124 Commits

Author SHA1 Message Date
f04c3e9f12 Merge branch 'master' of https://github.com/drew2323/v2trading 2024-10-08 15:16:02 +02:00
faaaa65081 removed doc 2024-10-08 14:20:45 +02:00
773f5a3ef8 Update README.md (#246) 2024-08-31 06:09:17 +02:00
9d1ef83733 Update README.md (#245) 2024-08-27 14:12:05 +02:00
ceb69d696b Update README.md (#242) 2024-08-26 19:59:00 +02:00
badd5b87dd remove keys (#225) 2024-07-25 11:33:11 +02:00
8e5a56a28c Update requirements_newest.txt (#222) 2024-07-18 21:14:09 +02:00
591a9643eb Update requirements_newest.txt (#221) 2024-07-18 21:12:44 +02:00
41b3c0d839 Update requirements_newest.txt (#220) 2024-07-18 21:07:52 +02:00
dff6680098 Update requirements_newest.txt (#219) 2024-07-18 21:05:50 +02:00
88dd8e84dd Create requirements_newest.txt (#218) 2024-07-18 20:45:43 +02:00
45f022c16b Update README.md (#217) 2024-07-18 14:42:50 +02:00
9fb6794997 Update README.md (#216) 2024-07-16 07:04:49 +02:00
20e38fe223 Update README.md (#215) 2024-07-16 07:03:02 +02:00
f2ab00559a Update README.md (#214) 2024-07-15 11:20:56 +02:00
fc10cf3907 Feature/cal days from pandas (#213)
* new fetch_calendar_data function

* new class Calendar

* Revert common/model.py to the state before the last commit

* dataframe transformation is making Timestamp objects in open and close columns naive before converting to dictionary.

* typing for function arguments added. Function returns list of Calendar objects that have properties defined like strings.

* else condition fixed

* else condition returns directly an  empty without declaring a list name
2024-07-15 09:46:17 +02:00
2f15b0b2a7 system info fixes (#212) 2024-06-20 22:27:28 +02:00
0bda14409d new version vbt (#211) 2024-06-20 22:15:05 +02:00
d7bde54533 Feature/disk space (#199)
* new backend API to get disk info from psutil

* Disk info div + disk space gauge div

* styling for git disk space gauge

* inital commit - jquery request to system-info endpoint

* div disk_info created

* get_system_info function is initiated once DOM is fully loaded.

* styling for disk-gauge-bar added

* get_system_info endpoint returns additionally an information about network, cpu_time and memory

* new <div> for graphical output of system info

* increased widht for disk-gauge-container

* if condition testing an index of response and rendering an output within div for graphical output

* div deleted
2024-06-14 12:45:34 +02:00
ad45b424f7 init fixes2 (#209) 2024-06-13 11:52:14 +02:00
ee5c1ebae1 fix module inits (#208)
* research added

* fix module inits
2024-06-13 11:47:05 +02:00
702328a242 research added (#207) 2024-06-13 11:02:41 +02:00
132391c915 Create testdoc.md (#204) 2024-06-04 14:07:44 +02:00
15948ea863 static site pwd protected, load dotenv moved to config, aggregator vecotrized chng (#203) 2024-06-04 12:49:32 +02:00
63c2f7e748 vectorized aggregator, minor changes (#198) 2024-05-17 14:09:42 +02:00
031b2427b9 Feature/dotenv (#195)
* load_dotenv from python-dotenv library imported

* WEB_API_KEY is read as virtual environment variable specified in .env file

* env file referenced by variable imported from config.py

* env file directory and env file variables defined

* bash script to create env file

* Delete env_migration.sh

---------

Co-authored-by: David Brazda <davidbrazda61@gmail.com>
2024-05-09 12:47:32 +02:00
6b2a4bb066 update of vbt doc 2024-04-25 06:24:51 +02:00
c3d22e439f fix 2024-04-17 13:04:57 +02:00
8f87764fc9 Feature/market attribute (#185)
* RunManagerRecord class has a new attribute market. Market enum is imported.

* row_to_runmanager function considers market column

* add_run_manager_record and update_run_manager_record functions are changed. fetch_all_markets_in_run_manager is new.

* new Market enumeration class is defined

* market_value used for job scheduling. start and stop functions have modifications of market parameter input

* new is_market_day function + modifications of get_todays_market_times function

* market attribute set default to US

* row_to_runmanager function has no string formatter for market attribute

* add_run_manager_record function adn update_run_manager_record function update the DB column market based on record.market data

* start_runman_record and stop_runman_record have got no market parameter

* get_todays_market_times function is changed

* default value for market atribute is Market.US

* update_run_manager_record function has no if condition for market key

* market_value deleted, used enumaration value Market.US instead of string US

* get_todays_market_times has a new if condition for Market.CRYPTO

* update includes market column in the run_manager table

* market attribute in Run Manager record has value given by enumeration as Market.US

* documentation of changes made in the branch

* remove README_feature_market.md

* back to original state

* Delete README_feature_market.md

* _start_runman_record has an additional else condition

* is_market_day renamed to is_US_market_day

* transferables column added into runner_header table
2024-04-17 12:14:01 +02:00
074b6feaf8 vectorbtdoc 2024-04-16 15:53:51 +02:00
919ddf2238 bugfix (#181) 2024-03-18 18:42:09 +01:00
dfbda326ea hard stop / soft stop for cutoff (#177) martingale base (#178) 2024-03-15 13:36:28 +01:00
eff4770692 highlight logs on gui (#176) 2024-03-15 11:06:18 +01:00
e54683c69f archrunner db query searches for symbol, name (#175) 2024-03-15 10:04:46 +01:00
db22d47f72 toml validation to frontend (#174) 2024-03-14 17:39:52 +01:00
fb75ed2c35 #163 transferables (#172) 2024-03-14 14:16:01 +01:00
878092fe93 #168 #166 and additional fixes (#169) 2024-03-13 12:31:06 +01:00
801ce61c9d run updte 2024-03-07 14:07:46 +01:00
0d49327cca bugfix - kontrolu na maxloss provadime az u eventy FILL, kdy je znama celkova castka 2024-03-06 15:50:16 +01:00
f92d8c2f5e #148 #158 config refactoring to support profiles/reloading (#165) 2024-03-06 14:30:24 +01:00
ce6dc58764 #155 + presun row_to from db.py to transform.py 2024-03-06 13:31:09 +01:00
b4ac17585b Merge pull request #161 from drew2323/local
Minor changes for installation on windows
2024-03-04 17:03:50 +01:00
0f65ce3dc3 Delete run.sh 2024-03-04 17:01:47 +01:00
d3236d27a6 primary live account api and secret changed 2024-03-04 16:57:10 +01:00
5136279eb5 line 29 has deleted integrity and crossorigin value 2024-02-28 08:08:21 +01:00
d63a6b7897 user_data_dir function has a second parameter author, ACCOUNT1_LIVE has still PAPER_API_KEY and SECRET_KEY 2024-02-28 08:04:02 +01:00
a9db7e087f changed VIRTUAL_ENV_DIR and PYTHON_TO_USE 2024-02-27 18:15:35 +01:00
a96cf19fd7 #135 -> BT same period button 2024-02-27 12:03:57 +07:00
17cb63f792 all dates in gui are in market time zone (even start/stop) 2024-02-27 10:53:30 +07:00
ca1172c61c batchprofit/batchcount columns hidden from archiverunners gui 2024-02-27 08:15:07 +07:00
f884c16f07 #149 2024-02-26 22:42:03 +07:00
d0920daa16 moved config related services into separated package 2024-02-26 19:35:19 +07:00
884f377ebc #147 2024-02-26 11:30:13 +07:00
a16b3c1571 zpet debug podminka 2024-02-24 21:23:17 +07:00
d15581e35c docasny disable pro testing 2024-02-24 21:17:10 +07:00
ca3565132d #143 2024-02-24 20:32:01 +07:00
73fef65309 live_data_feed stored in runner_archive 2024-02-23 21:20:07 +07:00
3494177ac5 bugfix 2024-02-23 21:04:23 +07:00
855e4379a3 #139 konfigurace LIVE_DATA_FEED 2024-02-23 12:35:02 +07:00
0d65ae6ea1 #136 bugfix properly closing ws 2024-02-23 10:30:12 +07:00
67aab2a1be fix 2024-02-22 23:23:20 +07:00
2ba42430a3 fix 2024-02-22 23:20:54 +07:00
d3cb2fa760 Scheduler support #24sched 2024-02-22 23:05:49 +07:00
ed6285dcf5 unknown symbol msg 2024-02-12 10:45:23 +07:00
7eadf6c165 bugfix create batch image (check for None from Alpaca) 2024-02-11 15:26:15 +07:00
04cf2e2ba2 createbatch image tool + send to telefram enrichment 2024-02-11 12:37:19 +07:00
2ba492ead2 updatnute requirements.txt 2024-02-10 21:35:53 +07:00
a3b182fd45 keys to env variables, optimalizations 2024-02-10 21:02:00 +07:00
6e30ee92a0 Merge branch 'master' of https://github.com/drew2323/v2trading 2024-02-06 11:16:58 +07:00
576b2445f8 ok 2024-02-06 11:16:09 +07:00
da34775708 calendar wrapper with retry, histo bars with retry 2024-02-06 11:14:38 +07:00
90afa29f34 Update README.md 2024-02-06 09:52:53 +07:00
8991733278 Update README.md 2024-02-06 09:34:33 +07:00
c213342353 Update README.md 2024-02-06 09:30:56 +07:00
a3cab14bdd bugfix None in trade response 2024-02-05 10:22:20 +07:00
f3d2b403bd fixes 2024-02-04 17:55:43 +07:00
32e77a4cb9 Merge branch 'master' of https://github.com/drew2323/v2trading 2024-02-04 17:54:09 +07:00
8456e6d739 tulipy_ind support, multioutput scale and gzip cache support #106 #115 #114 #112 #107 2024-02-04 17:54:03 +07:00
14e6501ac8 Update README.md 2024-01-31 13:39:33 +07:00
c03cf054e8 Create README.md 2024-01-31 13:37:45 +07:00
c1145fec5b multioutput indicators #15 + talib custom indicator support 2024-01-16 15:17:14 +01:00
5d47a7ac58 dailyBars ratio features added 2024-01-11 14:04:09 +01:00
cd461c701e dailyBars inds extended+ gui tick inds disable button 2024-01-09 15:11:56 +01:00
a7df38c61b fix targetema begining 2024-01-03 17:08:09 +01:00
b21bd9487a fix 2024-01-02 16:22:58 +01:00
c3b466c4c0 targetema labeler 2023-12-29 16:35:38 +01:00
0909fa947f weekday daytime dailybars ind support 2023-12-28 11:33:19 +01:00
77faa919c0 jax support added/multiinput 2023-12-26 18:25:25 +01:00
17b9859a73 bugfix 2023-12-17 18:43:46 +01:00
85d4916320 cbar indicators + ml enhancements 2023-12-15 18:02:45 +01:00
a70e2adf45 bugfix 2023-12-12 21:26:24 +01:00
527c3139f2 bugfix 2023-12-12 18:28:04 +01:00
5bbb95eeac bugfix 2023-12-12 15:53:20 +01:00
3158cdb68b tick based support including gui preview, custom suppoer, new classed tickbased inds,#85 2023-12-11 19:24:06 +01:00
5cc3a1c318 bugfix json gui parsing 2023-12-10 20:32:21 +01:00
232f32467e gui model metadata view + backend json optimalization orjson 2023-12-10 15:02:25 +01:00
523905ece6 gui ml modal view 2023-12-08 19:11:08 +01:00
ac11c37e77 bugfix backtesting méně obchodů BLK 2023-12-08 10:50:09 +01:00
90b202cfdd classed indicators draft 2023-12-07 09:46:17 +01:00
8abebcc910 download model 2023-12-06 19:47:03 +01:00
5a5e94eeb5 upload download model from gui 2023-12-06 15:23:05 +01:00
01ff23907f bugfix 2023-12-06 11:12:25 +01:00
6cdc0a45c5 decomm ml, target algorithm a dalsi upravy 2023-12-06 10:51:50 +01:00
d38bf0600f bugfix endmarket stop 2023-12-01 23:59:43 +01:00
0f0b816c7a bugfix live runner crashes after clicking stop 2023-12-01 23:35:48 +01:00
7344e49591 bugfix 2023-11-30 17:04:25 +01:00
116700f3e4 batch header row symbol added 2023-11-30 14:55:05 +01:00
d06faa4c9b bugfix chackboxu 2023-11-30 14:41:43 +01:00
95cd7ead8a cache 2023-11-30 14:24:12 +01:00
8e1fa604a5 cache 2023-11-30 14:21:18 +01:00
db210e6be7 upd cachers 2023-11-30 14:14:20 +01:00
2ecb90d83f dynamic toolbutts on json and plugin report system 2023-11-30 14:11:03 +01:00
648489b0f4 bugfix 2023-11-28 17:19:25 +01:00
b54861bb62 bugfix css 2023-11-28 17:17:54 +01:00
804f4450a8 martin paper account add 2023-11-28 15:38:04 +01:00
c6504043ed martin paper add 2023-11-28 15:36:57 +01:00
c7d7ca96a3 refactor archiveRunner js files + priprava genanal 2023-11-28 13:52:06 +01:00
6a459cd745 uprava barvicek profity 2023-11-27 18:19:51 +01:00
208a1acae5 batch profity barevne rozlisene 2023-11-27 18:10:34 +01:00
5fab264493 jeste uprava nobatch expands - transparentni barva 2023-11-27 18:00:10 +01:00
a1e4d8d726 refresh cashe browseru 2023-11-27 17:50:28 +01:00
78c40f6d1a expand/collapse na gui archrunu (na vyzkouseni) 2023-11-27 17:48:02 +01:00
a520c2fd2f finalizace css 2023-11-27 17:03:23 +01:00
e9c3849bbc bugfix 2023-11-27 14:52:20 +01:00
211 changed files with 1846245 additions and 3304 deletions

1
CODEOWNERS Normal file
View File

@ -0,0 +1 @@
* @drew2323

127
README.md Normal file
View File

@ -0,0 +1,127 @@
# V2TRADING - Algorithmic Trading Platform with Frontend
## Overview
Custom-built algorithmic trading platform for research, backtesting and live trading. Trading engine capable of processing tick data, providing custom aggregation, managing trades, and supporting backtesting in a highly accurate and efficient manner.
## Key Features
- **Trading Engine**: Processes tick data in real time, aggregating data and managing trade execution.
- **Backtesting**: tick-by tick backtesting, down to millisecond accuracy, mirrors live trading environments and is vital for developing and testing high(er)-frequency trading strategies.
- **Configuration**: robust configuration via TOML
- **Frontend**: Frontend to support research to backtesting to paper trading workflow, including lightweight charts.
- **Custom Data Aggregation:** Custom time based, volume based, dollar based and renko bars aggregators based on tick-by-tick data.
- **Indicators** Contains inbuild [tulipy](https://tulipindicators.org/list) [ta-lib](https://ta-lib.github.io/ta-lib-python/) and templates for custom build multioutputs stateful indicators.
- **Machine Learning Integration:** Includes modules for both training and inference, supporting the complete ML lifecycle.
**Gui examples**
<p align="center">
Main screen with entry/exit points and stoploss lines<br>
<img width="700" alt="Main screen with entry/exit points and stoploss lines" src="https://github.com/drew2323/v2trading/assets/28433232/751d5b0e-ef64-453f-8e76-89a39db679c5">
</p>
<p align="center">
Main screen with tick based indicators<br>
<img width="700" alt="Main screen with tick based indicators" src="https://github.com/drew2323/v2trading/assets/28433232/4bf6128c-9b36-4e88-9da1-5a33319976a1">
</p>
<p align="center">
Indicator editor<br>
<img width="700" alt="Indicator editor" src="https://github.com/drew2323/v2trading/assets/28433232/cc417393-7b88-4eea-afcb-3a00402d0a8d">
</p>
<p align="center">
Strategy editor<br>
<img width="700" alt="Strategy editor" src="https://github.com/drew2323/v2trading/assets/28433232/74f67e7a-1efc-4f63-b763-7827b2337b6a">
</p>
<p align="center">
Strategy analytical tools<br>
<img width="700" alt="Strategy analytical tools" src="https://github.com/drew2323/v2trading/assets/28433232/4bf8b3c3-e430-4250-831a-e5876bb6b743">
</p>
**Backend and API:** The backbone of the platform is built with Python, utilizing libraries such as FastAPI, NumPy, Keras, and JAX, ensuring high performance and scalability.
**Frontend:** The client-side is developed with Vanilla JavaScript and jQuery, employing LightweightCharts for charting purposes. Additional modules enhance the platform's functionality. The frontend is slated for a future refactoring to modern frameworks like Vue.js and Vuetify for a more robust user interface.
**Documentation** Public docs in in progress. Some can be found on [knowledge base](trading.mujdenik.eu) but first please request access. Some analysis documents can be found on [shared google doc folder](https://drive.google.com/drive/folders/1WmYG8oDGXO-lVTLVs9knAmMTmQL4dZt6?usp=drive_link).
# Installation Instructions
This document outlines the steps for installing and setting up the necessary environment for the application. These instructions are applicable for both Windows and Linux operating systems. Please follow the steps carefully to ensure a smooth setup.
## Prerequisites
Before beginning the installation process, ensure the following prerequisites are met:
- TA-Lib Library:
- Windows: Download and build the TA-Lib library. Install Visual Studio Community with the Visual C++ feature. Navigate to `C:\ta-lib\c\make\cdr\win32\msvc` in the command prompt and build the library using the available makefile.
- Linux: Install TA-Lib using your distribution's package manager or compile from source following the instructions available on the TA-Lib GitHub repository.
- Alpaca Paper Trading Account: Create an account at [Alpaca Markets](https://alpaca.markets/) and generate `API_KEY` and `SECRET_KEY` for your paper trading account.
## Installation Steps
**Clone the Repository:** Clone the remote repository to your local machine.
`git clone git@github.com:drew2323/v2trading.git <name_of_local_folder>`
**Install Python:** Ensure Python 3.10.11 is installed on your system.
**Create a Virtual Environment:** Set up a Python virtual environment.
`python -m venv <path_to_venv_folder>`
**Activate Virtual Environment:**
- Windows: `source ./<venv_folder>/Scripts/activate`
- Linux: `source ./<venv_folder>/bin/activate`
**Install Dependencies:** Install the program requirements.
pip install -r requirements.txt
Note: It's permissible to comment out references to `keras` and `tensorflow` modules, as well as the `ml-room` repository in `requirements.txt`.
**Environment Variables:** In `run.sh`, modify the `VIRTUAL_ENV_DIR` and `PYTHON_TO_USE` variables as necessary.
**Data Directory:** Navigate to `DATA_DIR` and create folders: `aggcache`, `tradecache`, and `models`.
**Media and Static Folders:** Create `media` and `static` folders one level above the repository directory. Also create `.env` file there.
**Database Setup:** Create the `v2trading.db` file using SQL commands from `v2trading_create_db.sql`.
```
import sqlite3
with open("v2trading_create_db.sql", "r") as f:
sql_statements = f.read()
conn = sqlite3.connect('v2trading.db')
cursor = conn.cursor()
cursor.executescript(sql_statements)
conn.commit()
conn.close()
```
Ensure the `config_table` is not empty by making an initial entry.
**Start the Application:** Run `main.py` in VSCode to start the application.
**Accessing the Application:** If the uvicorn server runs successfully at `http://0.0.0.0:8000`, access the application at `http://localhost:8000/static/`.
**Database Configuration:** Add dynamic button and JS configurations to the `config_table` in `v2trading.db` via the "Config" section on the main page.
Please replace placeholders (e.g., `<name_of_local_folder>`, `<path_to_venv_folder>`) with your actual paths and details. Follow these instructions to ensure the application is set up correctly and ready for use.
## Environmental variables
Trading platform can support N different accounts. Their API keys are stored as environmental variables in .env file located in the root directory.
Account for trading api is selected when each strategy is run. However for realtime websocket data), always ACCOUNT1 is used for all strategies. The data point selection (iex vs sip) is set by LIVE_DATA_FEED environment variable.
.env file should contain:
```
ACCOUNT1_LIVE_API_KEY=<ACCOUNT1_LIVE_API_KEY>
ACCOUNT1_LIVE_SECRET_KEY=<ACCOUNT1_LIVE_SECRET_KEY>
ACCOUNT1_LIVE_FEED=sip
ACCOUNT1_PAPER_API_KEY=<ACCOUNT1_PAPER_API_KEY>
ACCOUNT1_PAPER_SECRET_KEY=<ACCOUNT1_PAPER_SECRET_KEY>
ACCOUNT1_PAPER_FEED=sip
ACCOUNT2_PAPER_API_KEY=<ACCOUNT2_PAPER_API_KEY>
ACCOUNT2_PAPER_SECRET_KEY=ACCOUNT2_PAPER_SECRET_KEY<>
ACCOUNT2_PAPER_FEED=iex
WEB_API_KEY=<pass-for-webapi>
```

