337 lines
11 KiB
Markdown
337 lines
11 KiB
Markdown
Fork of original [lightweight-charts](louisnw01/lightweight-charts-python) with enhancements and supporting vectorbtpro workflow
|
|
* colored legends
|
|
* automatic colors if not provided
|
|
* support for left and mid price scales
|
|
* accepts df,pd.series or vectorbtpro indicator object (including unpacking multi outputs)
|
|
* new markers_set method allowing to set pd.series or dataframe as markers input
|
|
* supports simple df/sr accessors `close.lw.plot()` for quick visualization of single panel chart
|
|
* supports `ch = chart([pane1, pane2], sync=True, title="Title", size="m")` to quickly display chart with N panes (`Panels`). Also supports syncing the Panels `sync=True` or using xloc.
|
|
|
|
|
|
<img width="1005" alt="image" src="https://github.com/drew2323/lightweight-charts-python/assets/28433232/856c32aa-e0ff-4de0-b4a2-befc34adb571">
|
|
|
|
## Examples
|
|
|
|
```python
|
|
from lightweight_charts import chart, Panel
|
|
|
|
#one liner, displays close series as line on single Panel
|
|
close.lw.plot()
|
|
|
|
#quick few liner, displays close series with label "close" on right pricescale and rsi on left price scale, all on single Panel
|
|
pane1 = Panel(
|
|
right=[(close, "close")],
|
|
left=[(rsi,"rsi")]
|
|
)
|
|
ch = chart([pane1])
|
|
|
|
# display two Panels
|
|
# on first displays ohlcv data, orderimbalance volume as histogram with opacity, bbands on the right pricescale and
|
|
# sma with short_signals and short_exits on the left pricescale
|
|
pane1 = Panel(
|
|
ohlcv=(t1data.data["BAC"],), #(series, entries, exits, other_markers)
|
|
histogram=[(order_imbalance_allvolume, "oivol",None, 0.3)], # [(series, name, "rgba(53, 94, 59, 0.6)", opacity)]
|
|
|
|
#following attributes assign lineseries series to different priceScaleIds, format: # [(series, name, entries, exits, other_markers)]
|
|
right=[(bbands)], #multioutput indicator, outputs are autom.extracted
|
|
left=[(sma, "sma", short_signals, short_exits) #simple vbt indicator with markers in and outs
|
|
(supertrend.trend, "ST_trend") #explicitly just one output of multioutput indicator
|
|
],
|
|
middle1=[],
|
|
middle2=[],
|
|
)
|
|
#on second panel displays also ohlcv data, and sma on the left pricescale and histogram
|
|
pane2 = Panel(
|
|
ohlcv=(t1data.data["BAC"],),
|
|
right=[],
|
|
left=[(sma, "sma_below", short_signals, short_exits)],
|
|
middle1=[],
|
|
middle2=[],
|
|
histogram=[(order_imbalance_sma, "oisma")],
|
|
)
|
|
|
|
#display both Panels, sync them and pick size, use xloc
|
|
ch = chart([pane1, pane2], sync=True, title="Title", size="l", xloc=slice("1-1-2024","1-2-2024")
|
|
|
|
```
|
|
|
|
## Example with markers
|
|
|
|
```python
|
|
|
|
#assume i want to display simple entries or exits on series or ohlcv
|
|
#based on tuple positions it determines entries or exits (and set colors and shape accordingly)
|
|
pane1 = Panel(
|
|
ohlcv=(ohlcv_df, clean_long_entries, clean_short_entries)
|
|
)
|
|
ch = chart([pane1], title="Chart with Entry/Exit Markers", session=None, size="s")
|
|
```
|
|
<img width="798" alt="image" src="https://github.com/drew2323/lightweight-charts-python/assets/28433232/0cdc3930-b8b1-40f8-af95-55467879148b">
|
|
|
|
```python
|
|
#if you want to display more entries or exits, use tuples with their colors
|
|
|
|
# Create Panel with OHLC data and entry signals
|
|
pane1 = Panel(
|
|
ohlcv=(data.ohlcv.get(),
|
|
[(clean_long_entries, "yellow"), (clean_short_entries, "pink")], #list of entries tuples with color
|
|
[(clean_long_exits, "yellow"), (clean_short_exits, "pink")]), #list of exits tuples with color
|
|
)
|
|
|
|
# # Create the chart with the panel
|
|
ch = chart([pane1], title="Chart with EntryShort/ExitShort (yellow) and EntryLong/ExitLong markers (pink)", session=None, size="s")
|
|
```
|
|
<img width="800" alt="image" src="https://github.com/drew2323/lightweight-charts-python/assets/28433232/0acde2bf-600e-4f45-8db0-5077822d6993">
|
|
|
|
|
|
<div align="center">
|
|
|
|
# lightweight-charts-python
|
|
|
|
[](https://pypi.org/project/lightweight-charts/)
|
|
[](https://python.org "Go to Python homepage")
|
|
[](https://github.com/louisnw01/lightweight-charts-python/blob/main/LICENSE)
|
|
[](https://lightweight-charts-python.readthedocs.io/en/latest/index.html)
|
|
|
|

|
|
|
|
lightweight-charts-python aims to provide a simple and pythonic way to access and implement [TradingView's Lightweight Charts](https://www.tradingview.com/lightweight-charts/).
