209 lines
7.4 KiB
Python
209 lines
7.4 KiB
Python
import numpy as np
|
|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.metrics import mean_squared_error
|
|
from sklearn.model_selection import train_test_split
|
|
from keras.models import Sequential, load_model
|
|
from keras.layers import LSTM, Dense
|
|
import matplotlib.pyplot as plt
|
|
from v2realbot.controller.services import get_archived_runner_details_byID
|
|
from v2realbot.common.model import RunArchiveDetail
|
|
from v2realbot.config import DATA_DIR
|
|
from v2realbot.utils.utils import slice_dict_lists
|
|
from collections import defaultdict
|
|
from operator import itemgetter
|
|
from joblib import dump, load
|
|
|
|
|
|
#ZAKLAD PRO TRAINING SCRIPT na vytvareni model
|
|
# TODO (v budoucnu predelat do GUI)
|
|
#jednotlive funkcni bloky dat do modulů
|
|
#pridat natrenovani z listu runnerů (případně dodělat do RUNu a ty runnery si spustit nejdřív)
|
|
#TODO
|
|
#binary target
|
|
#random search a grid search
|
|
|
|
#TODO
|
|
#udelat to same jen na trend, pres binary target, sigmoid a crossentropy
|
|
#napr. pokud nasledujici 3 bary rostou (0-1)
|
|
|
|
def create_sequences(combined_data, target_data, seq, target_steps):
|
|
"""Creates sequences of given length seq and target N steps in the future.
|
|
|
|
Args:
|
|
combined_data: A list of combined data.
|
|
target_data: A list of target data.
|
|
seq: The sequence length.
|
|
target_steps: The number of steps in the future to target.
|
|
|
|
Returns:
|
|
A list of X sequences and a list of y sequences.
|
|
"""
|
|
|
|
X_train = []
|
|
y_train = []
|
|
for i in range(len(combined_data) - seq - target_steps):
|
|
X_train.append(combined_data[i:i + seq])
|
|
y_train.append(target_data[i + seq + target_steps])
|
|
|
|
return X_train, y_train
|
|
|
|
# Sample data (replace this with your actual OHLCV data)
|
|
bars = {
|
|
'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
|
'high': [10, 11, 12, 13, 14,10, 11, 12, 13, 14,10, 11, 12, 13, 14],
|
|
'low': [8, 9, 7, 6, 8,8, 9, 7, 6, 8,8, 9, 7, 6, 8],
|
|
'volume': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300],
|
|
'close': [9, 10, 11, 12, 13,9, 10, 11, 12, 13,9, 10, 11, 12, 13],
|
|
'open': [9, 10, 8, 8, 8,9, 10, 8, 8, 8,9, 10, 8, 8, 8],
|
|
'resolution': [1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1, 1, 1, 1]
|
|
}
|
|
|
|
indicators = {
|
|
'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
|
'fastslope': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
|
'fsdelta': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
|
'fastslope2': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
|
'ema': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300]
|
|
}
|
|
|
|
#LOADING
|
|
runner_id = "838e918e-9be0-4251-a968-c13c83f3f173"
|
|
result = None
|
|
res, sada = get_archived_runner_details_byID(runner_id)
|
|
if res == 0:
|
|
print("ok")
|
|
else:
|
|
print("error",res,sada)
|
|
|
|
# bars = sada["bars"]
|
|
# indicators = sada["indicators"][0]
|
|
|
|
# Zakladni nastaveni
|
|
testlist_id = ""
|
|
ohlc_features = ['time','high', 'low', 'volume', 'open', 'close', 'trades', 'vwap']
|
|
indicator_features = ['samebarslope', 'fastslope','fsdelta', 'fastslope2', 'fsdelta2']
|
|
|
|
features = ["time","high","low","volume","open","close", "trades", "vwap","samebarslope", "fastslope","fsdelta", "fastslope2", "fsdelta2"]
|
|
#TODO toto je linearni prediction mod, dodelat podporu BINARY
|
|
#u binary bude target bud hotovy indikator a nebo jej vytvorit on the fly
|
|
target = 'close'
|
|
#predict how many bars in the future
|
|
target_steps = 5
|
|
name = "model1"
|
|
seq = 2
|
|
epochs = 500
|
|
|
|
features.sort()
|
|
# Prepare the data for bars and indicators
|
|
bar_data = np.column_stack([bars[feature] for feature in features if feature in bars])
|
|
indicator_data = np.column_stack([indicators[feature] for feature in features if feature in indicators])
|
|
combined_data = np.column_stack([bar_data, indicator_data])
|
|
###print(combined_data)
|
|
target_data = np.column_stack([bars[target]])
|
|
#print(target_data)
|
|