51
_run_scheduler.sh Executable file
View File

@ -0,0 +1,51 @@
#!/bin/bash
# Approach: (https://chat.openai.com/c/43be8685-b27b-4e3b-bd18-0856f8d23d7e)
# cron runs this script every minute New York in range of 9:20 - 16:20 US time
# Also this scripts writes the "heartbeat" message to log file, so the user knows
#that cron is running
# Installation steps required:
#chmod +x run_scheduler.sh
#install tzdata package: sudo apt-get install tzdata
#crontab -e
#CRON_TZ=America/New_York
# * 9-16 * * 1-5 /home/david/v2trading/run_scheduler.sh
#
# (Runs every minute of every hour on every day-of-week from Monday to Friday) US East time
# Path to the Python script
PYTHON_SCRIPT="v2realbot/scheduler/scheduler.py"
# Log file path
LOG_FILE="job.log"
# Timezone for New York
TZ='America/New_York'
NY_DATE_TIME=$(TZ=$TZ date +'%Y-%m-%d %H:%M:%S')
echo "NY_DATE_TIME: $NY_DATE_TIME"
# Check if log file exists, create it if it doesn't
if [ ! -f "$LOG_FILE" ]; then
touch "$LOG_FILE"
fi
# Check the last line of the log file
LAST_LINE=$(tail -n 1 "$LOG_FILE")
# Cron trigger message
CRON_TRIGGER="Cron trigger: $NY_DATE_TIME"
# Update the log
if [[ "$LAST_LINE" =~ "Cron trigger:".* ]]; then
# Replace the last line with the new trigger message
sed -i '' '$ d' "$LOG_FILE"
echo "$CRON_TRIGGER" >> "$LOG_FILE"
else
# Append a new cron trigger message
echo "$CRON_TRIGGER" >> "$LOG_FILE"
fi
# FOR DEBUG - Run the Python script and append output to log file
python3 "$PYTHON_SCRIPT" >> "$LOG_FILE" 2>&1

7
deployall.sh Executable file
View File

@ -0,0 +1,7 @@
#!/bin/bash
# Navigate to your git repository directory
# Execute git commands
git push deploytest master
git push deploy master

1251
job.log Normal file

File diff suppressed because it is too large Load Diff

1
jobs.log Normal file
View File

@ -0,0 +1 @@
Current 0 scheduled jobs: []

View File

@ -1,18 +1,24 @@
absl-py==2.0.0
alpaca==1.0.0
alpaca-py==0.7.1
altair==4.2.2
anyio==3.6.2
appdirs==1.4.4
appnope==0.1.3
asttokens==2.2.1
astunparse==1.6.3
attrs==22.2.0
better-exceptions==0.3.3
bleach==6.0.0
blinker==1.5
cachetools==5.3.0
CD==1.1.0
certifi==2022.12.7
chardet==5.1.0
charset-normalizer==3.0.1
click==8.1.3
colorama==0.4.6
comm==0.1.4
contourpy==1.0.7
cycler==0.11.0
dash==2.9.1
@ -20,35 +26,82 @@ dash-bootstrap-components==1.4.1
dash-core-components==2.0.0
dash-html-components==2.0.0
dash-table==5.0.0
dateparser==1.1.8
decorator==5.1.1
defusedxml==0.7.1
dill==0.3.7
dm-tree==0.1.8
entrypoints==0.4
exceptiongroup==1.1.3
executing==1.2.0
fastapi==0.95.0
filelock==3.13.1
Flask==2.2.3
flatbuffers==23.5.26
fonttools==4.39.0
fpdf2==2.7.6
gast==0.4.0
gitdb==4.0.10
GitPython==3.1.31
google-auth==2.23.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
grpcio==1.58.0
h11==0.14.0
h5py==3.10.0
icecream==2.1.3
idna==3.4
imageio==2.31.6
importlib-metadata==6.1.0
ipython==8.17.2
ipywidgets==8.1.1
itsdangerous==2.1.2
jax==0.4.23
jaxlib==0.4.23
jedi==0.19.1
Jinja2==3.1.2
joblib==1.3.2
jsonschema==4.17.3
jupyterlab-widgets==3.0.9
keras==3.0.2
keras-core==0.1.7
keras-nightly==3.0.3.dev2024010203
keras-nlp-nightly==0.7.0.dev2024010203
keras-tcn @ git+https://github.com/drew2323/keras-tcn.git@4bddb17a02cb2f31c9fe2e8f616b357b1ddb0e11
kiwisolver==1.4.4
libclang==16.0.6
llvmlite==0.39.1
Markdown==3.4.3
markdown-it-py==2.2.0
MarkupSafe==2.1.2
matplotlib==3.8.2
matplotlib-inline==0.1.6
mdurl==0.1.2
ml-dtypes==0.3.1
mlroom @ git+https://github.com/drew2323/mlroom.git@692900e274c4e0542d945d231645c270fc508437
mplfinance==0.12.10b0
msgpack==1.0.4
mypy-extensions==1.0.0
namex==0.0.7
newtulipy==0.4.6
numpy==1.24.2
numba==0.56.4
numpy==1.23.5
oauthlib==3.2.2
opt-einsum==3.3.0
orjson==3.9.10
packaging==23.0
pandas==1.5.3
param==1.13.0
parso==0.8.3
patsy==0.5.6
pexpect==4.8.0
Pillow==9.4.0
plotly==5.13.1
prompt-toolkit==3.0.39
proto-plus==1.22.2
protobuf==3.20.3
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==11.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
@ -56,41 +109,72 @@ pyct==0.5.0
pydantic==1.10.5
pydeck==0.8.0
Pygments==2.14.0
pyinstrument==4.5.3
Pympler==1.0.1
pyparsing==3.0.9
pyrsistent==0.19.3
pysos==1.3.0
python-dateutil==2.8.2
python-dotenv==1.0.0
python-multipart==0.0.6
pytz==2022.7.1
pytz-deprecation-shim==0.1.0.post0
pyviz-comms==2.2.1
PyWavelets==1.5.0
PyYAML==6.0
requests==2.28.2
regex==2023.10.3
requests==2.31.0
requests-oauthlib==1.3.1
rich==13.3.1
rsa==4.9
schedule==1.2.1
scikit-learn==1.3.2
scipy==1.11.2
seaborn==0.12.2
semver==2.13.0
six==1.16.0
smmap==5.0.0
sniffio==1.3.0
sseclient-py==1.7.2
stack-data==0.6.3
starlette==0.26.1
statsmodels==0.14.1
streamlit==1.20.0
structlog==23.1.0
TA-Lib==0.4.28
tb-nightly==2.16.0a20240102
tenacity==8.2.2
tensorboard==2.15.1
tensorboard-data-server==0.7.1
tensorflow-addons==0.23.0
tensorflow-estimator==2.15.0
tensorflow-io-gcs-filesystem==0.34.0
termcolor==2.3.0
tf-estimator-nightly==2.14.0.dev2023080308
tf-nightly==2.16.0.dev20240101
tf_keras-nightly==2.16.0.dev2023123010
threadpoolctl==3.2.0
tinydb==4.7.1
tinydb-serialization==2.1.0
tinyflux==0.4.0
toml==0.10.2
tomli==2.0.1
toolz==0.12.0
tornado==6.2
tqdm==4.65.0
traitlets==5.13.0
typeguard==2.13.3
typing_extensions==4.5.0
tzdata==2023.2
tzlocal==4.3
urllib3==1.26.14
uvicorn==0.21.1
-e git+https://github.com/drew2323/v2trading.git@b58639454be921f9f0c9dd1880491cfcfdfdf3b7#egg=v2realbot
validators==0.20.0
wcwidth==0.2.9
webencodings==0.5.1
websockets==10.4
Werkzeug==2.2.3
widgetsnbextension==4.0.9
wrapt==1.14.1
zipp==3.15.0

View File

@ -1,21 +1,34 @@
absl-py==2.0.0
alpaca==1.0.0
alpaca-py==0.7.1
alpaca-py==0.18.1
altair==4.2.2
annotated-types==0.6.0
anyio==3.6.2
appdirs==1.4.4
appnope==0.1.3
APScheduler==3.10.4
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
asttokens==2.2.1
astunparse==1.6.3
async-lru==2.0.4
attrs==22.2.0
Babel==2.15.0
beautifulsoup4==4.12.3
better-exceptions==0.3.3
bleach==6.0.0
blinker==1.5
bottle==0.12.25
cachetools==5.3.0
CD==1.1.0
certifi==2022.12.7
cffi==1.16.0
chardet==5.1.0
charset-normalizer==3.0.1
click==8.1.3
colorama==0.4.6
comm==0.1.4
contourpy==1.0.7
cycler==0.11.0
dash==2.9.1
@ -23,90 +36,189 @@ dash-bootstrap-components==1.4.1
dash-core-components==2.0.0
dash-html-components==2.0.0
dash-table==5.0.0
dateparser==1.1.8
debugpy==1.8.1
decorator==5.1.1
defusedxml==0.7.1
dill==0.3.7
dm-tree==0.1.8
entrypoints==0.4
exceptiongroup==1.1.3
executing==1.2.0
fastapi==0.95.0
fastapi==0.109.2
fastjsonschema==2.19.1
filelock==3.13.1
Flask==2.2.3
flatbuffers==23.5.26
fonttools==4.39.0
fpdf2==2.7.6
fqdn==1.5.1
gast==0.4.0
gitdb==4.0.10
GitPython==3.1.31
google-auth==2.23.0
google-auth-oauthlib==1.0.0
google-pasta==0.2.0
greenlet==3.0.3
grpcio==1.58.0
h11==0.14.0
h5py==3.9.0
h5py==3.10.0
html2text==2024.2.26
httpcore==1.0.5
httpx==0.27.0
humanize==4.9.0
icecream==2.1.3
idna==3.4
imageio==2.31.6
importlib-metadata==6.1.0
ipykernel==6.29.4
ipython==8.17.2
ipywidgets==8.1.1
isoduration==20.11.0
itables==2.0.1
itsdangerous==2.1.2
jax==0.4.23
jaxlib==0.4.23
jedi==0.19.1
Jinja2==3.1.2
joblib==1.3.2
jsonschema==4.17.3
keras==2.13.1
json5==0.9.25
jsonpointer==2.4
jsonschema==4.22.0
jsonschema-specifications==2023.12.1
jupyter-events==0.10.0
jupyter-lsp==2.2.5
jupyter_client==8.6.1
jupyter_core==5.7.2
jupyter_server==2.14.0
jupyter_server_terminals==0.5.3
jupyterlab==4.1.8
jupyterlab-widgets==3.0.9
jupyterlab_pygments==0.3.0
jupyterlab_server==2.27.1
kaleido==0.2.1
keras==3.0.2
keras-core==0.1.7
keras-nightly==3.0.3.dev2024010203
keras-nlp-nightly==0.7.0.dev2024010203
keras-tcn @ git+https://github.com/drew2323/keras-tcn.git@4bddb17a02cb2f31c9fe2e8f616b357b1ddb0e11
kiwisolver==1.4.4
libclang==16.0.6
lightweight-charts @ git+https://github.com/drew2323/lightweight-charts-python@10fd42f785182edfbf6b46a19a4ef66e85985a23
llvmlite==0.39.1
Markdown==3.4.3
markdown-it-py==2.2.0
MarkupSafe==2.1.2
matplotlib==3.7.1
matplotlib==3.8.2
matplotlib-inline==0.1.6
mdurl==0.1.2
mistune==3.0.2
ml-dtypes==0.3.1
mlroom @ git+https://github.com/drew2323/mlroom.git@692900e274c4e0542d945d231645c270fc508437
mplfinance==0.12.10b0
msgpack==1.0.4
mypy-extensions==1.0.0
namex==0.0.7
nbclient==0.10.0
nbconvert==7.16.4
nbformat==5.10.4
nest-asyncio==1.6.0
newtulipy==0.4.6
numpy==1.24.2
notebook_shim==0.2.4
numba==0.56.4
numpy==1.23.5
oauthlib==3.2.2
opt-einsum==3.3.0
orjson==3.9.10
overrides==7.7.0
packaging==23.0
pandas==1.5.3
pandas==2.2.1
pandocfilters==1.5.1
param==1.13.0
parso==0.8.3
patsy==0.5.6
pexpect==4.8.0
Pillow==9.4.0
plotly==5.13.1
platformdirs==4.2.0
plotly==5.22.0
prometheus_client==0.20.0
prompt-toolkit==3.0.39
proto-plus==1.22.2
protobuf==3.20.3
proxy-tools==0.1.0
psutil==5.9.8
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==11.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycparser==2.22
pyct==0.5.0
pydantic==1.10.5
pydantic==2.6.4
pydantic_core==2.16.3
pydeck==0.8.0
Pygments==2.14.0
pyinstrument==4.5.3
Pympler==1.0.1
pyobjc-core==10.3
pyobjc-framework-Cocoa==10.3
pyobjc-framework-Security==10.3
pyobjc-framework-WebKit==10.3
pyparsing==3.0.9
pyrsistent==0.19.3
pysos==1.3.0
python-dateutil==2.8.2
python-dotenv==1.0.0
python-json-logger==2.0.7
python-multipart==0.0.6
pytz==2022.7.1
pytz-deprecation-shim==0.1.0.post0
pyviz-comms==2.2.1
PyWavelets==1.5.0
pywebview==5.1
PyYAML==6.0
pyzmq==25.1.2
referencing==0.35.1
regex==2023.10.3
requests==2.31.0
requests-oauthlib==1.3.1
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
rich==13.3.1
rpds-py==0.18.0
rsa==4.9
scikit-learn==1.3.1
schedule==1.2.1
scikit-learn==1.3.2
scipy==1.11.2
seaborn==0.12.2
semver==2.13.0
Send2Trash==1.8.3
six==1.16.0
smmap==5.0.0
sniffio==1.3.0
soupsieve==2.5
SQLAlchemy==2.0.27
sseclient-py==1.7.2
starlette==0.26.1
stack-data==0.6.3
starlette==0.36.3
statsmodels==0.14.1
streamlit==1.20.0
structlog==23.1.0
TA-Lib==0.4.28
tb-nightly==2.16.0a20240102
tenacity==8.2.2
tensorboard==2.13.0
tensorboard==2.15.1
tensorboard-data-server==0.7.1
tensorflow==2.13.0
tensorflow-estimator==2.13.0
tensorflow-addons==0.23.0
tensorflow-estimator==2.15.0
tensorflow-io-gcs-filesystem==0.34.0
termcolor==2.3.0
terminado==0.18.1
tf-estimator-nightly==2.14.0.dev2023080308
tf-nightly==2.16.0.dev20240101
tf_keras-nightly==2.16.0.dev2023123010
threadpoolctl==3.2.0
tinycss2==1.3.0
tinydb==4.7.1
tinydb-serialization==2.1.0
tinyflux==0.4.0
@ -115,15 +227,24 @@ tomli==2.0.1
toolz==0.12.0
tornado==6.2
tqdm==4.65.0
typing_extensions==4.5.0
traitlets==5.13.0
typeguard==2.13.3
types-python-dateutil==2.9.0.20240316
typing_extensions==4.9.0
tzdata==2023.2
tzlocal==4.3
uri-template==1.3.0
urllib3==1.26.14
uvicorn==0.21.1
#-e git+https://github.com/drew2323/v2trading.git@940348412f67ecd551ef8d0aaedf84452abf1320#egg=v2realbot
-e git+https://github.com/drew2323/v2trading.git@1f85b271dba2b9baf2c61b591a08849e9d684374#egg=v2realbot
validators==0.20.0
vectorbtpro @ file:///Users/davidbrazda/Downloads/vectorbt.pro-2024.2.22
wcwidth==0.2.9
webcolors==1.13
webencodings==0.5.1
websockets==10.4
websocket-client==1.7.0
websockets==11.0.3
Werkzeug==2.2.3
wrapt==1.15.0
widgetsnbextension==4.0.9
wrapt==1.14.1
zipp==3.15.0

243
requirements_newest.txt Normal file
View File

@ -0,0 +1,243 @@
absl-py
alpaca
alpaca-py
altair
annotated-types
anyio
appdirs
appnope
APScheduler
argon2-cffi
argon2-cffi-bindings
arrow
asttokens
astunparse
async-lru
attrs
Babel
beautifulsoup4
better-exceptions
bleach
blinker
bottle
cachetools
CD
certifi
cffi
chardet
charset-normalizer
click
colorama
comm
contourpy
cycler
dash
dash-bootstrap-components
dash-core-components
dash-html-components
dash-table
dateparser
debugpy
decorator
defusedxml
dill
dm-tree
entrypoints
exceptiongroup
executing
fastapi
fastjsonschema
filelock
Flask
flatbuffers
fonttools
fpdf2
fqdn
gast
gitdb
GitPython
google-auth
google-auth-oauthlib
google-pasta
greenlet
grpcio
h11
h5py
html2text
httpcore
httpx
humanize
icecream
idna
imageio
importlib-metadata
ipykernel
ipython
ipywidgets
isoduration
itables
itsdangerous
jax
jaxlib
jedi
Jinja2
joblib
json5
jsonpointer
jsonschema
jsonschema-specifications
jupyter-events
jupyter-lsp
jupyter_client
jupyter_core
jupyter_server
jupyter_server_terminals
jupyterlab
jupyterlab-widgets
jupyterlab_pygments
jupyterlab_server
kaleido
keras
keras-core
keras-nightly
keras-nlp-nightly
keras-tcn @ git+https://github.com/drew2323/keras-tcn.git
kiwisolver
libclang
lightweight-charts @ git+https://github.com/drew2323/lightweight-charts-python.git
llvmlite
Markdown
markdown-it-py
MarkupSafe
matplotlib
matplotlib-inline
mdurl
mistune
ml-dtypes
mlroom @ git+https://github.com/drew2323/mlroom.git
mplfinance
msgpack
mypy-extensions
namex
nbclient
nbconvert
nbformat
nest-asyncio
newtulipy
notebook_shim
numba
numpy
oauthlib
opt-einsum
orjson
overrides
packaging
pandas
pandocfilters
param
parso
patsy
pexpect
Pillow
platformdirs
plotly
prometheus_client
prompt-toolkit
proto-plus
protobuf
proxy-tools
psutil
ptyprocess
pure-eval
pyarrow
pyasn1
pyasn1-modules
pycparser
pyct
pydantic
pydantic_core
pydeck
Pygments
pyinstrument
pyparsing
pyrsistent
pysos
python-dateutil
python-dotenv
python-json-logger
python-multipart
pytz
pytz-deprecation-shim
pyviz-comms
PyWavelets
pywebview
PyYAML
pyzmq
referencing
regex
requests
requests-oauthlib
rfc3339-validator
rfc3986-validator
rich
rpds-py
rsa
schedule
scikit-learn
scipy
seaborn
semver
Send2Trash
six
smmap
sniffio
soupsieve
SQLAlchemy
sseclient-py
stack-data
starlette
statsmodels
streamlit
structlog
TA-Lib
tb-nightly
tenacity
tensorboard
tensorboard-data-server
tensorflow-addons
tensorflow-estimator
tensorflow-io-gcs-filesystem
termcolor
terminado
tf-estimator-nightly
tf-nightly
tf_keras-nightly
threadpoolctl
tinycss2
tinydb
tinydb-serialization
tinyflux
toml
tomli
toolz
tornado
tqdm
traitlets
typeguard
types-python-dateutil
typing_extensions
tzdata
tzlocal
uri-template
urllib3
uvicorn
validators
wcwidth
webcolors
webencodings
websocket-client
websockets
Werkzeug
widgetsnbextension
wrapt
zipp

