Files
lightweight-charts-python/README.md
louisnw d9c8aa3bd8 v1.0.13
NEW FEATURE: Polygon.io Full integration
- Added `polygon` to the common methods, allowing for data to be pulled from polygon.io. (`chart.polygon.<method>`)
- Added the `PolygonChart` object, which allows for a plug and play solution with the Polygon API.
- Check the docs for more details and examples!

Enhancements:
- Added `clear_markers` and `clear_horizontal_lines` to the common methods.
- Added the `maximize` parameter to the `Chart` object, which maximizes the chart window when shown.
- The Legend will now show Line values, and can be disabled using the `lines` parameter.
- Added the `name` parameter to the `set` method of line, using the column within the dataframe as the value and using its name within the legend.
- Added the `scale_candles_only` parameter to all Chart objects, which prevents the autoscaling of Lines.

- new `screenshot` method, which returns a bytes object of the displayed chart.

Fixes:
- `chart.lines()` now returns a copy of the list rather than the original.
2023-06-28 18:36:32 +01:00

7.2 KiB

lightweight-charts-python

PyPi Release Made with Python License Documentation

cover

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight-charts
  • White screen? Having issues with pywebview? Click here.

Features

  1. Simple and easy to use.
  2. Blocking or non-blocking GUI.
  3. Streamlined for live data, with methods for updating directly from tick data.
  4. Supports: Jupyter Notebooks, PyQt, wxPython, Streamlit, and asyncio.
  5. Callbacks allowing for timeframe (1min, 5min, 30min etc.) selectors, searching, and more.
  6. Multi-Pane Charts using the SubChart.
  7. Direct integration of market data through Polygon.io's market data API.

1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: | time | open | high | low | close | volume (if volume is enabled) |
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: | time | price | volume (if volume is enabled) |
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart(volume_enabled=False)
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.3)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(data: pd.DataFrame, period: int = 50):
   def avg(d: pd.DataFrame):
      return d['close'].mean()

   result = []
   for i in range(period - 1, len(data)):
      val = avg(data.iloc[i - period + 1:i])
      result.append({'time': data.iloc[i]['date'], 'value': val})
   return pd.DataFrame(result)


if __name__ == '__main__':
   chart = Chart()

   df = pd.read_csv('ohlcv.csv')
   chart.set(df)

   line = chart.create_line()
   sma_data = calculate_sma(df)
   line._set(sma_data)

   chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart(debug=True)

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import asyncio
import pandas as pd

from lightweight_charts import Chart


def get_bar_data(symbol, timeframe):
    if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
        print(f'No data for "{symbol}"')
        return pd.DataFrame()
    return pd.read_csv(f'bar_data/{symbol}_{timeframe}.csv')


class API:
    def __init__(self):
        self.chart = None  # Changes after each callback.

    async def on_search(self, searched_string):  # Called when the user searches.
        new_data = get_bar_data(searched_string, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.topbar['corner'].set(searched_string)
        self.chart.set(new_data)

    async def on_timeframe_selection(self):  # Called when the user changes the timeframe.
        new_data = get_bar_data(self.chart.topbar['corner'].value, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.set(new_data)


async def main():
    api = API()

    chart = Chart(api=api, topbar=True, searchbox=True)
    chart.legend(True)

    chart.topbar.textbox('corner', 'TSLA')
    chart.topbar.switcher('timeframe', api.on_timeframe_selection, '1min', '5min', '30min', default='5min')

    df = get_bar_data('TSLA', '5min')
    chart.set(df)

    await chart.show_async(block=True)


if __name__ == '__main__':
    asyncio.run(main())

callbacks gif


Documentation


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.