Files
v2realbot/v2realbot/reporting/archive/optimizecutoff.py
2023-11-22 12:18:42 +01:00

166 lines
6.5 KiB
Python

import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
#TODO:
#OPTIMALIZOVAT TENTO nebo DRUHY soubor
#Vyzkouset v realu
#ZKUSIT NA RELATIVNI PROFIT TAKE
#ZAPRACOVAT DO GRAFU nebo do nejakeho toolu
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False):
#TODO dopracovat drawdown a minimalni a maximalni profity nikoliv cumulovane, zamyslet se
#TODO list of runner_ids
#TODO pridelat na vytvoreni runnera a batche, samostatne REST API + na remove archrunnera
if runner_ids is None and batch_id is None:
return -2, f"runner_id or batch_id must be present"
if batch_id is not None:
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id)
if res != 0:
print(f"no batch {batch_id} found")
return -1, f"no batch {batch_id} found"
trades = []
cnt_max = len(runner_ids)
cnt = 0
#zatim zjistujeme start a end z min a max dni - jelikoz muze byt i seznam runner_ids a nejenom batch
end_date = None
start_date = None
for id in runner_ids:
cnt += 1
#get runner
res, sada =cs.get_archived_runner_header_byID(id)
if res != 0:
print(f"no runner {id} found")
return -1, f"no runner {id} found"
print("archrunner")
#print(sada)
if cnt == 1:
start_date = sada.bt_from if sada.mode in [Mode.BT,Mode.PREP] else sada.started
if cnt == cnt_max:
end_date = sada.bt_to if sada.mode in [Mode.BT or Mode.PREP] else sada.stopped
# Parse trades
trades_dicts = sada.metrics["prescr_trades"]
for trade_dict in trades_dicts:
trade_dict['last_update'] = datetime.fromtimestamp(trade_dict.get('last_update')).astimezone(zoneNY) if trade_dict['last_update'] is not None else None
trade_dict['entry_time'] = datetime.fromtimestamp(trade_dict.get('entry_time')).astimezone(zoneNY) if trade_dict['entry_time'] is not None else None
trade_dict['exit_time'] = datetime.fromtimestamp(trade_dict.get('exit_time')).astimezone(zoneNY) if trade_dict['exit_time'] is not None else None
trades.append(Trade(**trade_dict))
#print(trades)
# symbol = sada.symbol
# #hour bars for backtested period
# print(start_date,end_date)
# bars= get_historical_bars(symbol, start_date, end_date, TimeFrame.Hour)
# print("bars for given period",bars)
# """Bars a dictionary with the following keys:
# * high: A list of high prices
# * low: A list of low prices
# * volume: A list of volumes
# * close: A list of close prices
# * hlcc4: A list of HLCC4 indicators
# * open: A list of open prices
# * time: A list of times in UTC (ISO 8601 format)
# * trades: A list of number of trades
# * resolution: A list of resolutions (all set to 'D')
# * confirmed: A list of booleans (all set to True)
# * vwap: A list of VWAP indicator
# * updated: A list of booleans (all set to True)
# * index: A list of integers (from 0 to the length of the list of daily bars)
# """
# Filter to only use trades with status 'CLOSED'
closed_trades = [trade for trade in trades if trade.status == TradeStatus.CLOSED]
print(closed_trades)
if len(closed_trades) == 0:
return -1, "image generation no closed trades"
# Group trades by date and calculate daily profits
trades_by_day = defaultdict(list)
for trade in trades:
if trade.status == TradeStatus.CLOSED and trade.exit_time:
trade_day = trade.exit_time.date()
trades_by_day[trade_day].append(trade)
# Define a range of potential cutoff values
# min_profit = min(trade.profit for trade in trades if trade.profit is not None)
# max_profit = max(trade.profit for trade in trades if trade.profit is not None)
min_profit = 0
max_profit = 1000
potential_cutoffs = np.linspace(min_profit, max_profit, 100)
# Function to calculate total profit for a given cutoff
def calculate_total_profit(cutoff):
total_profit = 0
for day, day_trades in trades_by_day.items():
daily_profit = 0
for trade in day_trades:
daily_profit += trade.profit
if daily_profit >= cutoff: # Stop if daily profit reaches the cutoff
break
total_profit += min(daily_profit, cutoff) # Add the minimum of daily profit or cutoff
return total_profit
# Evaluate each cutoff
cutoff_profits = {cutoff: calculate_total_profit(cutoff) for cutoff in potential_cutoffs}
# Find the optimal cutoff
optimal_cutoff = max(cutoff_profits, key=cutoff_profits.get)
max_profit = cutoff_profits[optimal_cutoff]
# Plotting
plt.figure(figsize=(10, 6))
plt.plot(list(cutoff_profits.keys()), list(cutoff_profits.values()), label='Total Profit')
plt.scatter(optimal_cutoff, max_profit, color='red', label='Optimal Cutoff')
plt.title('Optimal Intra-Day Profit Cutoff Analysis')
plt.xlabel('Profit Cutoff')
plt.ylabel('Total Profit')
plt.legend()
plt.grid(True)
plt.savefig('optimal_cutoff.png')
return optimal_cutoff, max_profit
# Example usage
# trades = [list of Trade objects]
if __name__ == '__main__':
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
# generate_trading_report_image(runner_ids=id_list)
batch_id = "90973e57"
optimal_cutoff, max_profit = find_optimal_cutoff(batch_id=batch_id)
print(f"Optimal Cutoff: {optimal_cutoff}, Max Profit: {max_profit}")