BIN
res_pred_act.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

BIN
res_target.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

104044
research/basic.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,410 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Loading trades and vectorized aggregation\n",
"Describes how to fetch trades (remote/cached) and use new vectorized aggregation to aggregate bars of given type (time, volume, dollar) and resolution\n",
"\n",
"`fetch_trades_parallel` enables to fetch trades of given symbol and interval, also can filter conditions and minimum size. return `trades_df`\n",
"`aggregate_trades` acceptss `trades_df` and ressolution and type of bars (VOLUME, TIME, DOLLAR) and return aggregated ohlcv dataframe `ohlcv_df`"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Activating profile profile1\n",
"</pre>\n"
],
"text/plain": [
"Activating profile profile1\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"trades_df-BAC-2024-01-11T09:30:00-2024-01-12T16:00:00.parquet\n",
"trades_df-SPY-2024-01-01T09:30:00-2024-05-14T16:00:00.parquet\n",
"ohlcv_df-BAC-2024-01-11T09:30:00-2024-01-12T16:00:00.parquet\n",
"ohlcv_df-SPY-2024-01-01T09:30:00-2024-05-14T16:00:00.parquet\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from numba import jit\n",
"from alpaca.data.historical import StockHistoricalDataClient\n",
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
"from alpaca.data.requests import StockTradesRequest\n",
"from v2realbot.enums.enums import BarType\n",
"import time\n",
"from datetime import datetime\n",
"from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data\n",
"import pyarrow\n",
"from v2realbot.loader.aggregator_vectorized import fetch_daily_stock_trades, fetch_trades_parallel, generate_time_bars_nb, aggregate_trades\n",
"import vectorbtpro as vbt\n",
"import v2realbot.utils.config_handler as cfh\n",
"\n",
"vbt.settings.set_theme(\"dark\")\n",
"vbt.settings['plotting']['layout']['width'] = 1280\n",
"vbt.settings.plotting.auto_rangebreaks = True\n",
"# Set the option to display with pagination\n",
"pd.set_option('display.notebook_repr_html', True)\n",
"pd.set_option('display.max_rows', 20) # Number of rows per page\n",
"# pd.set_option('display.float_format', '{:.9f}'.format)\n",
"\n",
"\n",
"#trade filtering\n",
"exclude_conditions = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES') #standard ['C','O','4','B','7','V','P','W','U','Z','F']\n",
"minsize = 100\n",
"\n",
"symbol = \"SPY\"\n",
"#datetime in zoneNY \n",
"day_start = datetime(2024, 1, 1, 9, 30, 0)\n",
"day_stop = datetime(2024, 1, 14, 16, 00, 0)\n",
"day_start = zoneNY.localize(day_start)\n",
"day_stop = zoneNY.localize(day_stop)\n",
"#filename of trades_df parquet, date are in isoformat but without time zone part\n",
"dir = DATA_DIR + \"/notebooks/\"\n",
"#parquet interval cache contains exclude conditions and minsize filtering\n",
"file_trades = dir + f\"trades_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}-{exclude_conditions}-{minsize}.parquet\"\n",
"#file_trades = dir + f\"trades_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}.parquet\"\n",
"file_ohlcv = dir + f\"ohlcv_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}-{exclude_conditions}-{minsize}.parquet\"\n",
"\n",
"#PRINT all parquet in directory\n",
"import os\n",
"files = [f for f in os.listdir(dir) if f.endswith(\".parquet\")]\n",
"for f in files:\n",
" print(f)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NOT FOUND. Fetching from remote\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m trades_df \u001b[38;5;241m=\u001b[39m \u001b[43mfetch_daily_stock_trades\u001b[49m\u001b[43m(\u001b[49m\u001b[43msymbol\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mday_start\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mday_stop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexclude_conditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexclude_conditions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mminsize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mminsize\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_remote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackoff_factor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m trades_df\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/v2realbot/loader/aggregator_vectorized.py:200\u001b[0m, in \u001b[0;36mfetch_daily_stock_trades\u001b[0;34m(symbol, start, end, exclude_conditions, minsize, force_remote, max_retries, backoff_factor)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m attempt \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(max_retries):\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 200\u001b[0m tradesResponse \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_stock_trades\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstockTradeRequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m is_empty \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m tradesResponse[symbol]\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRemote fetched: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mis_empty\u001b[38;5;132;01m=}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, start, end)\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/data/historical/stock.py:144\u001b[0m, in \u001b[0;36mStockHistoricalDataClient.get_stock_trades\u001b[0;34m(self, request_params)\u001b[0m\n\u001b[1;32m 141\u001b[0m params \u001b[38;5;241m=\u001b[39m request_params\u001b[38;5;241m.\u001b[39mto_request_fields()\n\u001b[1;32m 143\u001b[0m \u001b[38;5;66;03m# paginated get request for market data api\u001b[39;00m\n\u001b[0;32m--> 144\u001b[0m raw_trades \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_data_get\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 145\u001b[0m \u001b[43m \u001b[49m\u001b[43mendpoint_data_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtrades\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[43m \u001b[49m\u001b[43mendpoint_asset_class\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstocks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 147\u001b[0m \u001b[43m \u001b[49m\u001b[43mapi_version\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mv2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 148\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 149\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_use_raw_data:\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m raw_trades\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/data/historical/stock.py:338\u001b[0m, in \u001b[0;36mStockHistoricalDataClient._data_get\u001b[0;34m(self, endpoint_asset_class, endpoint_data_type, api_version, symbol_or_symbols, limit, page_limit, extension, **kwargs)\u001b[0m\n\u001b[1;32m 335\u001b[0m params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m actual_limit\n\u001b[1;32m 336\u001b[0m params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpage_token\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m page_token\n\u001b[0;32m--> 338\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mapi_version\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mapi_version\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[38;5;66;03m# TODO: Merge parsing if possible\u001b[39;00m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m extension \u001b[38;5;241m==\u001b[39m DataExtensionType\u001b[38;5;241m.\u001b[39mSNAPSHOT:\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:221\u001b[0m, in \u001b[0;36mRESTClient.get\u001b[0;34m(self, path, data, **kwargs)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget\u001b[39m(\u001b[38;5;28mself\u001b[39m, path: \u001b[38;5;28mstr\u001b[39m, data: Union[\u001b[38;5;28mdict\u001b[39m, \u001b[38;5;28mstr\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m HTTPResult:\n\u001b[1;32m 211\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Performs a single GET request\u001b[39;00m\n\u001b[1;32m 212\u001b[0m \n\u001b[1;32m 213\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[38;5;124;03m dict: The response\u001b[39;00m\n\u001b[1;32m 220\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 221\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:129\u001b[0m, in \u001b[0;36mRESTClient._request\u001b[0;34m(self, method, path, data, base_url, api_version)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m retry \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 128\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 129\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_one_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretry\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RetryException:\n\u001b[1;32m 131\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_retry_wait)\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:193\u001b[0m, in \u001b[0;36mRESTClient._one_request\u001b[0;34m(self, method, url, opts, retry)\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_one_request\u001b[39m(\u001b[38;5;28mself\u001b[39m, method: \u001b[38;5;28mstr\u001b[39m, url: \u001b[38;5;28mstr\u001b[39m, opts: \u001b[38;5;28mdict\u001b[39m, retry: \u001b[38;5;28mint\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mdict\u001b[39m:\n\u001b[1;32m 175\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Perform one request, possibly raising RetryException in the case\u001b[39;00m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;124;03m the response is 429. Otherwise, if error text contain \"code\" string,\u001b[39;00m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;124;03m then it decodes to json object and returns APIError.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[38;5;124;03m dict: The response data\u001b[39;00m\n\u001b[1;32m 192\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 193\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mopts\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 196\u001b[0m response\u001b[38;5;241m.\u001b[39mraise_for_status()\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 700\u001b[0m start \u001b[38;5;241m=\u001b[39m preferred_clock()\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m 706\u001b[0m elapsed \u001b[38;5;241m=\u001b[39m preferred_clock() \u001b[38;5;241m-\u001b[39m start\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/adapters.py:486\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 483\u001b[0m timeout \u001b[38;5;241m=\u001b[39m TimeoutSauce(connect\u001b[38;5;241m=\u001b[39mtimeout, read\u001b[38;5;241m=\u001b[39mtimeout)\n\u001b[1;32m 485\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 486\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 487\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 488\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 489\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 490\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 491\u001b[0m \u001b[43m \u001b[49m\u001b[43mredirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 492\u001b[0m \u001b[43m \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 493\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 494\u001b[0m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 495\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 496\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 497\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[1;32m 501\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(err, request\u001b[38;5;241m=\u001b[39mrequest)\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:703\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_proxy(conn)\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Make the request on the httplib connection object.\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 704\u001b[0m \u001b[43m \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 706\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 707\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 708\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 709\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 710\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 711\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 713\u001b[0m \u001b[38;5;66;03m# If we're going to release the connection in ``finally:``, then\u001b[39;00m\n\u001b[1;32m 714\u001b[0m \u001b[38;5;66;03m# the response doesn't need to know about the connection. Otherwise\u001b[39;00m\n\u001b[1;32m 715\u001b[0m \u001b[38;5;66;03m# it will also try to release it and we'll have a double-release\u001b[39;00m\n\u001b[1;32m 716\u001b[0m \u001b[38;5;66;03m# mess.\u001b[39;00m\n\u001b[1;32m 717\u001b[0m response_conn \u001b[38;5;241m=\u001b[39m conn \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m release_conn \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:449\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m 444\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m conn\u001b[38;5;241m.\u001b[39mgetresponse()\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# Remove the TypeError from the exception chain in\u001b[39;00m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# Python 3 (including for exceptions like SystemExit).\u001b[39;00m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;66;03m# Otherwise it looks like a bug in the code.\u001b[39;00m\n\u001b[0;32m--> 449\u001b[0m \u001b[43msix\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_from\u001b[49m\u001b[43m(\u001b[49m\u001b[43me\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (SocketTimeout, BaseSSLError, SocketError) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raise_timeout(err\u001b[38;5;241m=\u001b[39me, url\u001b[38;5;241m=\u001b[39murl, timeout_value\u001b[38;5;241m=\u001b[39mread_timeout)\n",
"File \u001b[0;32m<string>:3\u001b[0m, in \u001b[0;36mraise_from\u001b[0;34m(value, from_value)\u001b[0m\n",
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:444\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m 441\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 442\u001b[0m \u001b[38;5;66;03m# Python 3\u001b[39;00m\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 444\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetresponse\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# Remove the TypeError from the exception chain in\u001b[39;00m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# Python 3 (including for exceptions like SystemExit).\u001b[39;00m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;66;03m# Otherwise it looks like a bug in the code.\u001b[39;00m\n\u001b[1;32m 449\u001b[0m six\u001b[38;5;241m.\u001b[39mraise_from(e, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:1375\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1373\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1374\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1375\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbegin\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1376\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m:\n\u001b[1;32m 1377\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclose()\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:318\u001b[0m, in \u001b[0;36mHTTPResponse.begin\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[38;5;66;03m# read until we get a non-100 response\u001b[39;00m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 318\u001b[0m version, status, reason \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m status \u001b[38;5;241m!=\u001b[39m CONTINUE:\n\u001b[1;32m 320\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:279\u001b[0m, in \u001b[0;36mHTTPResponse._read_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_read_status\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 279\u001b[0m line \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadline\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_MAXLINE\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124miso-8859-1\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(line) \u001b[38;5;241m>\u001b[39m _MAXLINE:\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LineTooLong(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstatus line\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/socket.py:705\u001b[0m, in \u001b[0;36mSocketIO.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 703\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 704\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 705\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv_into\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 706\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m timeout:\n\u001b[1;32m 707\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_timeout_occurred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/ssl.py:1274\u001b[0m, in \u001b[0;36mSSLSocket.recv_into\u001b[0;34m(self, buffer, nbytes, flags)\u001b[0m\n\u001b[1;32m 1270\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1271\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1272\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv_into() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 1273\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1274\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnbytes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1275\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1276\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv_into(buffer, nbytes, flags)\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/ssl.py:1130\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1128\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m buffer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1130\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m)\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"trades_df = fetch_daily_stock_trades(symbol, day_start, day_stop, exclude_conditions=exclude_conditions, minsize=minsize, force_remote=False, max_retries=5, backoff_factor=1)\n",
"trades_df"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Either load trades or ohlcv from parquet if exists\n",
"\n",
"#trades_df = fetch_trades_parallel(symbol, day_start, day_stop, exclude_conditions=exclude_conditions, minsize=50, max_workers=20) #exclude_conditions=['C','O','4','B','7','V','P','W','U','Z','F'])\n",
"# trades_df.to_parquet(file_trades, engine='pyarrow', compression='gzip')\n",
"\n",
"trades_df = pd.read_parquet(file_trades,engine='pyarrow')\n",
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=trades_df, resolution=1, type=BarType.TIME)\n",
"ohlcv_df.to_parquet(file_ohlcv, engine='pyarrow', compression='gzip')\n",
"\n",
"# ohlcv_df = pd.read_parquet(file_ohlcv,engine='pyarrow')\n",
"# trades_df = pd.read_parquet(file_trades,engine='pyarrow')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#list all files is dir directory with parquet extension\n",
"dir = DATA_DIR + \"/notebooks/\"\n",
"import os\n",
"files = [f for f in os.listdir(dir) if f.endswith(\".parquet\")]\n",
"file_name = \"\"\n",
"ohlcv_df = pd.read_parquet(file_ohlcv,engine='pyarrow')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ohlcv_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"# Calculate daily returns\n",
"ohlcv_df['returns'] = ohlcv_df['close'].pct_change().dropna()\n",
"#same as above but pct_change is from 3 datapoints back, but only if it is the same date, else na\n",
"\n",
"\n",
"# Plot the probability distribution curve\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(df['returns'].dropna(), kde=True, stat='probability', bins=30)\n",
"plt.title('Probability Distribution of Daily Returns')\n",
"plt.xlabel('Daily Returns')\n",
"plt.ylabel('Probability')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"# Define the intervals from 5 to 20 s, returns for each interval\n",
"#maybe use rolling window?\n",
"intervals = range(5, 21, 5)\n",
"\n",
"# Create columns for percentage returns\n",
"rolling_window = 50\n",
"\n",
"# Normalize the returns using rolling mean and std\n",
"for N in intervals:\n",
" column_name = f'returns_{N}'\n",
" rolling_mean = ohlcv_df[column_name].rolling(window=rolling_window).mean()\n",
" rolling_std = ohlcv_df[column_name].rolling(window=rolling_window).std()\n",
" ohlcv_df[f'norm_{column_name}'] = (ohlcv_df[column_name] - rolling_mean) / rolling_std\n",
"\n",
"# Display the dataframe with normalized return columns\n",
"ohlcv_df\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate the sum of the normalized return columns for each row\n",
"ohlcv_df['sum_norm_returns'] = ohlcv_df[[f'norm_returns_{N}' for N in intervals]].sum(axis=1)\n",
"\n",
"# Sort the DataFrame based on the sum of normalized returns in descending order\n",
"df_sorted = ohlcv_df.sort_values(by='sum_norm_returns', ascending=False)\n",
"\n",
"# Display the top rows with the highest sum of normalized returns\n",
"df_sorted\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Drop initial rows with NaN values due to pct_change\n",
"ohlcv_df.dropna(inplace=True)\n",
"\n",
"# Plotting the probability distribution curves\n",
"plt.figure(figsize=(14, 8))\n",
"for N in intervals:\n",
" sns.kdeplot(ohlcv_df[f'returns_{N}'].dropna(), label=f'Returns {N}', fill=True)\n",
"\n",
"plt.title('Probability Distribution of Percentage Returns')\n",
"plt.xlabel('Percentage Return')\n",
"plt.ylabel('Density')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"# Plot the probability distribution curve\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(ohlcv_df['returns'].dropna(), kde=True, stat='probability', bins=30)\n",
"plt.title('Probability Distribution of Daily Returns')\n",
"plt.xlabel('Daily Returns')\n",
"plt.ylabel('Probability')\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#show only rows from ohlcv_df where returns > 0.005\n",
"ohlcv_df[ohlcv_df['returns'] > 0.0005]\n",
"\n",
"#ohlcv_df[ohlcv_df['returns'] < -0.005]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#ohlcv where index = date 2024-03-13 and between hour 12\n",
"\n",
"a = ohlcv_df.loc['2024-03-13 12:00:00':'2024-03-13 13:00:00']\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ohlcv_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trades_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ohlcv_df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trades_df.to_parquet(\"trades_df-spy-0111-0111.parquett\", engine='pyarrow', compression='gzip')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trades_df.to_parquet(\"trades_df-spy-111-0516.parquett\", engine='pyarrow', compression='gzip', allow_truncated_timestamps=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ohlcv_df.to_parquet(\"ohlcv_df-spy-111-0516.parquett\", engine='pyarrow', compression='gzip')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"basic_data = vbt.Data.from_data(vbt.symbol_dict({symbol: ohlcv_df}), tz_convert=zoneNY)\n",
"vbt.settings['plotting']['auto_rangebreaks'] = True\n",
"basic_data.ohlcv.plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#access just BCA\n",
"#df_filtered = df.loc[\"BAC\"]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

26673
research/rsi_alpaca.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

23637
research/test.ipynb Normal file

File diff suppressed because it is too large Load Diff

105
research/test1.ipynb Normal file

File diff suppressed because one or more lines are too long

421
research/test1sbars.ipynb Normal file
View File

@ -0,0 +1,421 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from v2realbot.tools.loadbatch import load_batch\n",
"from v2realbot.utils.utils import zoneNY\n",
"import pandas as pd\n",
"import numpy as np\n",
"import vectorbtpro as vbt\n",
"from itables import init_notebook_mode, show\n",
"\n",
"init_notebook_mode(all_interactive=True)\n",
"\n",
"vbt.settings.set_theme(\"dark\")\n",
"vbt.settings['plotting']['layout']['width'] = 1280\n",
"vbt.settings.plotting.auto_rangebreaks = True\n",
"# Set the option to display with pagination\n",
"pd.set_option('display.notebook_repr_html', True)\n",
"pd.set_option('display.max_rows', 10) # Number of rows per page\n",
"\n",
"res, df = load_batch(batch_id=\"0fb5043a\", #46 days 1.3 - 6.5.\n",
" space_resolution_evenly=False,\n",
" indicators_columns=[\"Rsi14\"],\n",
" main_session_only=True,\n",
" verbose = False)\n",
"if res < 0:\n",
" print(\"Error\" + str(res) + str(df))\n",
"df = df[\"bars\"]\n",
"\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# filter dates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#filter na dny\n",
"# dates_of_interest = pd.to_datetime(['2024-04-22', '2024-04-23']).tz_localize('US/Eastern')\n",
"# filtered_df = df.loc[df.index.normalize().isin(dates_of_interest)]\n",
"\n",
"# df = filtered_df\n",
"# df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import plotly.io as pio\n",
"pio.renderers.default = 'notebook'\n",
"\n",
"#naloadujeme do vbt symbol as column\n",
"basic_data = vbt.Data.from_data({\"BAC\": df}, tz_convert=zoneNY)\n",
"start_date = pd.Timestamp('2024-03-12 09:30', tz=zoneNY)\n",
"end_date = pd.Timestamp('2024-03-13 16:00', tz=zoneNY)\n",
"\n",
"#basic_data = basic_data.transform(lambda df: df[df.index.date == start_date.date()])\n",
"#basic_data = basic_data.transform(lambda df: df[(df.index >= start_date) & (df.index <= end_date)])\n",
"#basic_data.data[\"BAC\"].info()\n",
"\n",
"# fig = basic_data.plot(plot_volume=False)\n",
"# pivot_info = basic_data.run(\"pivotinfo\", up_th=0.003, down_th=0.002)\n",
"# #pivot_info.plot()\n",
"# pivot_info.plot(fig=fig, conf_value_trace_kwargs=dict(visible=True))\n",
"# fig.show()\n",
"\n",
"\n",
"# rsi14 = basic_data.data[\"BAC\"][\"Rsi14\"].rename(\"Rsi14\")\n",
"\n",
"# rsi14.vbt.plot().show()\n",
"#basic_data.xloc[\"09:30\":\"10:00\"].data[\"BAC\"].vbt.ohlcv.plot().show()\n",
"\n",
"vbt.settings.plotting.auto_rangebreaks = True\n",
"#basic_data.data[\"BAC\"].vbt.ohlcv.plot()\n",
"\n",
"#basic_data.data[\"BAC\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"m1_data = basic_data[['Open', 'High', 'Low', 'Close', 'Volume']]\n",
"\n",
"m1_data.data[\"BAC\"]\n",
"#m5_data = m1_data.resample(\"5T\")\n",
"\n",
"#m5_data.data[\"BAC\"].head(10)\n",
"\n",
"# m15_data = m1_data.resample(\"15T\")\n",
"\n",
"# m15 = m15_data.data[\"BAC\"]\n",
"\n",
"# m15.vbt.ohlcv.plot()\n",
"\n",
"# m1_data.wrapper.index\n",
"\n",
"# m1_resampler = m1_data.wrapper.get_resampler(\"1T\")\n",
"# m1_resampler.index_difference(reverse=True)\n",
"\n",
"\n",
"# m5_resampler.prettify()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# defining ENTRY WINDOW and forced EXIT window"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#m1_data.data[\"BAC\"].info()\n",
"import datetime\n",
"# Define the market open and close times\n",
"market_open = datetime.time(9, 30)\n",
"market_close = datetime.time(16, 0)\n",
"entry_window_opens = 1\n",
"entry_window_closes = 350\n",
"\n",
"forced_exit_start = 380\n",
"forced_exit_end = 390\n",
"\n",
"forced_exit = m1_data.symbol_wrapper.fill(False)\n",
"entry_window_open= m1_data.symbol_wrapper.fill(False)\n",
"\n",
"# Calculate the time difference in minutes from market open for each timestamp\n",
"elapsed_min_from_open = (forced_exit.index.hour - market_open.hour) * 60 + (forced_exit.index.minute - market_open.minute)\n",
"\n",
"entry_window_open[(elapsed_min_from_open >= entry_window_opens) & (elapsed_min_from_open < entry_window_closes)] = True\n",
"forced_exit[(elapsed_min_from_open >= forced_exit_start) & (elapsed_min_from_open < forced_exit_end)] = True\n",
"\n",
"#entry_window_open.info()\n",
"# forced_exit.tail(100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"close = m1_data.close\n",
"\n",
"rsi = vbt.RSI.run(close, window=14)\n",
"\n",
"long_entries = (rsi.rsi.vbt.crossed_below(20) & entry_window_open)\n",
"long_exits = (rsi.rsi.vbt.crossed_above(70) | forced_exit)\n",
"#long_entries.info()\n",
"#number of trues and falses in long_entries\n",
"long_entries.value_counts()\n",
"#long_exits.value_counts()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def plot_rsi(rsi, close, entries, exits):\n",
" fig = vbt.make_subplots(rows=1, cols=1, shared_xaxes=True, specs=[[{\"secondary_y\": True}]], vertical_spacing=0.02, subplot_titles=(\"RSI\", \"Price\" ))\n",
" close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=True))\n",
" rsi.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False))\n",
" entries.vbt.signals.plot_as_entries(rsi.rsi, fig=fig, add_trace_kwargs=dict(secondary_y=False)) \n",
" exits.vbt.signals.plot_as_exits(rsi.rsi, fig=fig, add_trace_kwargs=dict(secondary_y=False)) \n",
" return fig\n",
"\n",
"plot_rsi(rsi, close, long_entries, long_exits)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vbt.phelp(vbt.Portfolio.from_signals)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sl_stop = np.arange(0.03/100, 0.2/100, 0.02/100).tolist()\n",
"# Using the round function\n",
"sl_stop = [round(val, 4) for val in sl_stop]\n",
"print(sl_stop)\n",
"sl_stop = vbt.Param(sl_stop) #np.nan mean s no stoploss\n",
"\n",
"pf = vbt.Portfolio.from_signals(close=close, entries=long_entries, sl_stop=sl_stop, tp_stop = sl_stop, exits=long_exits,fees=0.0167/100, freq=\"1s\") #sl_stop=sl_stop, tp_stop = sl_stop, \n",
"\n",
"#pf.stats()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pf.plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pf[(0.0015,0.0013)].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pf[0.03].plot_trade_signals()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# pristup k pf jako multi index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#pf[0.03].plot()\n",
"#pf.order_records\n",
"pf[(0.03)].stats()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#zgrupovane statistiky\n",
"stats_df = pf.stats([\n",
" 'total_return',\n",
" 'total_trades',\n",
" 'win_rate',\n",
" 'expectancy'\n",
"], agg_func=None)\n",
"stats_df\n",
"\n",
"\n",
"stats_df.nlargest(50, 'Total Return [%]')\n",
"#stats_df.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pf[(0.0011,0.0013)].plot()\n",
"\n",
"#pf[(0.0011,0.0013000000000000002)].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pandas.tseries.offsets import DateOffset\n",
"\n",
"temp_data = basic_data['2024-4-22']\n",
"temp_data\n",
"res1m = temp_data[[\"Open\", \"High\", \"Low\", \"Close\", \"Volume\"]]\n",
"\n",
"# Define a custom date offset that starts at 9:30 AM and spans 4 hours\n",
"custom_offset = DateOffset(hours=4, minutes=30)\n",
"\n",
"# res1m = res1m.get().resample(\"4H\").agg({ \n",
"# \"Open\": \"first\",\n",
"# \"High\": \"max\",\n",
"# \"Low\": \"min\",\n",
"# \"Close\": \"last\",\n",
"# \"Volume\": \"sum\"\n",
"# })\n",
"\n",
"res4h = res1m.resample(\"1h\", resample_kwargs=dict(origin=\"start\"))\n",
"\n",
"res4h.data\n",
"\n",
"res15m = res1m.resample(\"15T\", resample_kwargs=dict(origin=\"start\"))\n",
"\n",
"res15m.data[\"BAC\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"@vbt.njit\n",
"def long_entry_place_func_nb(c, low, close, time_in_ns, rsi14, window_open, window_close):\n",
" market_open_minutes = 570 # 9 hours * 60 minutes + 30 minutes\n",
"\n",
" for out_i in range(len(c.out)):\n",
" i = c.from_i + out_i\n",
"\n",
" current_minutes = vbt.dt_nb.hour_nb(time_in_ns[i]) * 60 + vbt.dt_nb.minute_nb(time_in_ns[i])\n",
" #print(\"current_minutes\", current_minutes)\n",
" # Calculate elapsed minutes since market open at 9:30 AM\n",
" elapsed_from_open = current_minutes - market_open_minutes\n",
" elapsed_from_open = elapsed_from_open if elapsed_from_open >= 0 else 0\n",
" #print( \"elapsed_from_open\", elapsed_from_open)\n",
"\n",
" #elapsed_from_open = elapsed_minutes_from_open_nb(time_in_ns) \n",
" in_window = elapsed_from_open > window_open and elapsed_from_open < window_close\n",
" #print(\"in_window\", in_window)\n",
" # if in_window:\n",
" # print(\"in window\")\n",
"\n",
" if in_window and rsi14[i] > 60: # and low[i, c.col] <= hit_price: # and hour == 9: # (4)!\n",
" return out_i\n",
" return -1\n",
"\n",
"@vbt.njit\n",
"def long_exit_place_func_nb(c, high, close, time_index, tp, sl): # (5)!\n",
" entry_i = c.from_i - c.wait\n",
" entry_price = close[entry_i, c.col]\n",
" hit_price = entry_price * (1 + tp)\n",
" stop_price = entry_price * (1 - sl)\n",
" for out_i in range(len(c.out)):\n",
" i = c.from_i + out_i\n",
" last_bar_of_day = vbt.dt_nb.day_changed_nb(time_index[i], time_index[i + 1])\n",
"\n",
" #print(next_day)\n",
" if last_bar_of_day: #pokud je dalsi next day, tak zavirame posledni\n",
" print(\"ted\",out_i)\n",
" return out_i\n",
" if close[i, c.col] >= hit_price or close[i, c.col] <= stop_price :\n",
" return out_i\n",
" return -1\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(np.random.random(size=(5, 10)), columns=list('abcdefghij'))\n",
"\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.sum()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

