223:8000/vbt-doc/tutorials/cross-validation/splitter/index.html#anchored
|
|
#based on GROUPER
|
|
daily_splitter = vbt.Splitter.from_grouper(t1data.index, "D", split=None) #DOES contain last DAY
|
|
|
|
daily_splitter = vbt.Splitter.from_ranges( #doesnt contain last DY
|
|
t1data.index,
|
|
every="D",
|
|
split=None
|
|
)
|
|
daily_splitter.stats()
|
|
daily_splitter.plot()
|
|
daily_splitter.coverage()
|
|
daily_splitter.get_bounds(index_bounds=True) #shows the exact times
|
|
daily_splitter.get_bounds_arr()
|
|
daily_splitter.get_range_coverage(relative=True)
|
|
|
|
#TAKING and APPLY MANUALLY - run UDF on ALL takes and concatenates
|
|
taken = daily_splitter.take(t1data)
|
|
inds = []
|
|
for series in taken:
|
|
mom = vbt.indicator("talib:MOM").run(series.close, timeperiod=10, skipna=True)
|
|
inds.append(mom)
|
|
mom_daily = vbt.base.merging.row_stack_merge(inds) #merge
|
|
mom = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=10, skipna=True)
|
|
t1data.ohlcv.data["BAC"].lw.plot(left=[(mom_daily, "daily_splitter"),(mom, "original mom")]) #OHLCV with indicators on top
|
|
|
|
#TAKING and APPLY AUTOMATIC
|
|
daily_splitter = vbt.Splitter.from_grouper(t1data.index, "D", split=None) #DOES contain last DAY
|
|
def indi_run(sr):
|
|
return vbt.indicator("talib:MOM").run(sr.close, timeperiod=10, skipna=True)
|
|
|
|
res = daily_splitter.apply(indi_run, vbt.Takeable(t1data), merge_func="row_stack", freq="1T")
|
|
|
|
|
|
#use of IDX accessor (docs:http://5.161.179.223:8000/vbt-doc/api/base/accessors/index.html#vectorbtpro.base.accessors.BaseIDXAccessor)
|
|
daily_grouper = t1data.index.vbt.get_grouper("D")
|
|
|
|
#grouper instance can be iterated over
|
|
for name, indices in daily_grouper.iter_groups():
|
|
print(name, indices)
|
|
|
|
#PANDAS GROUPING - series/df grouping resulting in GroupBySeries placeholder that can be aggregated(sum, mean), transformed iterated over or fitlered
|
|
for name, group in t1data.data["BAC"].close.groupby(pd.Grouper(freq='D')):
|
|
print(name, group)
|
|
```
|
|
|
|
|
|
# CHARTING
|
|
Using [custom lightweight-charts-python](https://github.com/drew2323/lightweight-charts-python)
|
|
|
|
```python
|
|
#LW df/sr accessor
|
|
t1data.ohlcv.data["BAC"].lw.plot(left=[(mom_multi, "mom_multi")]) #OHLCV with indicators on top
|
|
|
|
|
|
t5data.ohlcv.data["BAC"].lw.plot(
|
|
left=[(mom_multi.real, "mom"),(mom_multi_beztf, "mom_beztf"), (mom_5t_orig, "mom_5t_orig"), (mom_5t_orig_realigned, "mom_5t_orig_realigned")],
|
|
right=[(t1data.data["BAC"].close, "t1 close"),(t5data.data["BAC"].close, "t5 close")],
|
|
size="s") #.loc[:,(20,"1T","BAC")]
|
|
|
|
#SINGLE PANEL
|
|
Panel(
|
|
auto_scale=[cdlbreakaway],
|
|
ohlcv=(t1data.ohlcv.data["BAC"],entries),
|
|
histogram=[],
|
|
right=[],
|
|
left=[],
|
|
middle1=[],
|
|
middle2=[]
|
|
).chart(size="xs")
|
|
|
|
#MULTI PANEL
|
|
pane1 = Panel(
|
|
#auto_scale=[mom_multi, mom_multi_1t],
|
|
#ohlcv=(t1data.data["BAC"],), #(series, entries, exits, other_markers)
|
|
#histogram=[(order_imbalance_allvolume, "oivol")], # [(series, name, "rgba(53, 94, 59, 0.6)", opacity)]
|
|
right=[(t1data.data["BAC"].close,"close 1T"),(t5data.data["BAC"].close,"close 5T"),(mom_multi_1t.close, "mom multi close")], # [(series, name, entries, exits, other_markers)]
|
|
left=[(mom_multi, "mom_multi"), (mom_multi_1t, "mom_multi_1t")],
|
|
#middle1=[],
|
|
#middle2=[],
|
|
#xloc="2024-02-12 09:30",
|
|
precision=3
|
|
)
|
|
pane2 = Panel(....)
|
|
|
|
ch = chart([pane1, pane2], size="s")
|
|
```
|
|
|
|
|
|
# MULTIACCOUNT
|
|
Simultaneous LONG and short (hedging)
|
|
In vbt position requires one column of data, so hedging is possible by using two columns representing the same asset but different directions,
|
|
then stack both portfolio together [column stacking](http://5.161.179.223:8000/vbt-doc/features/productivity/#column-stacking)
|
|
pf_join = vbt.PF.column_stack((pf1, pf2), group_by=True)
|
|
|
|
# CUSTOM SIMULATION
|
|
|
|
# ANALYSIS
|
|
## ROBUSTNESS
|
|
```python
|
|
pf_stats.sort_values(by='Sharpe Ratio', ascending=False).iloc[::-1].vbt.heatmap().show() #works when there are more metrics
|
|
```
|
|
|
|
|
|
#endregion
|
|
|
|
# UTILS
|
|
|
|
```python
|
|
|
|
#RELOAD module in ipynb
|
|
%load_ext autoreload
|
|
%autoreload 2
|
|
|
|
#MEMORY
|
|
sr.info()
|
|
|
|
|
|
#peak memory usage, running once
|
|
with vbt.MemTracer() as tracer:
|
|
my_pipeline()
|
|
|
|
print(tracer.peak_usage())
|
|
|
|
#CACHE
|
|
vbt.print_cache_stats()
|
|
vbt.print_cache_stats(vbt.PF)
|
|
|
|
vbt.flush() #clear cache and collect garbage
|
|
vbt.clear_cache(pf) #of specific
|
|
|
|
|
|
#TIMING
|
|
#running once
|
|
with vbt.Timer() as timer:
|
|
my_pipeline()
|
|
|
|
print(timer.elapsed())
|
|
|
|
#multiple times
|
|
print(vbt.timeit(my_pipeline))
|
|
|
|
#in notebook
|
|
%timeit function(x)
|
|
%% time
|
|
function(x)
|
|
|
|
#NUMBA
|
|
#numba doesnt return error when indexing out of bound, this raises the error
|
|
import os
|
|
os.environ["NUMBA_BOUNDSCHECK"] = "1"
|
|
```
|
|
|
|
# Market calendar
|
|
|
|
```python
|
|
from pandas.tseries.offsets import CustomBusinessDay
|
|
from pandas_market_calendars import get_calendar
|
|
|
|
# Get the NYSE trading calendar
|
|
nyse = get_calendar('NYSE')
|
|
# Create a CustomBusinessDay object using the NYSE trading calendar
|
|
custom_bd = CustomBusinessDay(holidays=nyse.holidays().holidays, weekmask=nyse.weekmask, calendar=nyse)
|
|
```
|