|
|
</div>
|
|
|
|
|
|
## Installation
|
|
```
|
|
pip install lightweight-charts
|
|
```
|
|
___
|
|
|
|
## Features
|
|
1. Streamlined for live data, with methods for updating directly from tick data.
|
|
2. Multi-pane charts using [Subcharts](https://lightweight-charts-python.readthedocs.io/en/latest/reference/abstract_chart.html#AbstractChart.create_subchart).
|
|
3. The [Toolbox](https://lightweight-charts-python.readthedocs.io/en/latest/reference/toolbox.html), allowing for trendlines, rectangles, rays and horizontal lines to be drawn directly onto charts.
|
|
4. [Events](https://lightweight-charts-python.readthedocs.io/en/latest/tutorials/events.html) allowing for timeframe selectors (1min, 5min, 30min etc.), searching, hotkeys, and more.
|
|
5. [Tables](https://lightweight-charts-python.readthedocs.io/en/latest/reference/tables.html) for watchlists, order entry, and trade management.
|
|
6. Direct integration of market data through [Polygon.io's](https://polygon.io/?utm_source=affiliate&utm_campaign=pythonlwcharts) market data API.
|
|
|
|
__Supports:__ Jupyter Notebooks, PyQt6, PyQt5, PySide6, wxPython, Streamlit, and asyncio.
|
|
|
|
PartTimeLarry: [Interactive Brokers API and TradingView Charts in Python](https://www.youtube.com/watch?v=TlhDI3PforA)
|
|
___
|
|
|
|
### 1. Display data from a csv:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from lightweight_charts import Chart
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
chart = Chart()
|
|
|
|
# Columns: time | open | high | low | close | volume
|
|
df = pd.read_csv('ohlcv.csv')
|
|
chart.set(df)
|
|
|
|
chart.show(block=True)
|
|
|
|
```
|
|

|
|
___
|
|
|
|
### 2. Updating bars in real-time:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from time import sleep
|
|
from lightweight_charts import Chart
|
|
|
|
if __name__ == '__main__':
|
|
|
|
chart = Chart()
|
|
|
|
df1 = pd.read_csv('ohlcv.csv')
|
|
df2 = pd.read_csv('next_ohlcv.csv')
|
|
|
|
chart.set(df1)
|
|
|
|
chart.show()
|
|
|
|
last_close = df1.iloc[-1]['close']
|
|
|
|
for i, series in df2.iterrows():
|
|
chart.update(series)
|
|
|
|
if series['close'] > 20 and last_close < 20:
|
|
chart.marker(text='The price crossed $20!')