45
restart.sh Executable file
View File

@ -0,0 +1,45 @@
#!/bin/bash
# file: restart.sh
# Usage: ./restart.sh [test|prod|all]
# Define server addresses
TEST_SERVER="david@142.132.188.109"
PROD_SERVER="david@5.161.179.223"
# Define the remote directory where the script is located
REMOTE_DIR="v2trading"
# Check for argument
if [ "$#" -ne 1 ]; then
echo "Usage: $0 [test|prod|all]"
exit 1
fi
# Function to restart a server
restart_server() {
local server=$1
echo "Connecting to $server to restart the Python app..."
ssh -t $server "cd $REMOTE_DIR && . ~/.bashrc && ./run.sh restart" # Sourcing .bashrc here
echo "Operation completed on $server."
}
# Select the server based on the input argument
case $1 in
test)
restart_server $TEST_SERVER
;;
prod)
restart_server $PROD_SERVER
;;
all)
restart_server $TEST_SERVER
restart_server $PROD_SERVER
;;
*)
echo "Invalid argument: $1. Use 'test', 'prod', or 'all'."
exit 1
;;
esac

15
run.sh
View File

@ -26,12 +26,27 @@ PYTHON_TO_USE="python3"
#----END EDITABLE VARS-------
# Additions for handling strat.log backup
HISTORY_DIR="$HOME/stratlogs"
TIMESTAMP=$(date +"%Y%m%d-%H%M%S")
LOG_FILE="strat.log"
BACKUP_LOG_FILE="$HISTORY_DIR/${TIMESTAMP}_$LOG_FILE"
# If virtualenv specified & exists, using that version of python instead.
if [ -d "$VIRTUAL_ENV_DIR" ]; then
PYTHON_TO_USE="$VIRTUAL_ENV_DIR/bin/python"
fi
start() {
# Check and create history directory if it doesn't exist
[ ! -d "$HISTORY_DIR" ] && mkdir -p "$HISTORY_DIR"
# Check if strat.log exists and back it up
if [ -f "$LOG_FILE" ]; then
mv "$LOG_FILE" "$BACKUP_LOG_FILE"
echo "Backed up log to $BACKUP_LOG_FILE"
fi
if [ ! -e "$OUTPUT_PID_PATH/$OUTPUT_PID_FILE" ]; then
nohup "$PYTHON_TO_USE" ./$SCRIPT_TO_EXECUTE_PLUS_ARGS > strat.log 2>&1 & echo $! > "$OUTPUT_PID_PATH/$OUTPUT_PID_FILE"
echo "Started $SCRIPT_TO_EXECUTE_PLUS_ARGS @ Process: $!"

View File

@ -1,7 +1,7 @@
from setuptools import find_packages, setup
setup(name='v2realbot',
version='0.9',
version='0.91',
description='Realbot trader',
author='David Brazda',
author_email='davidbrazda61@gmail.com',

107
testdoc.md Normal file
View File

@ -0,0 +1,107 @@
# Plotly
* MAKE_SUBPLOT Defines layout (if more then 1x1 or secondary y axis are required)
```python
fig = vbt.make_subplots(rows=2, cols=1, shared_xaxes=True,
specs=[[{"secondary_y": True}], [{"secondary_y": False}]],
vertical_spacing=0.02, subplot_titles=("Row 1 title", "Row 2 title"))
```
Then the different [sr/df generic accessor](http://5.161.179.223:8000/static/js/vbt/api/generic/accessors/index.html#vectorbtpro.generic.accessors.GenericAccessor.areaplot) are added with ADD_TRACE_KWARGS and TRACE_KWARGS. Other types of plot available in [plotting module](http://5.161.179.223:8000/static/js/vbt/api/generic/plotting/index.html)
```python
#using accessor
close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False,row=1, col=1), trace_kwargs=dict(line=dict(color="blue")))
indvolume.vbt.barplot(fig=fig, add_trace_kwargs=dict(secondary_y=False, row=2, col=1))
#using plotting module
vbt.Bar(indvolume, fig=fig, add_trace_kwargs=dict(secondary_y=False, row=2, col=1))
```
* ADD_TRACE_KWARGS - determines positioning withing subplot
```python
add_trace_kwargs=dict(secondary_y=False,row=1, col=1)
```
* TRACE_KWARGS - other styling of trace
```python
trace_kwargs=dict(name="LONGS",
line=dict(color="#ffe476"),
marker=dict(color="limegreen"),
fill=None,
connectgaps=True)
```
## Example
```python
fig = vbt.make_subplots(rows=2, cols=1, shared_xaxes=True,
specs=[[{"secondary_y": True}], [{"secondary_y": False}]],
vertical_spacing=0.02, subplot_titles=("Price and Indicators", "Volume"))
# Plotting the close price
close.vbt.plot(fig=fig, add_trace_kwargs=dict(secondary_y=False,row=1, col=1), trace_kwargs=dict(line=dict(color="blue")))
```
# Data
## Resampling
```python
t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','sellvolume']].resample("1T")
t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) #main session data only, no nans
t5data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','sellvolume']].resample("5T")
t5data = t5data.transform(lambda df: df.between_time('09:30', '16:00').dropna())
dailydata = basic_data[['open', 'high', 'low', 'close', 'volume', 'vwap']].resample("D").dropna()
#realign 5min close to 1min so it can be compared with 1min
t5data_close_realigned = t5data.close.vbt.realign_closing("1T").between_time('09:30', '16:00').dropna()
#same with open
t5data.open.vbt.realign_opening("1h")
```
### Define resample function for custom column
Example of custom feature config [Binance Data](http://5.161.179.223:8000/static/js/vbt/api/data/custom/binance/index.html#vectorbtpro.data.custom.binance.BinanceData.feature_config).
Other [reduced functions available](http://5.161.179.223:8000/static/js/vbt/api/generic/nb/apply_reduce/index.html). (mean, min, max, median, nth ...)
```python
from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig
from vectorbtpro import _typing as tp
from vectorbtpro.generic import nb as generic_nb
_feature_config: tp.ClassVar[Config] = HybridConfig(
{
"buyvolume": dict(
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
resampler,
generic_nb.sum_reduce_nb,
)
),
"sellvolume": dict(
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
resampler,
generic_nb.sum_reduce_nb,
)
)
}
)
basic_data._feature_config = _feature_config
```
### Validate resample
```python
t2dataclose = t2data.close.rename("15MIN - realigned").vbt.realign_closing("1T")
fig = t1data.close.rename("1MIN").vbt.plot()
t2data.close.rename("15MIN").vbt.plot(fig=fig)
t2dataclose.vbt.plot(fig=fig)
```
## Persisting
```python
basic_data.to_parquet(partition_by="day", compression="gzip")
day_data = vbt.ParquetData.pull("BAC", filters=[("group", "==", "2024-05-03")])
vbt.print_dir_tree("BTC-USD")#overeni directory structure
```
# Discover
```python
vbt.phelp(vbt.talib(atr).run) #parameters it accepts
vbt.pdir(pf) - get available properties and methods
vbt.pprint(basic_data) #to get correct shape, info about instance
```

BIN
tested_runner.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

View File

@ -23,12 +23,12 @@ clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY,
#get previous days bar
datetime_object_from = datetime.datetime(2023, 10, 11, 4, 0, 00, tzinfo=datetime.timezone.utc)
datetime_object_to = datetime.datetime(2023, 10, 16, 16, 1, 00, tzinfo=datetime.timezone.utc)
calendar_request = GetCalendarRequest(start=datetime_object_from,end=datetime_object_to)
cal_dates = clientTrading.get_calendar(calendar_request)
print(cal_dates)
bar_request = StockBarsRequest(symbol_or_symbols="BAC",timeframe=TimeFrame.Day, start=datetime_object_from, end=datetime_object_to, feed=DataFeed.SIP)
datetime_object_from = datetime.datetime(2024, 3, 9, 13, 29, 00, tzinfo=datetime.timezone.utc)
datetime_object_to = datetime.datetime(2024, 3, 11, 20, 1, 00, tzinfo=datetime.timezone.utc)
# calendar_request = GetCalendarRequest(start=datetime_object_from,end=datetime_object_to)
# cal_dates = clientTrading.get_calendar(calendar_request)
# print(cal_dates)
bar_request = StockBarsRequest(symbol_or_symbols="BAC",timeframe=TimeFrame.Minute, start=datetime_object_from, end=datetime_object_to, feed=DataFeed.SIP)
# bars = client.get_stock_bars(bar_request).df

View File

@ -23,7 +23,7 @@ from rich import print
from collections import defaultdict
from pandas import to_datetime
from msgpack.ext import Timestamp
from v2realbot.utils.historicals import convert_daily_bars
from v2realbot.utils.historicals import convert_historical_bars
def get_last_close():
pass
@ -38,7 +38,7 @@ def get_historical_bars(symbol: str, time_from: datetime, time_to: datetime, tim
bars: BarSet = stock_client.get_stock_bars(bar_request)
print("puvodni bars", bars["BAC"])
print(bars)
return convert_daily_bars(bars[symbol])
return convert_historical_bars(bars[symbol])
#v initu plnime pozadovana historicka data do historicals[]

View File

@ -1,3 +1,3 @@
API_KEY = 'PKGGEWIEYZOVQFDRY70L'
SECRET_KEY = 'O5Kt8X4RLceIOvM98i5LdbalItsX7hVZlbPYHy8Y'
API_KEY = ''
SECRET_KEY = ''
MAX_BATCH_SIZE = 1

View File

@ -1,12 +1,14 @@
import scipy.interpolate as spi
import matplotlib.pyplot as plt
import numpy as np
# x = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
# y = [4, 7, 11, 16, 22, 29, 38, 49, 63, 80]
x = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
y = [4, 7, 11, 16, 22, 29, 38, 49, 63, 80]
y_interp = spi.interp1d(x, y)
val = 10
new = np.interp(val, [0, 50, 100], [0, 1, 2])
print(new)
# y_interp = spi.interp1d(x, y)
#find y-value associated with x-value of 13
#print(y_interp(13))

File diff suppressed because one or more lines are too long

18
testy/createbatchimage.py Normal file
View File

@ -0,0 +1,18 @@
import argparse
import v2realbot.reporting.metricstoolsimage as mt
# Parse the command-line arguments
# parser = argparse.ArgumentParser(description="Generate trading report image with batch ID")
# parser.add_argument("batch_id", type=str, help="The batch ID for the report")
# args = parser.parse_args()
# batch_id = args.batch_id
# Generate the report image
res, val = mt.generate_trading_report_image(batch_id="4d7dc163")
# Print the result
if res == 0:
print("BATCH REPORT CREATED")
else:
print(f"BATCH REPORT ERROR - {val}")

View File

@ -1,7 +1,9 @@
import os,sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
print(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from alpaca.data.historical import CryptoHistoricalDataClient, StockHistoricalDataClient
import pandas as pd
import numpy as np
from alpaca.data.historical import StockHistoricalDataClient
from alpaca.data.requests import CryptoLatestTradeRequest, StockLatestTradeRequest, StockLatestBarRequest, StockTradesRequest
from alpaca.data.enums import DataFeed
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY

89
testy/getrunnerdetail.py Normal file
View File

@ -0,0 +1,89 @@
from v2realbot.common.model import RunDay, StrategyInstance, Runner, RunRequest, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, RunArchiveChange, Bar, TradeEvent, TestList, Intervals, ConfigItem, InstantIndicator, DataTablesRequest
import v2realbot.controller.services as cs
from v2realbot.utils.utils import slice_dict_lists,zoneUTC,safe_get, AttributeDict
id = "b11c66d9-a9b6-475a-9ac1-28b11e1b4edf"
state = AttributeDict(vars={})
##základ pro init_attached_data in strategy.init
# def get_previous_runner(state):
# runner : Runner
# res, runner = cs.get_runner(state.runner_id)
# if res < 0:
# print(f"Not running {id}")
# return 0, None
# return 0, runner.batch_id
def attach_previous_data(state):
runner : Runner
#get batch_id of current runer
res, runner = cs.get_runner(state.runner_id)
if res < 0 or runner.batch_id is None:
print(f"Couldnt get previous runner {val}")
return None
batch_id = runner.batch_id
#batch_id = "6a6b0bcf"
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id, "desc")
if res < 0:
msg = f"error whne fetching runners of batch {batch_id} {runner_ids}"
print(msg)
return None
if runner_ids is None or len(runner_ids) == 0:
print(f"no runners found for batch {batch_id} {runner_ids}")
return None
last_runner = runner_ids[0]
print("Previous runner identified:", last_runner)
#get details from the runner
res, val = cs.get_archived_runner_details_byID(last_runner)
if res < 0:
print(f"no archived runner {last_runner}")
detail = RunArchiveDetail(**val)
#print("toto jsme si dotahnuli", detail.bars)
# from stratvars directives
attach_previous_bars_indicators = safe_get(state.vars, "attach_previous_bars_indicators", 50)
attach_previous_cbar_indicators = safe_get(state.vars, "attach_previous_cbar_indicators", 50)
# [stratvars]
# attach_previous_bars_indicators = 50
# attach_previous_cbar_indicators = 50
#indicators datetime utc
indicators = slice_dict_lists(d=detail.indicators[0],last_item=attach_previous_bars_indicators, time_to_datetime=True)
#time -datetime utc, updated - timestamp float
bars = slice_dict_lists(d=detail.bars, last_item=attach_previous_bars_indicators, time_to_datetime=True)
#cbar_indicatzors #float
cbar_inds = slice_dict_lists(d=detail.indicators[1],last_item=attach_previous_cbar_indicators)
#USE these as INITs - TADY SI TO JESTE ZASTAVIT a POROVNAT
print(f"{state.indicators=} NEW:{indicators=}")
state.indicators = indicators
print(f"{state.bars=} NEW:{bars=}")
state.bars = bars
print(f"{state.cbar_indicators=} NEW:{cbar_inds=}")
state.cbar_indicators = cbar_inds
print("BARS and INDS INITIALIZED")
#bars
#tady budou pripadne dalsi inicializace, z ext_data
print("EXT_DATA", detail.ext_data)
#podle urciteho nastaveni napr.v konfiguraci se pouziji urcite promenne
#pridavame dailyBars z extData
# if hasattr(detail, "ext_data") and "dailyBars" in detail.ext_data:
# state.dailyBars = detail.ext_data["dailyBars"]
if __name__ == "__main__":
attach_previous_data(state)

View File

@ -2,7 +2,7 @@ import sqlite3
from v2realbot.config import DATA_DIR
from v2realbot.utils.utils import json_serial
from uuid import UUID, uuid4
import json
import orjson
from datetime import datetime
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
from v2realbot.common.model import RunArchiveDetail, RunArchive, RunArchiveView
@ -35,14 +35,14 @@ def row_to_object(row: dict) -> RunArchive:
end_positions=row.get('end_positions'),
end_positions_avgp=row.get('end_positions_avgp'),
metrics=row.get('open_orders'),
#metrics=json.loads(row.get('metrics')) if row.get('metrics') else None,
#metrics=orjson.loads(row.get('metrics')) if row.get('metrics') else None,
stratvars_toml=row.get('stratvars_toml')
)
def get_all_archived_runners():
conn = pool.get_connection()
try:
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_header")
finally:
@ -54,7 +54,7 @@ def insert_archive_header(archeader: RunArchive):
conn = pool.get_connection()
try:
c = conn.cursor()
json_string = json.dumps(archeader, default=json_serial)
json_string = orjson.dumps(archeader, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
if archeader.batch_id is not None:
statement = f"INSERT INTO runner_header (runner_id, batch_id, ra) VALUES ('{str(archeader.id)}','{str(archeader.batch_id)}','{json_string}')"
else:
@ -103,7 +103,7 @@ def migrate_to_columns(ra: RunArchive):
SET strat_id=?, batch_id=?, symbol=?, name=?, note=?, started=?, stopped=?, mode=?, account=?, bt_from=?, bt_to=?, strat_json=?, settings=?, ilog_save=?, profit=?, trade_count=?, end_positions=?, end_positions_avgp=?, metrics=?, stratvars_toml=?
WHERE runner_id=?
''',
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, json.dumps(ra.strat_json), json.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, json.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, orjson.dumps(ra.strat_json), orjson.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, orjson.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
conn.commit()
finally:

View File

@ -2,7 +2,7 @@ import sqlite3
from v2realbot.config import DATA_DIR
from v2realbot.utils.utils import json_serial
from uuid import UUID, uuid4
import json
import orjson
from datetime import datetime
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
from v2realbot.common.model import RunArchiveDetail
@ -11,7 +11,7 @@ from tinydb import TinyDB, Query, where
sqlite_db_file = DATA_DIR + "/v2trading.db"
conn = sqlite3.connect(sqlite_db_file)
#standardne vraci pole tuplů, kde clen tuplu jsou sloupce
#conn.row_factory = lambda c, r: json.loads(r[0])
#conn.row_factory = lambda c, r: orjson.loads(r[0])
#conn.row_factory = lambda c, r: r[0]
#conn.row_factory = sqlite3.Row
@ -28,7 +28,7 @@ insert_list = [dict(time=datetime.now().timestamp(), side="ddd", rectype=RecordT
def insert_log(runner_id: UUID, time: float, logdict: dict):
c = conn.cursor()
json_string = json.dumps(logdict, default=json_serial)
json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
conn.commit()
return res.rowcount
@ -37,14 +37,14 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
c = conn.cursor()
insert_data = []
for i in loglist:
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME))
insert_data.append(row)
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
conn.commit()
return c.rowcount
# c = conn.cursor()
# json_string = json.dumps(logdict, default=json_serial)
# json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
# res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
# print(res)
# conn.commit()
@ -52,7 +52,7 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
#returns list of ilog jsons
def read_log_window(runner_id: UUID, timestamp_from: float, timestamp_to: float):
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_logs WHERE runner_id='{str(runner_id)}' AND time >={ts_from} AND time <={ts_to}")
return res.fetchall()
@ -94,21 +94,21 @@ def delete_logs(runner_id: UUID):
def insert_archive_detail(archdetail: RunArchiveDetail):
c = conn.cursor()
json_string = json.dumps(archdetail, default=json_serial)
json_string = orjson.dumps(archdetail, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = c.execute("INSERT INTO runner_detail VALUES (?,?)",[str(archdetail["id"]), json_string])
conn.commit()
return res.rowcount
#returns list of details
def get_all_archive_detail():
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_detail")
return res.fetchall()
#vrátí konkrétní
def get_archive_detail_byID(runner_id: UUID):
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_detail WHERE runner_id='{str(runner_id)}'")
return res.fetchone()
@ -123,7 +123,7 @@ def delete_archive_detail(runner_id: UUID):
def get_all_archived_runners_detail():
arch_detail_file = DATA_DIR + "/arch_detail.json"
db_arch_d = TinyDB(arch_detail_file, default=json_serial)
db_arch_d = TinyDB(arch_detail_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = db_arch_d.all()
return 0, res

View File

@ -4,7 +4,7 @@ from keras.models import Sequential
from keras.layers import LSTM, Dense
from v2realbot.controller.services import get_archived_runner_details_byID
from v2realbot.common.model import RunArchiveDetail
import json
import orjson
runner_id = "838e918e-9be0-4251-a968-c13c83f3f173"
result = None

39
testy/pickle.py Normal file
View File

@ -0,0 +1,39 @@
import pickle
import os
from v2realbot.config import STRATVARS_UNCHANGEABLES, ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_LIVE_API_KEY, ACCOUNT1_LIVE_SECRET_KEY, DATA_DIR,BT_FILL_CONS_TRADES_REQUIRED,BT_FILL_LOG_SURROUNDING_TRADES,BT_FILL_CONDITION_BUY_LIMIT,BT_FILL_CONDITION_SELL_LIMIT, GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN, MEDIA_DIRECTORY, RUNNER_DETAIL_DIRECTORY
# #class to persist
# class Store:
# stratins : List[StrategyInstance] = []
# runners: List[Runner] = []
# def __init__(self) -> None:
# self.db_file = DATA_DIR + "/strategyinstances.cache"
# if os.path.exists(self.db_file):
# with open (self.db_file, 'rb') as fp:
# self.stratins = pickle.load(fp)
# def save(self):
# with open(self.db_file, 'wb') as fp:
# pickle.dump(self.stratins, fp)
#db = Store()
def try_reading_after_skipping_bytes(file_path, skip_bytes, chunk_size=1024):
with open(file_path, 'rb') as file:
file.seek(skip_bytes) # Skip initial bytes
while True:
try:
data = pickle.load(file)
print("Recovered data:", data)
break # Exit loop if successful
except EOFError:
print("Reached end of file without recovering data.")
break
except pickle.UnpicklingError:
# Move ahead in file by chunk_size bytes and try again
file.seek(file.tell() + chunk_size, os.SEEK_SET)
file_path = DATA_DIR + "/strategyinstances.cache"
try_reading_after_skipping_bytes(file_path,1)

74
testy/tablesizes.py Normal file
View File

@ -0,0 +1,74 @@
import queue
import sqlite3
import threading
from appdirs import user_data_dir
DATA_DIR = user_data_dir("v2realbot")
sqlite_db_file = DATA_DIR + "/v2trading.db"
class ConnectionPool:
def __init__(self, max_connections):
self.max_connections = max_connections
self.connections = queue.Queue(max_connections)
self.lock = threading.Lock()
def get_connection(self):
with self.lock:
if self.connections.empty():
return self.create_connection()
else:
return self.connections.get()
def release_connection(self, connection):
with self.lock:
self.connections.put(connection)
def create_connection(self):
connection = sqlite3.connect(sqlite_db_file, check_same_thread=False)
return connection
pool = ConnectionPool(10)
def get_table_sizes_in_mb():
# Connect to the SQLite database
conn = pool.get_connection()
cursor = conn.cursor()
# Get the list of tables
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = cursor.fetchall()
# Dictionary to store table sizes
table_sizes = {}
for table in tables:
table_name = table[0]
# Get total number of rows in the table
cursor.execute(f"SELECT COUNT(*) FROM {table_name};")
row_count = cursor.fetchone()[0]
if row_count > 0:
# Sample a few rows (e.g., 10 rows) and calculate average row size
cursor.execute(f"SELECT * FROM {table_name} LIMIT 10;")
sample_rows = cursor.fetchall()
total_sample_size = sum(sum(len(str(cell)) for cell in row) for row in sample_rows)
avg_row_size = total_sample_size / len(sample_rows)
# Estimate table size in megabytes
size_in_mb = (avg_row_size * row_count) / (1024 * 1024)
else:
size_in_mb = 0
table_sizes[table_name] = {'size_mb': size_in_mb, 'rows': row_count}
conn.close()
return table_sizes
# Usage example
db_path = 'path_to_your_database.db'
table_sizes = get_table_sizes_in_mb()
for table, info in table_sizes.items():
print(f"Table: {table}, Size: {info['size_mb']} MB, Rows: {info['rows']}")

View File

@ -2,7 +2,7 @@ import sqlite3
from v2realbot.config import DATA_DIR
from v2realbot.utils.utils import json_serial
from uuid import UUID, uuid4
import json
import orjson
from datetime import datetime
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
from v2realbot.common.model import RunArchiveDetail
@ -11,7 +11,7 @@ from tinydb import TinyDB, Query, where
sqlite_db_file = DATA_DIR + "/v2trading.db"
conn = sqlite3.connect(sqlite_db_file)
#standardne vraci pole tuplů, kde clen tuplu jsou sloupce
#conn.row_factory = lambda c, r: json.loads(r[0])
#conn.row_factory = lambda c, r: orjson.loads(r[0])
#conn.row_factory = lambda c, r: r[0]
#conn.row_factory = sqlite3.Row
@ -28,7 +28,7 @@ insert_list = [dict(time=datetime.now().timestamp(), side="ddd", rectype=RecordT
def insert_log(runner_id: UUID, time: float, logdict: dict):
c = conn.cursor()
json_string = json.dumps(logdict, default=json_serial)
json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
conn.commit()
return res.rowcount
@ -37,14 +37,14 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
c = conn.cursor()
insert_data = []
for i in loglist:
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME))
insert_data.append(row)
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
conn.commit()
return c.rowcount
# c = conn.cursor()
# json_string = json.dumps(logdict, default=json_serial)
# json_string = orjson.dumps(logdict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
# res = c.execute("INSERT INTO runner_logs VALUES (?,?,?)",[str(runner_id), time, json_string])
# print(res)
# conn.commit()
@ -52,7 +52,7 @@ def insert_log_multiple(runner_id: UUID, loglist: list):
#returns list of ilog jsons
def read_log_window(runner_id: UUID, timestamp_from: float, timestamp_to: float):
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_logs WHERE runner_id='{str(runner_id)}' AND time >={ts_from} AND time <={ts_to}")
return res.fetchall()
@ -94,21 +94,21 @@ def delete_logs(runner_id: UUID):
def insert_archive_detail(archdetail: RunArchiveDetail):
c = conn.cursor()
json_string = json.dumps(archdetail, default=json_serial)
json_string = orjson.dumps(archdetail, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = c.execute("INSERT INTO runner_detail VALUES (?,?)",[str(archdetail["id"]), json_string])
conn.commit()
return res.rowcount
#returns list of details
def get_all_archive_detail():
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_detail")
return res.fetchall()
#vrátí konkrétní
def get_archive_detail_byID(runner_id: UUID):
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_detail WHERE runner_id='{str(runner_id)}'")
return res.fetchone()
@ -123,7 +123,7 @@ def delete_archive_detail(runner_id: UUID):
def get_all_archived_runners_detail():
arch_detail_file = DATA_DIR + "/arch_detail.json"
db_arch_d = TinyDB(arch_detail_file, default=json_serial)
db_arch_d = TinyDB(arch_detail_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
res = db_arch_d.all()
return 0, res

View File

@ -46,7 +46,7 @@ db.save()
# b = 2
# def toJson(self):
# return json.dumps(self, default=lambda o: o.__dict__)
# return orjson.dumps(self, default=lambda o: o.__dict__)
# db.append(Neco.a)

View File

@ -1,12 +1,12 @@
import timeit
setup = '''
import msgpack
import json
import orjson
from copy import deepcopy
data = {'name':'John Doe','ranks':{'sports':13,'edu':34,'arts':45},'grade':5}'''
print(timeit.timeit('deepcopy(data)', setup=setup))
# 12.0860249996
print(timeit.timeit('json.loads(json.dumps(data))', setup=setup))
print(timeit.timeit('orjson.loads(orjson.dumps(data))', setup=setup))
# 9.07182312012
print(timeit.timeit('msgpack.unpackb(msgpack.packb(data))', setup=setup))
# 1.42743492126

View File

@ -16,7 +16,7 @@ import importlib
from queue import Queue
from tinydb import TinyDB, Query, where
from tinydb.operations import set
import json
import orjson
from rich import print
@ -29,7 +29,7 @@ class RunnerLogger:
def __init__(self, runner_id: UUID) -> None:
self.runner_id = runner_id
runner_log_file = DATA_DIR + "/runner_log.json"
db_runner_log = TinyDB(runner_log_file, default=json_serial)
db_runner_log = TinyDB(runner_log_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
def insert_log_multiple(runner_id: UUID, logList: list):
runner_table = db_runner_log.table(str(runner_id))

View File

@ -16,7 +16,7 @@ import importlib
from queue import Queue
#from tinydb import TinyDB, Query, where
#from tinydb.operations import set
import json
import orjson
from rich import print
from tinyflux import Point, TinyFlux
@ -26,7 +26,7 @@ runner_log_file = DATA_DIR + "/runner_flux__log.json"
db_runner_log = TinyFlux(runner_log_file)
insert_dict = {'datum': datetime.now(), 'side': "dd", 'name': 'david','id': uuid4(), 'order': "neco"}
#json.dumps(insert_dict, default=json_serial)
#orjson.dumps(insert_dict, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
p1 = Point(time=datetime.now(), tags=insert_dict)
db_runner_log.insert(p1)

View File

@ -13,7 +13,7 @@ from v2realbot.common.model import Order, TradeUpdate as btTradeUpdate
from alpaca.trading.models import TradeUpdate
from alpaca.trading.enums import TradeEvent, OrderType, OrderSide, OrderType, OrderStatus
from rich import print
import json
import orjson
#storage_with_injected_serialization = JSONStorage()
@ -110,7 +110,7 @@ a = Order(id=uuid4(),
limit_price=22.4)
db_file = DATA_DIR + "/db.json"
db = TinyDB(db_file, default=json_serial)
db = TinyDB(db_file, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME)
db.truncate()
insert = {'datum': datetime.now(), 'side': OrderSide.BUY, 'name': 'david','id': uuid4(), 'order': orderList}

View File

@ -0,0 +1,66 @@
import os
from bs4 import BeautifulSoup
import html2text
def convert_html_to_markdown(html_content, link_mapping):
h = html2text.HTML2Text()
h.ignore_links = False
# Update internal links to point to the relevant sections in the Markdown
soup = BeautifulSoup(html_content, 'html.parser')
for a in soup.find_all('a', href=True):
href = a['href']
if href in link_mapping:
a['href'] = f"#{link_mapping[href]}"
return h.handle(str(soup))
def create_link_mapping(root_dir):
link_mapping = {}
for subdir, _, files in os.walk(root_dir):
for file in files:
if file == "index.html":
relative_path = os.path.relpath(os.path.join(subdir, file), root_dir)
chapter_id = relative_path.replace(os.sep, '-').replace('index.html', '')
link_mapping[relative_path] = chapter_id
link_mapping[relative_path.replace(os.sep, '/')] = chapter_id # for URLs with slashes
return link_mapping
def read_html_files(root_dir, link_mapping):
markdown_content = []
for subdir, _, files in os.walk(root_dir):
relative_path = os.path.relpath(subdir, root_dir)
if files and any(file == "index.html" for file in files):
# Add directory as a heading based on its depth
heading_level = relative_path.count(os.sep) + 1
markdown_content.append(f"{'#' * heading_level} {relative_path}\n")
for file in files:
if file == "index.html":
file_path = os.path.join(subdir, file)
with open(file_path, 'r', encoding='utf-8') as f:
html_content = f.read()
soup = BeautifulSoup(html_content, 'html.parser')
title = soup.title.string if soup.title else "No Title"
chapter_id = os.path.relpath(file_path, root_dir).replace(os.sep, '-').replace('index.html', '')
markdown_content.append(f"<a id='{chapter_id}'></a>\n")
markdown_content.append(f"{'#' * (heading_level + 1)} {title}\n")
markdown_content.append(convert_html_to_markdown(html_content, link_mapping))
return "\n".join(markdown_content)
def save_to_markdown_file(content, output_file):
with open(output_file, 'w', encoding='utf-8') as f:
f.write(content)
def main():
root_dir = "./v2realbot/static/js/vbt/"
output_file = "output.md"
link_mapping = create_link_mapping(root_dir)
markdown_content = read_html_files(root_dir, link_mapping)
save_to_markdown_file(markdown_content, output_file)
print(f"Markdown document created at {output_file}")
if __name__ == "__main__":
main()

View File

@ -6,7 +6,7 @@ import secrets
from typing import Annotated
import os
import uvicorn
import json
import orjson
from datetime import datetime
from v2realbot.utils.utils import zoneNY
@ -103,7 +103,7 @@ async def websocket_endpoint(
'vwap': 123,
'updated': 123,
'index': 123}
await websocket.send_text(json.dumps(data))
await websocket.send_text(orjson.dumps(data))
except WebSocketDisconnect:
print("CLIENT DISCONNECTED for", runner_id)

View File

@ -6,7 +6,7 @@ import secrets
from typing import Annotated
import os
import uvicorn
import json
import orjson
from datetime import datetime
from v2realbot.utils.utils import zoneNY
@ -101,7 +101,7 @@ async def websocket_endpoint(websocket: WebSocket, client_id: int):
# 'close': 123,
# 'open': 123,
# 'time': "2019-05-25"}
await manager.send_personal_message(json.dumps(data), websocket)
await manager.send_personal_message(orjson.dumps(data), websocket)
#await manager.broadcast(f"Client #{client_id} says: {data}")
except WebSocketDisconnect:
manager.disconnect(websocket)

View File

@ -3,7 +3,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from v2realbot.strategy.base import StrategyState
from v2realbot.strategy.StrategyOrderLimitVykladaciNormalizedMYSELL import StrategyOrderLimitVykladaciNormalizedMYSELL
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account
from v2realbot.utils.utils import zoneNY, print
from v2realbot.utils.utils import zoneNY, print, fetch_calendar_data, send_to_telegram
from v2realbot.utils.historicals import get_historical_bars
from datetime import datetime, timedelta
from rich import print as printanyway
@ -16,10 +16,13 @@ from v2realbot.strategyblocks.newtrade.signals import signal_search
from v2realbot.strategyblocks.activetrade.activetrade_hub import manage_active_trade
from v2realbot.strategyblocks.inits.init_indicators import initialize_dynamic_indicators
from v2realbot.strategyblocks.inits.init_directives import intialize_directive_conditions
from alpaca.trading.requests import GetCalendarRequest
from v2realbot.strategyblocks.inits.init_attached_data import attach_previous_data
from alpaca.trading.client import TradingClient
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR, OFFLINE_MODE
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
from alpaca.trading.models import Calendar
from v2realbot.indicators.oscillators import rsi
from v2realbot.indicators.moving_averages import sma
import numpy as np
print(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
""""
@ -97,9 +100,7 @@ def init(state: StrategyState):
#pripadne udelat refresh kazdych x-iterací
state.vars['sell_in_progress'] = False
state.vars.mode = None
state.vars.last_tick_price = 0
state.vars.last_50_deltas = []
state.vars.last_tick_volume = 0
state.vars.next_new = 0
state.vars.last_buy_index = None
state.vars.last_exit_index = None
@ -114,19 +115,33 @@ def init(state: StrategyState):
state.vars.blockbuy = 0
#models
state.vars.loaded_models = {}
#state attributes for martingale sizing mngmt
state.vars["transferables"] = {}
state.vars["transferables"]["martingale"] = dict(cont_loss_series_cnt=0)
#INITIALIZE CBAR INDICATORS - do vlastni funkce
#state.cbar_indicators['ivwap'] = []
state.vars.last_tick_price = 0
state.vars.last_tick_volume = 0
state.vars.last_tick_trades = 0
state.cbar_indicators['tick_price'] = []
state.cbar_indicators['tick_volume'] = []
state.cbar_indicators['tick_trades'] = []
state.cbar_indicators['CRSI'] = []
initialize_dynamic_indicators(state)
intialize_directive_conditions(state)
#attach part of yesterdays data, bars, indicators, cbar_indicators
attach_previous_data(state)
#intitialize indicator mapping (for use in operation) - mozna presunout do samostatne funkce prip dat do base kdyz se osvedci
local_dict_cbar_inds = {key: state.cbar_indicators[key] for key in state.cbar_indicators.keys() if key != "time"}
local_dict_inds = {key: state.indicators[key] for key in state.indicators.keys() if key != "time"}
local_dict_bars = {key: state.bars[key] for key in state.bars.keys() if key != "time"}
state.ind_mapping = {**local_dict_inds, **local_dict_bars}
state.ind_mapping = {**local_dict_inds, **local_dict_bars, **local_dict_cbar_inds}
print("IND MAPPING DONE:", state.ind_mapping)
#30 DAYS historicall data fill - pridat do base pokud se osvedci
@ -144,7 +159,8 @@ def init(state: StrategyState):
time_to = state.bt.bp_from
#TBD pridat i hour data - pro pocitani RSI na hodine
#TBD NASLEDUJICI SEKCE BUDE PREDELANA, ABY UMOZNOVALA LIBOVOLNE ROZLISENI
#INDIKATORY SE BUDOU TAKE BRAT Z KONFIGURACE
#get 30 days (history_datetime_from musí být alespoň -2 aby to bralo i vcerejsek)
#history_datetime_from = time_to - timedelta(days=40)
#get previous market day
@ -156,17 +172,25 @@ def init(state: StrategyState):
#time_to = time_to.date()
today = time_to.date()
several_days_ago = today - timedelta(days=40)
several_days_ago = today - timedelta(days=60)
#printanyway(f"{today=}",f"{several_days_ago=}")
clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
#clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
#get all market days from here to 40days ago
calendar_request = GetCalendarRequest(start=several_days_ago,end=today)
cal_dates = clientTrading.get_calendar(calendar_request)
#calendar_request = GetCalendarRequest(start=several_days_ago,end=today)
cal_dates = fetch_calendar_data(several_days_ago, today)
#cal_dates = clientTrading.get_calendar(calendar_request)
#find the first market day - 40days ago
#history_datetime_from = zoneNY.localize(cal_dates[0].open)
history_datetime_from = cal_dates[0].open
#ulozime si dnesni market close
#pro automaticke ukonceni
#TODO pripadne enablovat na parametr
state.today_market_close = zoneNY.localize(cal_dates[-1].close)
# Find the previous market day
history_datetime_to = None
for session in reversed(cal_dates):
@ -180,6 +204,74 @@ def init(state: StrategyState):
#printanyway(history_datetime_from, history_datetime_to)
#az do predchziho market dne dne
state.dailyBars = get_historical_bars(state.symbol, history_datetime_from, history_datetime_to, TimeFrame.Day)
#NOTE zatim pridano takto do baru dalsi indikatory
#BUDE PREDELANO - v rámci custom rozliseni a static indikátoru
if state.dailyBars is None:
print("Nepodařilo se načíst denní bary")
err_msg = f"Nepodařilo se načíst denní bary (get_historical_bars) pro {state.symbol} od {history_datetime_from} do {history_datetime_to} ve strat.init. Probably wrong symbol?"
send_to_telegram(err_msg)
raise Exception(err_msg)
#RSI vraci pouze pro vsechny + prepend with zeros nepocita prvnich N (dle rsi length)
rsi_calculated = rsi(state.dailyBars["vwap"], 14).tolist()
num_zeros_to_prepend = len(state.dailyBars["vwap"]) - len(rsi_calculated)
state.dailyBars["rsi"] = [0]*num_zeros_to_prepend + rsi_calculated
#VOLUME
volume_sma = sma(state.dailyBars["volume"], 10) #vraci celkovy pocet - 10
items_to_prepend = len(state.dailyBars["volume"]) - len(volume_sma)
volume_sma = np.hstack((np.full(items_to_prepend, np.nan), volume_sma))
#normalized divergence currvol-smavolume/currvol+smavolume
volume_data = np.array(state.dailyBars["volume"])
normalized_divergence = (volume_data - volume_sma) / (volume_data + volume_sma)
# Replace NaN values with 0 or some other placeholder if needed
normalized_divergence = np.nan_to_num(normalized_divergence)
volume_sma = np.nan_to_num(volume_sma)
state.dailyBars["volume_sma_divergence"] = normalized_divergence.tolist()
state.dailyBars["volume_sma"] = volume_sma.tolist()
#vwap_cum and divergence
volume_np = np.array(state.dailyBars["volume"])
close_np = np.array(state.dailyBars["close"])
high_np = np.array(state.dailyBars["high"])
low_np = np.array(state.dailyBars["low"])
vwap_cum_np = np.cumsum(((high_np + low_np + close_np) / 3) * volume_np) / np.cumsum(volume_np)
state.dailyBars["vwap_cum"] = vwap_cum_np.tolist()
normalized_divergence = (close_np - vwap_cum_np) / (close_np + vwap_cum_np)
#divergence close ceny a cumulativniho vwapu
state.dailyBars["div_vwap_cum"] = normalized_divergence.tolist()
#creates log returns for open, close, high and lows
open_np = np.array(state.dailyBars["open"])
state.dailyBars["open_log_return"] = np.log(open_np[1:] / open_np[:-1]).tolist()
state.dailyBars["close_log_return"] = np.log(close_np[1:] / close_np[:-1]).tolist()
state.dailyBars["high_log_return"] = np.log(high_np[1:] / high_np[:-1]).tolist()
state.dailyBars["low_log_return"] = np.log(low_np[1:] / low_np[:-1]).tolist()
#Features to emphasize the shape characteristics of each candlestick. For use in ML https://chat.openai.com/c/c1a22550-643b-4037-bace-3e810dbce087
# Calculate the ratios of
total_range = high_np - low_np
upper_shadow = (high_np - np.maximum(open_np, close_np)) / total_range
lower_shadow = (np.minimum(open_np, close_np) - low_np) / total_range
body_size = np.abs(close_np - open_np) / total_range
body_position = np.where(close_np >= open_np,
(close_np - low_np) / total_range,
(open_np - low_np) / total_range)
#other possibilities
# Open to Close Change: (close[-1] - open[-1]) / open[-1]
# High to Low Range: (high[-1] - low[-1]) / low[-1]
# Store the ratios in the bars dictionary
state.dailyBars['upper_shadow_ratio'] = upper_shadow.tolist()
state.dailyBars['lower_shadow_ratio'] = lower_shadow.tolist()
state.dailyBars['body_size_ratio'] = body_size.tolist()
state.dailyBars['body_position_ratio'] = body_position.tolist()
#printanyway("daily bars FILLED", state.dailyBars)
#zatim ukladame do extData - pro instant indicatory a gui
state.extData["dailyBars"] = state.dailyBars