#for LSTM scaling before sequencing
|
|
# Standardize the data
|
|
scalerX = StandardScaler()
|
|
scalerY = StandardScaler()
|
|
combined_data = scalerX.fit_transform(combined_data)
|
|
target_data = scalerY.fit_transform(target_data)
|
|
|
|
# Create a sequence of seq elements and define target prediction horizona
|
|
X_train, y_train = create_sequences(combined_data, target_data, seq=seq, target_steps=target_steps)
|
|
|
|
#print("X_train", X_train)
|
|
#print("y_train", y_train)
|
|
X_complete = np.array(X_train.copy())
|
|
Y_complete = np.array(y_train.copy())
|
|
X_train = np.array(X_train)
|
|
y_train = np.array(y_train)
|
|
|
|
# Split the data into training and test sets
|
|
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.20, shuffle=False) #random_state=42)
|
|
|
|
# Define the input shape of the LSTM layer dynamically based on the reshaped X_train value
|
|
input_shape = (X_train.shape[1], X_train.shape[2])
|
|
|
|
# Build the LSTM model
|
|
model = Sequential()
|
|
model.add(LSTM(128, input_shape=input_shape))
|
|
model.add(Dense(1))
|
|
|
|
# Compile the model
|
|
model.compile(loss='mse', optimizer='adam')
|
|
|
|
# Train the model
|
|
model.fit(X_train, y_train, epochs=epochs)
|
|
|
|
#save the model
|
|
#model.save(DATA_DIR+'/my_model.keras')
|
|
#model = load_model(DATA_DIR+'/my_model.keras')
|
|
dump(scalerX, DATA_DIR+'/'+name+'scalerX.pkl')
|
|
dump(scalerY, DATA_DIR+'/'+name+'scalerY.pkl')
|
|
dump(model, DATA_DIR+'/'+name+'.pkl')
|
|
|
|
model = load(DATA_DIR+'/'+ name +'.pkl')
|
|
scalerX: StandardScaler = load(DATA_DIR+'/'+ name +'scalerX.pkl')
|
|
scalerY: StandardScaler = load(DATA_DIR+'/'+ name +'scalerY.pkl')
|
|
|
|
#LIVE PREDICTION - IMAGINE THIS HAPPENS LIVE
|
|
# Get the live data
|
|
# Prepare the data for bars and indicators
|
|
|
|
#asume ohlc_features and indicator_features remain the same
|
|
|
|
|
|
#get last 5 items of respective indicators
|
|
lastNbars = slice_dict_lists(bars, seq)
|
|
lastNindicators = slice_dict_lists(indicators, seq)
|
|
print("last5bars", lastNbars)
|
|
print("last5indicators",lastNindicators)
|
|
|
|
bar_data = np.column_stack([lastNbars[feature] for feature in features if feature in lastNbars])
|
|
indicator_data = np.column_stack([lastNindicators[feature] for feature in features if feature in lastNindicators])
|
|
combined_live_data = np.column_stack([bar_data, indicator_data])
|
|
print("combined_live_data",combined_live_data)
|
|
combined_live_data = scalerX.transform(combined_live_data)
|
|
#scaler = StandardScaler()
|
|
|
|
combined_live_data = np.array(combined_live_data)
|
|
|
|
#converts to 3D array
|
|
# 1 number of samples in the array.
|
|
# 2 represents the sequence length.
|
|
# 3 represents the number of features in the data.
|
|
combined_live_data = combined_live_data.reshape((1, seq, combined_live_data.shape[1]))
|
|
|
|
|
|
# Make a prediction
|
|
prediction = model(combined_live_data, training=False)
|
|
#prediction = prediction.reshape((1, 1))
|
|
# Convert the prediction back to the original scale
|
|
prediction = scalerY.inverse_transform(prediction)
|
|
|
|
print("prediction for last value", float(prediction))
|
|
|
|
#TEST PREDICATIONS
|
|
# Evaluate the model on the test set
|
|
#pozor testovaci sadu na produkc scalovat samostatne
|
|
#X_test = scalerX.transform(X_test)
|
|
#predikce nad testovacimi daty
|
|
X_complete = model.predict(X_complete)
|
|
X_complete = scalerY.inverse_transform(X_complete)
|
|
|
|
#target testovacim dat
|
|
Y_complete = scalerY.inverse_transform(Y_complete)
|
|
#mse = mean_squared_error(y_test, y_pred)
|
|
#print('Test MSE:', mse)
|
|
|
|
# Plot the predicted vs. actual close prices
|
|
plt.plot(Y_complete, label='Actual')
|
|
plt.plot(X_complete, label='Predicted')
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
# To make a prediction, we can simply feed the model a sequence of 5 elements and it will predict the next element. For example, to predict the close price for the 6th time period, we would feed the model the following sequence:
|
|
|
|
# sequence = combined_data[0:5]
|
|
# prediction = model.predict(sequence)
|