- Added async methods to polygon. - The `requests` library is no longer required, with `urllib` being used instead. - Added the `get_bar_data` function, which returns a dataframe of aggregate data from polygon. - Opened up the `subscribe` and `unsubscribe` functions Enhancements: - Tables will now scroll when the rows exceed table height. Bugs: - Fixed a bug preventing async functions being used with horizontal line event. - Fixed a bug causing the legend to show duplicate lines if the line was created after the legend. - Fixed a bug causing the line hide icon to persist within the legend after deletion (#75) - Fixed a bug causing the search box to be unfocused when the chart is loaded.
4.0 KiB
Topbar & Events
This section gives an overview of how events are handled across the library.
How to use events
Take a look at this minimal example, which uses the search event:
from lightweight_charts import Chart
def on_search(chart, string):
print(f'Search Text: "{string}" | Chart/SubChart ID: "{chart.id}"')
if __name__ == '__main__':
chart = Chart()
# Subscribe the function above to search event
chart.events.search += on_search
chart.show(block=True)
Upon searching in a pane, the expected output would be akin to:
Search Text: "AAPL" | Chart/SubChart ID: "window.blyjagcr"
The ID shown above will change depending upon which pane was used to search, allowing for access to the object in question.
* When using `show` rather than `show_async`, block should be set to `True` (`chart.show(block=True)`).
* Event callables can be either coroutines, methods, or functions.
Topbar events
Events can also be emitted from the topbar:
from lightweight_charts import Chart
def on_button_press(chart):
new_button_value = 'On' if chart.topbar['my_button'].value == 'Off' else 'Off'
chart.topbar['my_button'].set(new_button_value)
print(f'Turned something {new_button_value.lower()}.')
if __name__ == '__main__':
chart = Chart()
chart.topbar.button('my_button', 'Off', func=on_button_press)
chart.show(block=True)
In this example, we are passing on_button_press to the func parameter.
When the button is pressed, the function will be emitted the chart object as with the previous example, allowing access to the topbar dictionary.
The switcher is typically used for timeframe selection:
from lightweight_charts import Chart
def on_timeframe_selection(chart):
print(f'Getting data with a {chart.topbar["my_switcher"].value} timeframe.')
if __name__ == '__main__':
chart = Chart()
chart.topbar.switcher(
name='my_switcher',
options=('1min', '5min', '30min'),
default='5min',
func=on_timeframe_selection)
chart.show(block=True)
Async clock
There are many use cases where we will need to run our own code whilst the GUI loop continues to listen for events. Let's demonstrate this by using the textbox widget to display a clock:
import asyncio
from datetime import datetime
from lightweight_charts import Chart
async def update_clock(chart):
while chart.is_alive:
await asyncio.sleep(1-(datetime.now().microsecond/1_000_000))
chart.topbar['clock'].set(datetime.now().strftime('%H:%M:%S'))
async def main():
chart = Chart()
chart.topbar.textbox('clock')
await asyncio.gather(chart.show_async(block=True), update_clock(chart))
if __name__ == '__main__':
asyncio.run(main())
This is how the library is intended to be used with live data (option #2 described here).
Live data, topbar & events
Now we can create an asyncio program which updates chart data whilst allowing the GUI loop to continue processing events, based the Live data example:
import asyncio
import pandas as pd
from lightweight_charts import Chart
async def data_loop(chart):
ticks = pd.read_csv('ticks.csv')
for i, tick in ticks.iterrows():
if not chart.is_alive:
return
chart.update_from_tick(ticks.iloc[i])
await asyncio.sleep(0.03)
i += 1
def on_new_bar(chart):
print('New bar event!')
def on_timeframe_selection(chart):
print(f'Selected timeframe of {chart.topbar["timeframe"].value}')
async def main():
chart = Chart()
chart.events.new_bar += on_new_bar
chart.topbar.switcher('timeframe', ('1min', '5min'), func=on_timeframe_selection)
df = pd.read_csv('ohlc.csv')
chart.set(df)
await asyncio.gather(chart.show_async(block=True), data_loop(chart))
if __name__ == '__main__':
asyncio.run(main())