View File

@ -1,102 +0,0 @@
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import v2realbot.ml.mlutils as mu
from keras.layers import LSTM, Dense
import matplotlib.pyplot as plt
from v2realbot.ml.ml import ModelML
from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
from v2realbot.controller.services import get_archived_runner_details_byID, update_archive_detail
# from collections import defaultdict
# from operator import itemgetter
from joblib import load
#TODO - DO API
# v ml atomicke api pro evaluaci (runneru, batche)
# v services: model.add_vector_prediction_to_archrunner_as_new_indicator (vrátí v podstate obohacený archDetail) - nebo i ukládat do db? uvidime
# v rest api prevolani
# db support: zatim jen ciselnik modelu + jeho zakladni nastaveni, obrabeci api, load modelu zatim z file
cfg: ModelML = mu.load_model("model1", "0.1")
#EVALUATE SPECIFIC RUNNER - VECTOR BASED (toto dat do samostatne API pripadne pak udelat nadstavnu na batch a runners)
#otestuje model na neznamem runnerovi, seznamu runneru nebo batch_id
runner_id = "a38fc269-8df3-4374-9506-f0280d798854"
save_new_ind = True
source_data, target_data, rows_in_day = cfg.load_data(runners_ids=[runner_id])
if len(rows_in_day) > 1:
#pro vis se cela tato sluzba volat v loopu
raise Exception("Vytvareni indikatoru dostupne zatim jen pro jeden runner")
#scalujeme X
source_data = cfg.scalerX.fit_transform(source_data)
#tady si vyzkousim i skrz vice runneru
X_eval, y_eval, y_eval_ref = cfg.create_sequences(combined_data=source_data, target_data=target_data,remove_cross_sequences=True, rows_in_day=rows_in_day)
#toto nutne?
X_eval = np.array(X_eval)
y_eval = np.array(y_eval)
y_eval_ref = np.array(y_eval_ref)
#scaluji target - nemusis
#y_eval = cfg.scalerY.fit_transform(y_eval)
X_eval = cfg.model.predict(X_eval)
X_eval = cfg.scalerY.inverse_transform(X_eval)
print("po predikci x_eval shape", X_eval.shape)
#pokud mame dostupnou i target v runneru, pak pridame porovnavaci indikator
difference_mse = None
if len(y_eval) > 0:
#TODO porad to pliva 1 hodnotu
difference_mse = mean_squared_error(y_eval, X_eval,multioutput="raw_values")
print("ted mam tedy dva nove sloupce")
print("X_eval", X_eval.shape)
if difference_mse is not None:
print("difference_mse", difference_mse.shape)
print(f"zplostime je, dopredu pridame {cfg.input_sequences-1} a dozadu nic")
#print(f"a melo by nam to celkem dat {len(bars['time'])}")
#tohle pak nejak doladit, ale vypada to good
#plus do druheho indikatoru pridat ten difference_mse
#TODO jeste je posledni hodnota predikce nejak OFF (2.52... ) - podivat se na to
#TODO na produkci srovnat se skutecnym BT predictem (mozna zde bude treba seq-1) -
# prvni predikce nejspis uz bude na desítce
ind_pred = list(np.concatenate([np.zeros(cfg.input_sequences-1), X_eval.ravel()]))
print(ind_pred)
print(len(ind_pred))
print("tada")
#ted k nim pridame
if save_new_ind:
#novy ind ulozime do archrunnera (na produkci nejspis jen show)
res, sada = get_archived_runner_details_byID(runner_id)
if res == 0:
print("ok")
else:
print("error",res,sada)
raise Exception(f"error loading runner {runner_id} : {res} {sada}")
sada["indicators"][0]["pred_added"] = ind_pred
req, res = update_archive_detail(runner_id, sada)
print(f"indicator pred_added was ADDED to {runner_id}")
# Plot the predicted vs. actual
plt.plot(y_eval, label='Target')
plt.plot(X_eval, label='Predicted')
#TODO zde nejak vymyslet jinou pricelinu - jako lightweight chart
if difference_mse is not None:
plt.plot(difference_mse, label='diference')
plt.plot(y_eval_ref, label='reference column - vwap')
plt.plot()
plt.legend()
plt.show()

View File

@ -1,278 +0,0 @@
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import v2realbot.ml.mlutils as mu
from keras.layers import LSTM, Dense
import matplotlib.pyplot as plt
from v2realbot.ml.ml import ModelML
from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
# from collections import defaultdict
# from operator import itemgetter
from joblib import load
# region Notes
#ZAKLAD PRO TRAINING SCRIPT na vytvareni model u
# TODO
# podpora pro BINARY TARGET
# podpora hyperpamaetru (activ.funkce sigmoid atp.)
# vyuzit distribuovane prostredi - nebo aspon vlastni VM
# dopracovat denni identifikatory typu lastday close, todays open atp.
# random SEARCH a grid search
# udelat nejaka model metadata (napr, trenovano na (runners+obdobi), nastaveni treningovych dat, počet epoch, hyperparametry, config atribu atp.) - mozna persistovat v db
# udelat nejake verzovani
# predelat do GUI a modulu
# vyuzit VectorBT na dohledani optimalizovanych parametru napr. pro buy,sell atp. Vyuzit podobne API na pripravu dat jako model.
# EVAL MODEL - umoznit vektorové přidání indikátoru do runneru (např. predikce v modulu, vectorBT, optimalizace atp) - vytvorit si na to API, podobne co mam, nacte runner, transformuje, sekvencuje, provede a pak zpetne transformuje a prida jako dalsi indikator. Lze pak použít i v gui.
# nove tlacitko "Display model prediction" na urovni archrunnera, které
# - má volbu model + jestli zobrazit jen predictionu jako novy indikator nebo i mse from ytarget (nutny i target)
# po spusteni pak:
# - zkonztoluje jestli runner ma indikatory,ktere odpovidaji features modelu (bar_ftrs, ind_ftrs, optional i target)
# - vektorově doplní predictionu (transformuje data, udela predictionu a Y transformuje zpet)
# - vysledek (jako nove indikatory) implantuje do runnerdetailu a zobrazi
# podivat se na dalsi parametry kerasu, napr. false positive atp.
# podivat se jeste na rozdil mezi vectorovou predikci a skalarni - proc je nekdy rozdil, odtrasovat - pripadne pogooglit
# odtrasovat, nekde je sum (zkusit si oboji v jednom skriptu a porovnat)
#TODO NAPADY Na modely
#1.binary identifikace trendu napr. pokud nasledujici 3 bary rostou (0-1) nebo nasledujici bary roste momentum
#2.soustredit se na modely s vystupem 0-1 nebo -1 až 1
#3.Vyzkouset jeden model, ktery by identifikoval trendy v obou smerech - -1 pro klesani a 1 pro stoupání.
#4.vyzkouset zda model vytvoreny z casti dne nebude funkcni na druhe casti (on the fly daily models)
#5.zkusit modely s a bez time (prizpusobit tomu kod v ModelML - zejmena jak na crossday sekvence) - mozna ze zecatku dat aspon pryc z indikatoru?
# Dat vsechny zbytecne features pryc, nechat tam jen ty podstatne - attention, tak cílím.
#6. zkusit vyuzit tickprice v nejaekm modelu, pripadne pak dalsi CBAR indikatory . vymslet tickbased features
#7. zkusit jako features nevyuzit standardni ceny, ale pouze indikatory reprezentujici chovani (fastslope,samebarslope,volume,tradencnt)
#8. relativni OHLC - model pouzivajici (jen) bary, ale misto hodnot ohlc udelat features reprezentujici vztahy(pomery) mezi temito velicinami. tzn. relativni ohlc
#9. jiny pristup by byl ucit model na konkretnich chunkach, ktere chci aby mi identifikoval. Např. určité úseky. Vymyslet. Buď nyni jako test intervaly, ale v budoucnu to treba jen nejak oznacit a poslat k nauceni. Pripadne pak udelat nejaky vycuc.
#10. mozna správným výběrem targetu, můžu taky naučit jen určité věci. Specializace. Stačí když se jednou dvakrát denně aktivuje.
# 11. udelat si go IN model, ktery pomuze strategii generovat vstup - staci jen aby mel trochu lepsi edge nez conditiony, o zbytek se postara logika strategie
# 12. model pro neagregované nebo jen filtroné či velmi lehce agregované trady? - tickprice
# 13. jako featury pouzit Fourierovo transformaci, na sekundovem baru nebo tickprice
#DULEZITE
# soustredit se v modelech na predikci nasledujici hodnoty, ideálně nějaký vektor ukazující směr (např. 0 - 1, kde nula nebude růst, 1 - bude růst strmě)
# pro predikcí nějakého většího trendu, zkusti více modelů na různých rozlišení, každý ukazuje
# hodnotu na svém rozlišení a jeho kombinace mi může určit vstup. Zkusit zda by nešel i jeden model.
# Každopádně se soustředit
# 1) na další hodnotu (tzn. vstupy musí být bezprostředně ovlivňující tuto (samebasrlope, atp.))
# 2) její výše ukazuje směr na tomto rozlišení
# 3) ideálně se učit z každého baru, tzn. cílová hodnota musí být známá u každého baru
# (binary ne, potřebuju linární vektor) - i když 1 a 0 target v závislosti na stoupání a klesání by mohla být ok,
# ale asi příliš restriktivní, spíš bych tam mohl dát jak moc. Tzn. +0.32, -0.04. Učilo by se to míru stoupání.
# Tu míru tam potřebuju zachovanou.
# pak si muzu rict, když je urcite pravdepodobnost, ze to bude stoupat (tzn. dalsi hodnota) na urovni 1,2,3 - tak jduvstup
# zkusit na nejnižší úrovni i předvídat CBARy, směr dalšího ticku. Vyzkoušet.
##TODO - doma
#bar_features a ind_features do dokumentace SL classic, stejne tak conditional indikator a mathop indikator
#TODO - co je třeba vyvinout
# GENERATOR test intervalu (vstup name, note, od,do,step)
# napsat API, doma pak simple GUI
# vyuziti ATR (jako hranice historickeho rozsahu) - atr-up, atr-down
# nakreslit v grafu atru = close+atr, atrd = close-atr
# pripadne si vypocet atr nejak customizovat, prip. ruzne multiplikatory pro high low, pripadne si to vypocist podle sebe
# vyuziti:
# pro prekroceni nejake lajny, napr. ema nebo yesterdayclose
# - k identifikaci ze se pohybuje v jejim rozsahu
# - proste je to buffer, ktery musi byt prekonan, aby byla urcita akce
# pro learning pro vypocet conditional parametru (1,0,-1) prekroceni napr. dailyopen, yesterdayclose, gapclose
# kde 1 prekroceno, 0 v rozsahu (atr), -1 prekroceno dolu - to pomuze uceni
# vlastni supertrend strateige
# zaroven moznost vyuzit klouzave či parametrizovane atr, které se na základě
# určitých parametrů bude samo upravovat a cíleně vybočovat z KONTRA frekvencí, např. randomizovaný multiplier nebo nejak jinak ovlivneny minulým
# v indikatorech vsude kde je odkaz ma source jako hodnotu tak defaultne mit moznost uvest lookback, napr. bude treba porovnavat nejak cenu vs predposledni hodnotu ATRka (nechat az vyvstane pozadavek)
# zacit doma na ATRku si postavit supertrend, viz pinescript na ploše
#TODO - obecne vylepsovaky
# 1. v GUI graf container do n-TABů, mozna i draggable order, zaviratelne na Xko (innerContainer)
# 2. mit mozna specialni mod na pripravu dat (agreg+indikator, tzn. vse jen bez vstupů) - můžu pak zapracovat víc vectorové doplňování dat
# TOTO:: mozna by postacil vypnout backtester (tzn. no trades) - a projet jen indikatory. mozna by slo i vectorove optimalizovat.
# indikatory by se mohli predsunout pred next a next by se vubec nemusel volat (jen nekompatibilita s predch.strategiemi)
# 3. kombinace fastslope na fibonacci delkach (1,2,3,5..) jako dobry vstup pro ML
# 4. podivat se na attention based LSTM zda je v kerasu implementace
# do grafu přidat togglovatelné hranice barů určitých rozlišení - což mi jen udělá čáry Xs od sebe (dobré pro navrhování)
# 5. vymyslet optimalizovane vyuziti modelu na produkci (nejak mit zkompilovane, aby to bylo raketově pro skalár) - nyní to backtest zpomalí 4x
# 6. CONVNETS for time series forecasting - small 1D convnets can offer a fast alternative to RNNs for simple tasks such as text classification and timeseries forecasting.
# zkusit small conv1D pro identifikaci víření před trendem, např. jen 6 barů - identifikovat dobře target, musí jít o tutovku na targetu
# pro covnet zkusit cbar price, volume a time. Třeba to zachytí víření (ripples)
# Další oblasti k predikci jsou ripples, vlnky - předzvěst nějakého mocnějšího pohybu. A je pravda, že předtím se mohou objevit nějaké indicie. Ty zkus zachytit.
# Do runner_headers pridat bt_from, bt_to - pro razeni order_by, aby se runnery vzdy vraceli vzestupne dle data (pro machine l)
#TODO
# vyvoj modelů workflow s LSTMtrain.py
# 1) POC - pouze zde ve skriptu, nad 1-2 runnery, okamžité zobrazení v plotu,
# optimalizace zakl. features a hyperparams. Zobrazit i u binary nejak cenu.
# 2) REALITY CHECK - trening modelu na batchi test intervalu, overeni ve strategii v BT, zobrazeni predikce v RT chartu
# 3) FINAL TRAINING
# testovani predikce
#TODO tady
# train model
# - train data- batch nebo runners
# - test data - batch or runners (s cim porovnavat/validovat)
# - vyber architektury
# - soucast skriptu muze byt i porovnavacka pripadne nejaky search optimalnich parametru
#lstmtrain - podporit jednotlive kroky vyse
#modelML - udelat lepsi PODMINKY
#frontend? ma cenu? asi ano - GUI na model - new - train/retrain-change
# (vymyslet jak v gui chytře vybírat arch modelu a hyperparams, loss, optim - treba nejaka templata?)
# mozna ciselnik architektur s editačním polem pro kód -jen pár řádků(.add, .compile) přidat v editoru
# vymyslet jak to udělat pythonově
#testlist generator api
# endregion
#if null,the validation is made on 10% of train data
#runnery pro testovani
validation_runners = ["a38fc269-8df3-4374-9506-f0280d798854"]
#u binary bude target bud hotovy indikator a nebo jej vytvorit on the fly
cfg = ModelML(name="model1",
version = "0.1",
note = None,
pred_output=PredOutput.LINEAR,
input_sequences = 10,
use_bars = True,
bar_features = ["volume","trades"],
ind_features = ["slope20", "ema20","emaFast","samebarslope","fastslope","fastslope4"],
target='target', #referencni hodnota pro target - napr pro graf
target_reference='vwap',
train_target_steps=3,
train_target_transformation=TargetTRFM.KEEPVAL,
train_runner_ids = ["08b7f96e-79bc-4849-9142-19d5b28775a8"],
train_batch_id = None,
train_epochs = 10,
train_remove_cross_sequences = True,
)
#TODO toto cele dat do TRAIN metody - vcetne pripadneho loopu a podpory API
test_size = None
#kdyz neplnime vstup, automaticky se loaduje training data z nastaveni classy
source_data, target_data, rows_in_day = cfg.load_data()
if len(target_data) == 0:
raise Exception("target is empty - required for TRAINING - check target column name")
np.set_printoptions(threshold=10,edgeitems=5)
#print("source_data", source_data)
#print("target_data", target_data)
print("rows_in_day", rows_in_day)
source_data = cfg.scalerX.fit_transform(source_data)
#TODO mozna vyhodit to UNTR
#TODO asi vyhodit i target reference a vymyslet jinak
#vytvořeni sekvenci po vstupních sadách (např. 10 barů) - výstup 3D např. #X_train (6205, 10, 14)
#doplneni transformace target data
X_train, y_train, y_train_ref = cfg.create_sequences(combined_data=source_data,
target_data=target_data,
remove_cross_sequences=cfg.train_remove_cross_sequences,
rows_in_day=rows_in_day)
#zobrazime si transformovany target a jeho referncni sloupec
#ZHOMOGENIZOVAT OSY
plt.plot(y_train, label='Transf target')
plt.plot(y_train_ref, label='Ref target')
plt.plot()
plt.legend()
plt.show()
print("After sequencing")
print("source:X_train", np.shape(X_train))
print("target:y_train", np.shape(y_train))
print("target:", y_train)
y_train = y_train.reshape(-1, 1)
X_complete = np.array(X_train.copy())
Y_complete = np.array(y_train.copy())
X_train = np.array(X_train)
y_train = np.array(y_train)
#target scaluji az po transformaci v create sequence -narozdil od X je stejny shape
y_train = cfg.scalerY.fit_transform(y_train)
if len(validation_runners) == 0:
test_size = 0.10
# Split the data into training and test sets - kazdy vstupni pole rozdeli na dve
#nechame si takhle rozdelit i referencni sloupec
X_train, X_test, y_train, y_test, y_train_ref, y_test_ref = train_test_split(X_train, y_train, y_train_ref, test_size=test_size, shuffle=False) #random_state=42)
print("Splittig the data")
print("X_train", np.shape(X_train))
print("X_test", np.shape(X_test))
print("y_train", np.shape(y_train))
print("y_test", np.shape(y_test))
print("y_test_ref", np.shape(y_test_ref))
print("y_train_ref", np.shape(y_train_ref))
#print(np.shape(X_train))
# Define the input shape of the LSTM layer dynamically based on the reshaped X_train value
input_shape = (X_train.shape[1], X_train.shape[2])
# Build the LSTM model
#cfg.model = Sequential()
cfg.model.add(LSTM(128, input_shape=input_shape))
cfg.model.add(Dense(1, activation="relu"))
#activation: Gelu, relu, elu, sigmoid...
# Compile the model
cfg.model.compile(loss='mse', optimizer='adam')
#loss: mse, binary_crossentropy
# Train the model
cfg.model.fit(X_train, y_train, epochs=cfg.train_epochs)
#save the model
cfg.save()
#TBD db layer
cfg: ModelML = mu.load_model(cfg.name, cfg.version)
# region Live predict
#EVALUATE SIM LIVE - PREDICT SCALAR - based on last X items
barslist, indicatorslist = cfg.load_runners_as_list(runner_id_list=["67b51211-d353-44d7-a58a-5ae298436da7"])
#zmergujeme vsechny data dohromady
bars = mu.merge_dicts(barslist)
indicators = mu.merge_dicts(indicatorslist)
cfg.validate_available_features(bars, indicators)
#VSTUPEM JE standardni pole v strategii
value = cfg.predict(bars, indicators)
print("prediction for LIVE SIM:", value)
# endregion
#EVALUATE TEST DATA - VECTOR BASED
#pokud mame eval runners pouzijeme ty, jinak bereme cast z testovacich dat
if len(validation_runners) > 0:
source_data, target_data, rows_in_day = cfg.load_data(runners_ids=validation_runners)
source_data = cfg.scalerX.fit_transform(source_data)
X_test, y_test, y_test_ref = cfg.create_sequences(combined_data=source_data, target_data=target_data,remove_cross_sequences=True, rows_in_day=rows_in_day)
#prepnout ZDE pokud testovat cely bundle - jinak testujeme jen neznama
#X_test = X_complete
#y_test = Y_complete
X_test = cfg.model.predict(X_test)
X_test = cfg.scalerY.inverse_transform(X_test)
#target testovacim dat proc tu je reshape? y_test.reshape(-1, 1)
y_test = cfg.scalerY.inverse_transform(y_test)
#celkovy mean? nebo spis vector pro graf?
mse = mean_squared_error(y_test, X_test)
print('Test MSE:', mse)
# Plot the predicted vs. actual
plt.plot(y_test, label='Actual')
plt.plot(X_test, label='Predicted')
#TODO zde nejak vymyslet jinou pricelinu - jako lightweight chart
plt.plot(y_test_ref, label='reference column - price')
plt.plot()
plt.legend()
plt.show()