|
|
|
|
last_close = series['close']
|
|
sleep(0.1)
|
|
|
|
```
|
|
|
|

|
|
___
|
|
|
|
### 3. Updating bars from tick data in real-time:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from time import sleep
|
|
from lightweight_charts import Chart
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
df1 = pd.read_csv('ohlc.csv')
|
|
|
|
# Columns: time | price
|
|
df2 = pd.read_csv('ticks.csv')
|
|
|
|
chart = Chart()
|
|
|
|
chart.set(df1)
|
|
|
|
chart.show()
|
|
|
|
for i, tick in df2.iterrows():
|
|
chart.update_from_tick(tick)
|
|
|
|
sleep(0.03)
|
|
|
|
```
|
|

|
|
___
|
|
|
|
### 4. Line Indicators:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from lightweight_charts import Chart
|
|
|
|
|
|
def calculate_sma(df, period: int = 50):
|
|
return pd.DataFrame({
|
|
'time': df['date'],
|
|
f'SMA {period}': df['close'].rolling(window=period).mean()
|
|
}).dropna()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
chart = Chart()
|
|
chart.legend(visible=True)
|
|
|
|
df = pd.read_csv('ohlcv.csv')
|
|
chart.set(df)
|
|
|
|
line = chart.create_line('SMA 50')
|
|
sma_data = calculate_sma(df, period=50)
|
|
line.set(sma_data)
|
|
|
|
chart.show(block=True)
|
|
|
|
```
|
|

|
|
___
|
|
|
|
### 5. Styling:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from lightweight_charts import Chart
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
chart = Chart()
|
|
|
|
df = pd.read_csv('ohlcv.csv')
|
|
|
|
chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
|
|
font_family='Helvetica')
|
|
|
|
chart.candle_style(up_color='#00ff55', down_color='#ed4807',
|
|
border_up_color='#FFFFFF', border_down_color='#FFFFFF',
|
|
wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')
|
|
|
|
chart.volume_config(up_color='#00ff55', down_color='#ed4807')
|
|
|
|
chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')
|
|
|
|
chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
|
|
horz_color='#FFFFFF', horz_style='dotted')
|
|
|
|
chart.legend(visible=True, font_size=14)
|
|
|
|
chart.set(df)
|
|
|
|
chart.show(block=True)
|
|
|
|
```
|
|

|
|
___
|
|
|
|
### 6. Callbacks:
|
|
|
|
```python
|
|
import pandas as pd
|
|
from lightweight_charts import Chart
|
|
|
|
|
|
def get_bar_data(symbol, timeframe):
|
|
if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
|
|
print(f'No data for "{symbol}"')
|
|
return pd.DataFrame()
|
|
return pd.read_csv(f'bar_data/{symbol}_{timeframe}.csv')
|
|
|
|
|
|
def on_search(chart, searched_string): # Called when the user searches.
|
|
new_data = get_bar_data(searched_string, chart.topbar['timeframe'].value)
|
|
if new_data.empty:
|
|
return
|
|
chart.topbar['symbol'].set(searched_string)
|
|
chart.set(new_data)
|
|
|
|
|
|
def on_timeframe_selection(chart): # Called when the user changes the timeframe.
|
|
new_data = get_bar_data(chart.topbar['symbol'].value, chart.topbar['timeframe'].value)
|
|
if new_data.empty:
|
|
return
|
|
chart.set(new_data, True)
|
|
|
|
|
|
def on_horizontal_line_move(chart, line):
|
|
print(f'Horizontal line moved to: {line.price}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
chart = Chart(toolbox=True)
|
|
chart.legend(True)
|
|
|
|
chart.events.search += on_search
|
|
|
|
chart.topbar.textbox('symbol', 'TSLA')
|
|
chart.topbar.switcher('timeframe', ('1min', '5min', '30min'), default='5min',
|
|
func=on_timeframe_selection)
|
|
|
|
df = get_bar_data('TSLA', '5min')
|
|
chart.set(df)
|
|
|
|
chart.horizontal_line(200, func=on_horizontal_line_move)
|
|
|
|
chart.show(block=True)
|
|
|
|
```
|
|

|
|
___
|
|
|
|
<div align="center">
|
|
|
|
[](https://lightweight-charts-python.readthedocs.io/en/latest/index.html)
|
|
|
|
Inquiries: [shaders_worker_0e@icloud.com](mailto:shaders_worker_0e@icloud.com)
|
|
___
|
|
|
|
_This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView._
|
|
</div>
|