View File

@ -40,10 +40,10 @@
from uuid import UUID, uuid4
from alpaca.trading.enums import OrderSide, OrderStatus, TradeEvent, OrderType
from v2realbot.common.model import TradeUpdate, Order
#from rich import print
from rich import print as printanyway
import threading
import asyncio
from v2realbot.config import BT_DELAYS, DATA_DIR, BT_FILL_CONDITION_BUY_LIMIT, BT_FILL_CONDITION_SELL_LIMIT, BT_FILL_LOG_SURROUNDING_TRADES, BT_FILL_CONS_TRADES_REQUIRED,BT_FILL_PRICE_MARKET_ORDER_PREMIUM
from v2realbot.config import DATA_DIR
from v2realbot.utils.utils import AttributeDict, ltp, zoneNY, trunc, count_decimals, print
from v2realbot.utils.tlog import tlog
from v2realbot.enums.enums import FillCondition
@ -60,6 +60,7 @@ from v2realbot.utils.dash_save_html import make_static
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
from dash import dcc, html, dash_table, Dash
import v2realbot.utils.config_handler as cfh
""""
LATENCY DELAYS
.000 trigger - last_trade_time (.4246266)
@ -171,7 +172,7 @@ class Backtester:
todel.append(order)
elif not self.symbol or order.symbol == self.symbol:
#pricteme mininimalni latency od submittu k fillu
if order.submitted_at.timestamp() + BT_DELAYS.sub_to_fill > float(intime):
if order.submitted_at.timestamp() + cfh.config_handler.get_val('BT_DELAYS','sub_to_fill') > float(intime):
print(f"too soon for {order.id}")
#try to execute
else:
@ -196,7 +197,10 @@ class Backtester:
#TEST zkusime to nemazat, jak ovlivni performance
#Mazeme, jinak je to hruza
#nechavame na konci trady, které muzeme potrebovat pro consekutivni pravidlo
del self.btdata[0:index_end-2-BT_FILL_CONS_TRADES_REQUIRED]
#osetrujeme, kdy je malo tradu a oriznuti by slo do zaporu
del_to_index = index_end-2-cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED')
del_to_index = del_to_index if del_to_index > 0 else 0
del self.btdata[0:del_to_index]
##ic("after delete",len(self.btdata[0:index_end]))
if changes: return 1
@ -215,7 +219,7 @@ class Backtester:
fill_time = None
fill_price = None
order_min_fill_time = o.submitted_at.timestamp() + BT_DELAYS.sub_to_fill
order_min_fill_time = o.submitted_at.timestamp() + cfh.config_handler.get_val('BT_DELAYS','sub_to_fill')
#ic(order_min_fill_time)
#ic(len(work_range))
@ -237,17 +241,18 @@ class Backtester:
#NASTVENI PODMINEK PLNENI
fast_fill_condition = i[1] <= o.limit_price
slow_fill_condition = i[1] < o.limit_price
if BT_FILL_CONDITION_BUY_LIMIT == FillCondition.FAST:
fill_cond_buy_limit = cfh.config_handler.get_val('BT_FILL_CONDITION_BUY_LIMIT')
if fill_cond_buy_limit == FillCondition.FAST:
fill_condition = fast_fill_condition
elif BT_FILL_CONDITION_BUY_LIMIT == FillCondition.SLOW:
elif fill_cond_buy_limit == FillCondition.SLOW:
fill_condition = slow_fill_condition
else:
print("unknow fill condition")
return -1
if float(i[0]) > float(order_min_fill_time+BT_DELAYS.limit_order_offset) and fill_condition:
if float(i[0]) > float(order_min_fill_time+cfh.config_handler.get_val('BT_DELAYS','limit_order_offset')) and fill_condition:
consec_cnt += 1
if consec_cnt == BT_FILL_CONS_TRADES_REQUIRED:
if consec_cnt == cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED'):
#(1679081919.381649, 27.88)
#ic(i)
@ -258,10 +263,10 @@ class Backtester:
#fill_price = i[1]
print("FILL LIMIT BUY at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "at",i[1])
if BT_FILL_LOG_SURROUNDING_TRADES != 0:
if cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES') != 0:
#TODO loguru
print("FILL SURR TRADES: before",work_range[index-BT_FILL_LOG_SURROUNDING_TRADES:index])
print("FILL SURR TRADES: fill and after",work_range[index:index+BT_FILL_LOG_SURROUNDING_TRADES])
print("FILL SURR TRADES: before",work_range[index-cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES'):index])
print("FILL SURR TRADES: fill and after",work_range[index:index+cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')])
break
else:
consec_cnt = 0
@ -272,17 +277,18 @@ class Backtester:
#NASTVENI PODMINEK PLNENI
fast_fill_condition = i[1] >= o.limit_price
slow_fill_condition = i[1] > o.limit_price
if BT_FILL_CONDITION_SELL_LIMIT == FillCondition.FAST:
fill_conf_sell_cfg = cfh.config_handler.get_val('BT_FILL_CONDITION_SELL_LIMIT')
if fill_conf_sell_cfg == FillCondition.FAST:
fill_condition = fast_fill_condition
elif BT_FILL_CONDITION_SELL_LIMIT == FillCondition.SLOW:
elif fill_conf_sell_cfg == FillCondition.SLOW:
fill_condition = slow_fill_condition
else:
print("unknown fill condition")
return -1
if float(i[0]) > float(order_min_fill_time+BT_DELAYS.limit_order_offset) and fill_condition:
if float(i[0]) > float(order_min_fill_time+cfh.config_handler.get_val('BT_DELAYS','limit_order_offset')) and fill_condition:
consec_cnt += 1
if consec_cnt == BT_FILL_CONS_TRADES_REQUIRED:
if consec_cnt == cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED'):
#(1679081919.381649, 27.88)
#ic(i)
fill_time = i[0]
@ -294,10 +300,11 @@ class Backtester:
#fill_price = i[1]
print("FILL LIMIT SELL at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "at",i[1])
if BT_FILL_LOG_SURROUNDING_TRADES != 0:
surr_trades_cfg = cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')
if surr_trades_cfg != 0:
#TODO loguru
print("FILL SELL SURR TRADES: before",work_range[index-BT_FILL_LOG_SURROUNDING_TRADES:index])
print("FILL SELL SURR TRADES: fill and after",work_range[index:index+BT_FILL_LOG_SURROUNDING_TRADES])
print("FILL SELL SURR TRADES: before",work_range[index-surr_trades_cfg:index])
print("FILL SELL SURR TRADES: fill and after",work_range[index:index+surr_trades_cfg])
break
else:
consec_cnt = 0
@ -311,11 +318,16 @@ class Backtester:
#ic(i)
fill_time = i[0]
fill_price = i[1]
#přičteme MARKET PREMIUM z konfigurace (do budoucna mozna rozdilne pro BUY/SELL a nebo mozna z konfigurace pro dany itutl)
#přičteme MARKET PREMIUM z konfigurace (je v pct nebo abs) (do budoucna mozna rozdilne pro BUY/SELL a nebo mozna z konfigurace pro dany titul)
cfg_premium = cfh.config_handler.get_val('BT_FILL_PRICE_MARKET_ORDER_PREMIUM')
if cfg_premium < 0: #configured as percentage
premium = abs(cfg_premium) * fill_price / 100.0
else: #configured as absolute value
premium = cfg_premium
if o.side == OrderSide.BUY:
fill_price = fill_price + BT_FILL_PRICE_MARKET_ORDER_PREMIUM
fill_price = fill_price + premium
elif o.side == OrderSide.SELL:
fill_price = fill_price - BT_FILL_PRICE_MARKET_ORDER_PREMIUM
fill_price = fill_price - premium
print("FILL ",o.side,"MARKET at", fill_time, datetime.fromtimestamp(fill_time).astimezone(zoneNY), "cena", i[1])
break
@ -364,7 +376,7 @@ class Backtester:
def _do_notification_with_callbacks(self, tradeupdate: TradeUpdate, time: float):
#do callbacku je třeba zpropagovat filltime čas (včetně latency pro notifikaci), aby se pripadne akce v callbacku udály s tímto časem
self.time = time + float(BT_DELAYS.fill_to_not)
self.time = time + float(cfh.config_handler.get_val('BT_DELAYS','fill_to_not'))
print("current bt.time",self.time)
#print("FILL NOTIFICATION: ", tradeupdate)
res = asyncio.run(self.order_fill_callback(tradeupdate))
@ -467,11 +479,11 @@ class Backtester:
print("BT: submit order entry")
if not time or time < 0:
print("time musi byt vyplneny")
printanyway("time musi byt vyplneny")
return -1
if not size or int(size) < 0:
print("size musi byt vetsi nez 0")
printanyway("size musi byt vetsi nez 0")
return -1
if (order_type != OrderType.MARKET) and (order_type != OrderType.LIMIT):
@ -479,11 +491,11 @@ class Backtester:
return -1
if not side == OrderSide.BUY and not side == OrderSide.SELL:
print("side buy/sell required")
printanyway("side buy/sell required")
return -1
if order_type == OrderType.LIMIT and count_decimals(price) > 2:
print("only 2 decimals supported", price)
printanyway("only 2 decimals supported", price)
return -1
#pokud neexistuje klic v accountu vytvorime si ho
@ -505,14 +517,14 @@ class Backtester:
actual_minus_reserved = int(self.account[symbol][0]) - reserved
if actual_minus_reserved > 0 and actual_minus_reserved - int(size) < 0:
print("not enough shares available to sell or shorting while long position",self.account[symbol][0],"reserved",reserved,"available",int(self.account[symbol][0]) - reserved,"selling",size)
printanyway("not enough shares available to sell or shorting while long position",self.account[symbol][0],"reserved",reserved,"available",int(self.account[symbol][0]) - reserved,"selling",size)
return -1
#if is shorting - check available cash to short
if actual_minus_reserved <= 0:
cena = price if price else self.get_last_price(time, self.symbol)
if (self.cash - reserved_price - float(int(size)*float(cena))) < 0:
print("not enough cash for shorting. cash",self.cash,"reserved",reserved,"available",self.cash-reserved,"needed",float(int(size)*float(cena)))
printanyway("ERROR: not enough cash for shorting. cash",self.cash,"reserved",reserved,"available",self.cash-reserved,"needed",float(int(size)*float(cena)))
return -1
#check for available cash
@ -531,14 +543,14 @@ class Backtester:
#jde o uzavreni shortu
if actual_plus_reserved_qty < 0 and (actual_plus_reserved_qty + int(size)) > 0:
print("nejprve je treba uzavrit short pozici pro buy res_qty, size", actual_plus_reserved_qty, size)
printanyway("nejprve je treba uzavrit short pozici pro buy res_qty, size", actual_plus_reserved_qty, size)
return -1
#jde o standardni long, kontroluju cash
if actual_plus_reserved_qty >= 0:
cena = price if price else self.get_last_price(time, self.symbol)
if (self.cash - reserved_price - float(int(size)*float(cena))) < 0:
print("not enough cash to buy long. cash",self.cash,"reserved_qty",reserved_qty,"reserved_price",reserved_price, "available",self.cash-reserved_price,"needed",float(int(size)*float(cena)))
printanyway("ERROR: not enough cash to buy long. cash",self.cash,"reserved_qty",reserved_qty,"reserved_price",reserved_price, "available",self.cash-reserved_price,"needed",float(int(size)*float(cena)))
return -1
id = str(uuid4())
@ -565,11 +577,11 @@ class Backtester:
print("BT: replace order entry",id,size,price)
if not price and not size:
print("size or price required")
printanyway("size or price required")
return -1
if len(self.open_orders) == 0:
print("BT: order doesnt exist")
printanyway("BT: order doesnt exist")
return 0
#with lock:
for o in self.open_orders:
@ -597,7 +609,7 @@ class Backtester:
"""
print("BT: cancel order entry",id)
if len(self.open_orders) == 0:
print("BTC: order doesnt exist")
printanyway("BTC: order doesnt exist")
return 0
#with lock:
for o in self.open_orders:
@ -817,10 +829,10 @@ class Backtester:
Trades:''' + str(len(self.trades)))
textik8 = html.Div('''
Profit:''' + str(state.profit))
textik9 = html.Div(f"{BT_FILL_CONS_TRADES_REQUIRED=}")
textik10 = html.Div(f"{BT_FILL_LOG_SURROUNDING_TRADES=}")
textik11 = html.Div(f"{BT_FILL_CONDITION_BUY_LIMIT=}")
textik12 = html.Div(f"{BT_FILL_CONDITION_SELL_LIMIT=}")
textik9 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONS_TRADES_REQUIRED')=}")
textik10 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_LOG_SURROUNDING_TRADES')=}")
textik11 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONDITION_BUY_LIMIT')=}")
textik12 = html.Div(f"{cfh.config_handler.get_val('BT_FILL_CONDITION_SELL_LIMIT')=}")
orders_title = dcc.Markdown('## Open orders')
trades_title = dcc.Markdown('## Trades')

View File

@ -1,11 +1,8 @@
from v2realbot.config import DATA_DIR
import sqlite3
import queue
import threading
import time
from v2realbot.common.model import RunArchive, RunArchiveView
from datetime import datetime
import json
from v2realbot.config import DATA_DIR
sqlite_db_file = DATA_DIR + "/v2trading.db"
# Define the connection pool
@ -31,7 +28,7 @@ class ConnectionPool:
return connection
def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, retry_interval: int = 1) -> sqlite3.Cursor:
def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, retry_interval: int = 2) -> sqlite3.Cursor:
"""get connection from pool and execute SQL statement with retry logic if required.
Args:
@ -60,53 +57,4 @@ def execute_with_retry(cursor: sqlite3.Cursor, statement: str, params = None, re
pool = ConnectionPool(10)
#for one shared connection (used for writes only in WAL mode)
insert_conn = sqlite3.connect(sqlite_db_file, check_same_thread=False)
insert_queue = queue.Queue()
#prevede dict radku zpatky na objekt vcetme retypizace
def row_to_runarchiveview(row: dict) -> RunArchiveView:
return RunArchive(
id=row['runner_id'],
strat_id=row['strat_id'],
batch_id=row['batch_id'],
symbol=row['symbol'],
name=row['name'],
note=row['note'],
started=datetime.fromisoformat(row['started']) if row['started'] else None,
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
mode=row['mode'],
account=row['account'],
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
ilog_save=bool(row['ilog_save']),
profit=float(row['profit']),
trade_count=int(row['trade_count']),
end_positions=int(row['end_positions']),
end_positions_avgp=float(row['end_positions_avgp']),
metrics=json.loads(row['metrics']) if row['metrics'] else None
)
#prevede dict radku zpatky na objekt vcetme retypizace
def row_to_runarchive(row: dict) -> RunArchive:
return RunArchive(
id=row['runner_id'],
strat_id=row['strat_id'],
batch_id=row['batch_id'],
symbol=row['symbol'],
name=row['name'],
note=row['note'],
started=datetime.fromisoformat(row['started']) if row['started'] else None,
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
mode=row['mode'],
account=row['account'],
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
strat_json=json.loads(row['strat_json']),
settings=json.loads(row['settings']),
ilog_save=bool(row['ilog_save']),
profit=float(row['profit']),
trade_count=int(row['trade_count']),
end_positions=int(row['end_positions']),
end_positions_avgp=float(row['end_positions_avgp']),
metrics=json.loads(row['metrics']),
stratvars_toml=row['stratvars_toml']
)
insert_queue = queue.Queue()

View File

@ -1,14 +1,16 @@
from uuid import UUID
from uuid import UUID, uuid4
from alpaca.trading.enums import OrderSide, OrderStatus, TradeEvent,OrderType
#from utils import AttributeDict
from rich import print
from typing import Any, Optional, List, Union
from datetime import datetime, date
from pydantic import BaseModel
from v2realbot.enums.enums import Mode, Account
from pydantic import BaseModel, Field
from v2realbot.enums.enums import Mode, Account, SchedulerStatus, Moddus, Market
from alpaca.data.enums import Exchange
#models for server side datatables
# Model for individual column data
class ColumnData(BaseModel):
@ -52,6 +54,15 @@ class DataTablesRequest(BaseModel):
# return user.id
# raise HTTPException(status_code=404, detail=f"Could not find user with id: {id}")
#obecny vstup pro analyzera (vstupem muze byt bud batch_id nebo seznam runneru)
class AnalyzerInputs(BaseModel):
function: str
batch_id: Optional[str] = None
runner_ids: Optional[List[UUID]] = None
#additional parameter
params: Optional[dict] = {}
class RunDay(BaseModel):
"""
Helper object for batch run - carries list of days in format required by run batch manager
@ -83,12 +94,12 @@ class TestList(BaseModel):
class Trade(BaseModel):
symbol: str
timestamp: datetime
exchange: Optional[Union[Exchange, str]]
exchange: Optional[Union[Exchange, str]] = None
price: float
size: float
id: int
conditions: Optional[List[str]]
tape: Optional[str]
conditions: Optional[List[str]] = None
tape: Optional[str] = None
#persisted object in pickle
@ -103,8 +114,20 @@ class StrategyInstance(BaseModel):
close_rush: int = 0
stratvars_conf: str
add_data_conf: str
note: Optional[str]
history: Optional[str]
note: Optional[str] = None
history: Optional[str] = None
def __setstate__(self, state: dict[Any, Any]) -> None:
"""
Hack to allow unpickling models stored from pydantic V1
"""
state.setdefault("__pydantic_extra__", {})
state.setdefault("__pydantic_private__", {})
if "__pydantic_fields_set__" not in state:
state["__pydantic_fields_set__"] = state.get("__fields_set__")
super().__setstate__(state)
class RunRequest(BaseModel):
id: UUID
@ -114,8 +137,8 @@ class RunRequest(BaseModel):
debug: bool = False
strat_json: Optional[str] = None
ilog_save: bool = False
bt_from: datetime = None
bt_to: datetime = None
bt_from: Optional[datetime] = None
bt_to: Optional[datetime] = None
#weekdays filter
#pokud je uvedeny filtrujeme tyto dny
weekdays_filter: Optional[list] = None
@ -126,7 +149,34 @@ class RunRequest(BaseModel):
cash: int = 100000
skip_cache: Optional[bool] = False
#Trida, která je nadstavbou runrequestu a pouzivame ji v scheduleru, je zde navic jen par polí
class RunManagerRecord(BaseModel):
moddus: Moddus
id: UUID = Field(default_factory=uuid4)
strat_id: UUID
symbol: Optional[str] = None
account: Account
mode: Mode
note: Optional[str] = None
ilog_save: bool = False
market: Optional[Market] = Market.US
bt_from: Optional[datetime] = None
bt_to: Optional[datetime] = None
#weekdays filter
#pokud je uvedeny filtrujeme tyto dny
weekdays_filter: Optional[list] = None #list of strings 0-6 representing days to run
#GENERATED ID v ramci runu, vaze vsechny runnery v batchovem behu
batch_id: Optional[str] = None
testlist_id: Optional[str] = None
start_time: str #time (HH:MM) that start function is called
stop_time: Optional[str] = None #time (HH:MM) that stop function is called
status: SchedulerStatus
last_processed: Optional[datetime] = None
history: Optional[str] = None
valid_from: Optional[datetime] = None # US East time zone daetime
valid_to: Optional[datetime] = None # US East time zone daetime
runner_id: Optional[UUID] = None #last runner_id from scheduler after stratefy is started
strat_running: Optional[bool] = None #automatically updated field based on status of runner_id above, it is added by row_to_RunManagerRecord
class RunnerView(BaseModel):
id: UUID
strat_id: UUID
@ -156,10 +206,10 @@ class Runner(BaseModel):
run_name: Optional[str] = None
run_note: Optional[str] = None
run_ilog_save: Optional[bool] = False
run_trade_count: Optional[int]
run_profit: Optional[float]
run_positions: Optional[int]
run_avgp: Optional[float]
run_trade_count: Optional[int] = None
run_profit: Optional[float] = None
run_positions: Optional[int] = None
run_avgp: Optional[float] = None
run_strat_json: Optional[str] = None
run_stopped: Optional[datetime] = None
run_paused: Optional[datetime] = None
@ -193,41 +243,41 @@ class Bar(BaseModel):
low: float
close: float
volume: float
trade_count: Optional[float]
vwap: Optional[float]
trade_count: Optional[float] = 0
vwap: Optional[float] = 0
class Order(BaseModel):
id: UUID
submitted_at: datetime
filled_at: Optional[datetime]
canceled_at: Optional[datetime]
filled_at: Optional[datetime] = None
canceled_at: Optional[datetime] = None
symbol: str
qty: int
status: OrderStatus
order_type: OrderType
filled_qty: Optional[int]
filled_avg_price: Optional[float]
filled_qty: Optional[int] = None
filled_avg_price: Optional[float] = None
side: OrderSide
limit_price: Optional[float]
limit_price: Optional[float] = None
#entita pro kazdy kompletni FILL, je navazana na prescribed_trade
class TradeUpdate(BaseModel):
event: Union[TradeEvent, str]
execution_id: Optional[UUID]
execution_id: Optional[UUID] = None
order: Order
timestamp: datetime
position_qty: Optional[float]
price: Optional[float]
qty: Optional[float]
value: Optional[float]
cash: Optional[float]
pos_avg_price: Optional[float]
profit: Optional[float]
profit_sum: Optional[float]
rel_profit: Optional[float]
rel_profit_cum: Optional[float]
signal_name: Optional[str]
prescribed_trade_id: Optional[str]
position_qty: Optional[float] = None
price: Optional[float] = None
qty: Optional[float] = None
value: Optional[float] = None
cash: Optional[float] = None
pos_avg_price: Optional[float] = None
profit: Optional[float] = None
profit_sum: Optional[float] = None
rel_profit: Optional[float] = None
rel_profit_cum: Optional[float] = None
signal_name: Optional[str] = None
prescribed_trade_id: Optional[str] = None
class RunArchiveChange(BaseModel):
@ -252,8 +302,7 @@ class RunArchive(BaseModel):
bt_from: Optional[datetime] = None
bt_to: Optional[datetime] = None
strat_json: Optional[str] = None
##bude decomiss, misto toho stratvars_toml
stratvars: Optional[dict] = None
transferables: Optional[dict] = None #varaibles that are transferrable to next run
settings: Optional[dict] = None
ilog_save: Optional[bool] = False
profit: float = 0
@ -283,6 +332,8 @@ class RunArchiveView(BaseModel):
end_positions: int = 0
end_positions_avgp: float = 0
metrics: Union[dict, str] = None
batch_profit: float = 0 # Total profit for the batch - now calculated during query
batch_count: int = 0 # Count of runs in the batch - now calculated during query
#same but with pagination
class RunArchiveViewPagination(BaseModel):
@ -293,7 +344,7 @@ class RunArchiveViewPagination(BaseModel):
#trida pro ukladani historie stoplossy do ext_data
class SLHistory(BaseModel):
id: Optional[UUID]
id: Optional[UUID] = None
time: datetime
sl_val: float
@ -306,7 +357,7 @@ class RunArchiveDetail(BaseModel):
indicators: List[dict]
statinds: dict
trades: List[TradeUpdate]
ext_data: Optional[dict]
ext_data: Optional[dict] = None
class InstantIndicator(BaseModel):

View File

@ -0,0 +1,87 @@
from v2realbot.common.model import RunArchive, RunArchiveView, RunManagerRecord
from datetime import datetime
import orjson
import v2realbot.controller.services as cs
#prevede dict radku zpatky na objekt vcetme retypizace
def row_to_runmanager(row: dict) -> RunManagerRecord:
is_running = cs.is_runner_running(row['runner_id']) if row['runner_id'] else False
res = RunManagerRecord(
moddus=row['moddus'],
id=row['id'],
strat_id=row['strat_id'],
symbol=row['symbol'],
mode=row['mode'],
account=row['account'],
note=row['note'],
ilog_save=bool(row['ilog_save']),
market=row['market'] if row['market'] is not None else None,
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
weekdays_filter=[int(x) for x in row['weekdays_filter'].split(',')] if row['weekdays_filter'] else [],
batch_id=row['batch_id'],
testlist_id=row['testlist_id'],
start_time=row['start_time'],
stop_time=row['stop_time'],
status=row['status'],
#last_started=zoneNY.localize(datetime.fromisoformat(row['last_started'])) if row['last_started'] else None,
last_processed=datetime.fromisoformat(row['last_processed']) if row['last_processed'] else None,
history=row['history'],
valid_from=datetime.fromisoformat(row['valid_from']) if row['valid_from'] else None,
valid_to=datetime.fromisoformat(row['valid_to']) if row['valid_to'] else None,
runner_id = row['runner_id'] if row['runner_id'] and is_running else None, #runner_id is only present if it is running
strat_running = is_running) #cant believe this when called from separate process as not current
return res
#prevede dict radku zpatky na objekt vcetme retypizace
def row_to_runarchiveview(row: dict) -> RunArchiveView:
a = RunArchiveView(
id=row['runner_id'],
strat_id=row['strat_id'],
batch_id=row['batch_id'],
symbol=row['symbol'],
name=row['name'],
note=row['note'],
started=datetime.fromisoformat(row['started']) if row['started'] else None,
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
mode=row['mode'],
account=row['account'],
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
ilog_save=bool(row['ilog_save']),
profit=float(row['profit']),
trade_count=int(row['trade_count']),
end_positions=int(row['end_positions']),
end_positions_avgp=float(row['end_positions_avgp']),
metrics=orjson.loads(row['metrics']) if row['metrics'] else None,
batch_profit=int(row['batch_profit']) if row['batch_profit'] and row['batch_id'] else 0,
batch_count=int(row['batch_count']) if row['batch_count'] and row['batch_id'] else 0,
)
return a
#prevede dict radku zpatky na objekt vcetme retypizace
def row_to_runarchive(row: dict) -> RunArchive:
return RunArchive(
id=row['runner_id'],
strat_id=row['strat_id'],
batch_id=row['batch_id'],
symbol=row['symbol'],
name=row['name'],
note=row['note'],
started=datetime.fromisoformat(row['started']) if row['started'] else None,
stopped=datetime.fromisoformat(row['stopped']) if row['stopped'] else None,
mode=row['mode'],
account=row['account'],
bt_from=datetime.fromisoformat(row['bt_from']) if row['bt_from'] else None,
bt_to=datetime.fromisoformat(row['bt_to']) if row['bt_to'] else None,
strat_json=orjson.loads(row['strat_json']),
settings=orjson.loads(row['settings']),
ilog_save=bool(row['ilog_save']),
profit=float(row['profit']),
trade_count=int(row['trade_count']),
end_positions=int(row['end_positions']),
end_positions_avgp=float(row['end_positions_avgp']),
metrics=orjson.loads(row['metrics']),
stratvars_toml=row['stratvars_toml'],
transferables=orjson.loads(row['transferables']) if row['transferables'] else None
)

View File

@ -2,64 +2,42 @@ from alpaca.data.enums import DataFeed
from v2realbot.enums.enums import Mode, Account, FillCondition
from appdirs import user_data_dir
from pathlib import Path
import os
from collections import defaultdict
from dotenv import load_dotenv
# Global flag to track if the ml module has been imported (solution for long import times of tensorflow)
#the first occurence of using it will load it globally
_ml_module_loaded = False
#directory for generated images and basic reports
MEDIA_DIRECTORY = Path(__file__).parent.parent.parent / "media"
VBT_DOC_DIRECTORY = Path(__file__).parent.parent.parent / "vbt-doc" #directory for vbt doc
RUNNER_DETAIL_DIRECTORY = Path(__file__).parent.parent.parent / "runner_detail"
#location of strat.log - it is used to fetch by gui
LOG_PATH = Path(__file__).parent.parent
LOG_FILE = Path(__file__).parent.parent / "strat.log"
JOB_LOG_FILE = Path(__file__).parent.parent / "job.log"
DOTENV_DIRECTORY = Path(__file__).parent.parent.parent
ENV_FILE = DOTENV_DIRECTORY / '.env'
#'0.0.0.0',
#currently only prod server has acces to LIVE
PROD_SERVER_HOSTNAMES = ['tradingeastcoast','David-MacBook-Pro.local'] #,'David-MacBook-Pro.local'
TEST_SERVER_HOSTNAMES = ['tradingtest']
#TODO vybrane dat do config db a managovat pres GUI
#AGGREGATOR filter trades
#NOTE pridana F - Inter Market Sweep Order - obcas vytvarela spajky
AGG_EXCLUDED_TRADES = ['C','O','4','B','7','V','P','W','U','Z','F']
OFFLINE_MODE = False
# ilog lvls = 0,1 - 0 debug, 1 info
ILOG_SAVE_LEVEL_FROM = 1
#minimalni vzdalenost mezi trady, kterou agregator pousti pro CBAR(0.001 - blokuje mensi nez 1ms)
GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN = 0.003
#normalized price for tick 0.01
NORMALIZED_TICK_BASE_PRICE = 30.00
LOG_RUNNER_EVENTS = False
#no print in console
QUIET_MODE = True
#how many consecutive trades with the fill price are necessary for LIMIT fill to happen in backtesting
#0 - optimistic, every knot high will fill the order
#N - N consecutive trades required
#not impl.yet
#minimum is 1, na alpace live to vetsinou vychazi 7-8 u BAC, je to hodne podobne tomu, nez je cena překonaná pul centu. tzn. 7-8 a nebo FillCondition.SLOW
BT_FILL_CONS_TRADES_REQUIRED = 2
#during bt trade execution logs X-surrounding trades of the one that triggers the fill
BT_FILL_LOG_SURROUNDING_TRADES = 10
#fill condition for limit order in bt
# fast - price has to be equal or bigger <=
# slow - price has to be bigger <
BT_FILL_CONDITION_BUY_LIMIT = FillCondition.SLOW
BT_FILL_CONDITION_SELL_LIMIT = FillCondition.SLOW
#TBD TODO not implemented yet
BT_FILL_PRICE_MARKET_ORDER_PREMIUM = 0.005
#backend counter of api requests
COUNT_API_REQUESTS = False
#stratvars that cannot be changed in gui
STRATVARS_UNCHANGEABLES = ['pendingbuys', 'blockbuy', 'jevylozeno', 'limitka']
DATA_DIR = user_data_dir("v2realbot")
DATA_DIR = user_data_dir("v2realbot", False)
MODEL_DIR = Path(DATA_DIR)/"models"
#BT DELAYS
#profiling
PROFILING_NEXT_ENABLED = False
PROFILING_OUTPUT_DIR = DATA_DIR
#FILL CONFIGURATION CLASS FOR BACKTESTING
#NALOADUJEME DOTENV ENV VARIABLES
if load_dotenv(ENV_FILE, verbose=True) is False:
print(f"Error loading.env file {ENV_FILE}. Now depending on ENV VARIABLES set externally.")
else:
print(f"Loaded env variables from file {ENV_FILE}")
#WIP
#WIP - FILL CONFIGURATION CLASS FOR BACKTESTING
class BT_FILL_CONF:
""""
Trida pro konfiguraci backtesting fillu pro dany symbol, pokud neexistuje tak fallback na obecny viz vyse-
@ -73,24 +51,6 @@ class BT_FILL_CONF:
self.BT_FILL_CONDITION_SELL_LIMIT=BT_FILL_CONDITION_SELL_LIMIT
self.BT_FILL_PRICE_MARKET_ORDER_PREMIUM=BT_FILL_PRICE_MARKET_ORDER_PREMIUM
""""
LATENCY DELAYS for LIVE eastcoast
.000 trigger - last_trade_time (.4246266)
+.020 vstup do strategie a BUY (.444606)
+.023 submitted (.469198)
+.008 filled (.476695552)
+.023 fill not(.499888)
"""
#TODO změnit názvy delay promennych vystizneji a obecneji
class BT_DELAYS:
trigger_to_strat: float = 0.020
strat_to_sub: float = 0.023
sub_to_fill: float = 0.008
fill_to_not: float = 0.023
#doplnit dle live
limit_order_offset: float = 0
class Keys:
def __init__(self, api_key, secret_key, paper, feed) -> None:
self.API_KEY = api_key
@ -99,7 +59,8 @@ class Keys:
self.FEED = feed
# podle modu (PAPER, LIVE) vrati objekt
# obsahujici klice pro pripojeni k alpace
# obsahujici klice pro pripojeni k alpace - používá se pro Trading API a order updates websockets (pristupy relevantni per strategie)
#pro real time data se bere LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, LIVE_DATA_FEED nize - jelikoz jde o server wide nastaveni
def get_key(mode: Mode, account: Account):
if mode not in [Mode.PAPER, Mode.LIVE]:
print("has to be LIVE or PAPER only")
@ -118,28 +79,85 @@ def get_key(mode: Mode, account: Account):
#strategy instance main loop heartbeat
HEARTBEAT_TIMEOUT=5
WEB_API_KEY="david"
WEB_API_KEY=os.environ.get('WEB_API_KEY')
#PRIMARY PAPER
ACCOUNT1_PAPER_API_KEY = 'PKGGEWIEYZOVQFDRY70L'
ACCOUNT1_PAPER_SECRET_KEY = 'O5Kt8X4RLceIOvM98i5LdbalItsX7hVZlbPYHy8Y'
ACCOUNT1_PAPER_API_KEY = os.environ.get('ACCOUNT1_PAPER_API_KEY')
ACCOUNT1_PAPER_SECRET_KEY = os.environ.get('ACCOUNT1_PAPER_SECRET_KEY')
ACCOUNT1_PAPER_MAX_BATCH_SIZE = 1
ACCOUNT1_PAPER_PAPER = True
ACCOUNT1_PAPER_FEED = DataFeed.SIP
#ACCOUNT1_PAPER_FEED = DataFeed.SIP
# Load the data feed type from environment variable
data_feed_type_str = os.environ.get('ACCOUNT1_PAPER_FEED', 'iex') # Default to 'sip' if not set
# Convert the string to DataFeed enum
try:
ACCOUNT1_PAPER_FEED = DataFeed(data_feed_type_str)
except ValueError:
# Handle the case where the environment variable does not match any enum member
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT1_PAPER_FEED defaulting to 'iex'")
ACCOUNT1_PAPER_FEED = DataFeed.SIP
#PRIMARY LIVE
ACCOUNT1_LIVE_API_KEY = 'AKB5HD32LPDZC9TPUWJT'
ACCOUNT1_LIVE_SECRET_KEY = 'Xq1wPSNOtwmlMTAd4cEmdKvNDgfcUYfrOaCccaAs'
ACCOUNT1_LIVE_API_KEY = os.environ.get('ACCOUNT1_LIVE_API_KEY')
ACCOUNT1_LIVE_SECRET_KEY = os.environ.get('ACCOUNT1_LIVE_SECRET_KEY')
ACCOUNT1_LIVE_MAX_BATCH_SIZE = 1
ACCOUNT1_LIVE_PAPER = False
ACCOUNT1_LIVE_FEED = DataFeed.SIP
#ACCOUNT1_LIVE_FEED = DataFeed.SIP
#SECONDARY PAPER
ACCOUNT2_PAPER_API_KEY = 'PK0OQHZG03PUZ1SC560V'
ACCOUNT2_PAPER_SECRET_KEY = 'cTglhm7kwRcZfFT27fQWz31sXaxadzQApFDW6Lat'
# Load the data feed type from environment variable
data_feed_type_str = os.environ.get('ACCOUNT1_LIVE_FEED', 'iex') # Default to 'sip' if not set
# Convert the string to DataFeed enum
try:
ACCOUNT1_LIVE_FEED = DataFeed(data_feed_type_str)
except ValueError:
# Handle the case where the environment variable does not match any enum member
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT1_LIVE_FEED defaulting to 'iex'")
ACCOUNT1_LIVE_FEED = DataFeed.IEX
#SECONDARY PAPER - Martin
ACCOUNT2_PAPER_API_KEY = os.environ.get('ACCOUNT2_PAPER_API_KEY')
ACCOUNT2_PAPER_SECRET_KEY = os.environ.get('ACCOUNT2_PAPER_SECRET_KEY')
ACCOUNT2_PAPER_MAX_BATCH_SIZE = 1
ACCOUNT2_PAPER_PAPER = True
ACCOUNT2_PAPER_FEED = DataFeed.IEX
#ACCOUNT2_PAPER_FEED = DataFeed.IEX
# Load the data feed type from environment variable
data_feed_type_str = os.environ.get('ACCOUNT2_PAPER_FEED', 'iex') # Default to 'sip' if not set
# Convert the string to DataFeed enum
try:
ACCOUNT2_PAPER_FEED = DataFeed(data_feed_type_str)
except ValueError:
# Handle the case where the environment variable does not match any enum member
print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT2_PAPER_FEED defaulting to 'iex'")
ACCOUNT2_PAPER_FEED = DataFeed.IEX
#SECONDARY LIVE - Martin
# ACCOUNT2_LIVE_API_KEY = os.environ.get('ACCOUNT2_LIVE_API_KEY')
# ACCOUNT2_LIVE_SECRET_KEY = os.environ.get('ACCOUNT2_LIVE_SECRET_KEY')
# ACCOUNT2_LIVE_MAX_BATCH_SIZE = 1
# ACCOUNT2_LIVE_PAPER = True
# #ACCOUNT2_LIVE_FEED = DataFeed.IEX
# # Load the data feed type from environment variable
# data_feed_type_str = os.environ.get('ACCOUNT2_LIVE_FEED', 'iex') # Default to 'sip' if not set
# # Convert the string to DataFeed enum
# try:
# ACCOUNT2_LIVE_FEED = DataFeed(data_feed_type_str)
# except ValueError:
# # Handle the case where the environment variable does not match any enum member
# print(f"Invalid data feed type: {data_feed_type_str} in ACCOUNT2_LIVE_FEED defaulting to 'iex'")
# ACCOUNT2_LIVE_FEED = DataFeed.IEX
#zatim jsou LIVE_DATA nastaveny jako z account1_paper
LIVE_DATA_API_KEY = ACCOUNT1_PAPER_API_KEY
LIVE_DATA_SECRET_KEY = ACCOUNT1_PAPER_SECRET_KEY
#LIVE_DATA_FEED je nastaveny v config_handleru
class KW:
activate: str = "activate"

View File

@ -0,0 +1,112 @@
import v2realbot.common.db as db
from v2realbot.common.model import ConfigItem
import v2realbot.utils.config_handler as ch
# region CONFIG db services
#TODO vytvorit modul pro dotahovani z pythonu (get_from_config(var_name, def_value) {)- stejne jako v js
#TODO zvazit presunuti do TOML z JSONu
def get_all_config_items():
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
cursor.execute('SELECT id, item_name, json_data FROM config_table')
config_items = [{"id": row[0], "item_name": row[1], "json_data": row[2]} for row in cursor.fetchall()]
finally:
db.pool.release_connection(conn)
return 0, config_items
# Function to get a config item by ID
def get_config_item_by_id(item_id):
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
cursor.execute('SELECT item_name, json_data FROM config_table WHERE id = ?', (item_id,))
row = cursor.fetchone()
finally:
db.pool.release_connection(conn)
if row is None:
return -2, "not found"
else:
return 0, {"item_name": row[0], "json_data": row[1]}
# Function to get a config item by ID
def get_config_item_by_name(item_name):
#print(item_name)
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
query = f"SELECT item_name, json_data FROM config_table WHERE item_name = '{item_name}'"
#print(query)
cursor.execute(query)
row = cursor.fetchone()
#print(row)
finally:
db.pool.release_connection(conn)
if row is None:
return -2, "not found"
else:
return 0, {"item_name": row[0], "json_data": row[1]}
# Function to create a new config item
def create_config_item(config_item: ConfigItem):
conn = db.pool.get_connection()
try:
try:
cursor = conn.cursor()
cursor.execute('INSERT INTO config_table (item_name, json_data) VALUES (?, ?)', (config_item.item_name, config_item.json_data))
item_id = cursor.lastrowid
conn.commit()
print(item_id)
finally:
db.pool.release_connection(conn)
return 0, {"id": item_id, "item_name":config_item.item_name, "json_data":config_item.json_data}
except Exception as e:
return -2, str(e)
# Function to update a config item by ID
def update_config_item(item_id, config_item: ConfigItem):
conn = db.pool.get_connection()
try:
try:
cursor = conn.cursor()
cursor.execute('UPDATE config_table SET item_name = ?, json_data = ? WHERE id = ?', (config_item.item_name, config_item.json_data, item_id))
conn.commit()
#refresh active item je zatím řešena takto natvrdo při updatu položky "active_profile" a při startu aplikace
if config_item.item_name == "active_profile":
ch.config_handler.activate_profile()
finally:
db.pool.release_connection(conn)
return 0, {"id": item_id, **config_item.dict()}
except Exception as e:
return -2, str(e)
# Function to delete a config item by ID
def delete_config_item(item_id):
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
cursor.execute('DELETE FROM config_table WHERE id = ?', (item_id,))
conn.commit()
finally:
db.pool.release_connection(conn)
return 0, {"id": item_id}
# endregion
#Example of using config directive
# config_directive = "overrides"
# ret, res = get_config_item_by_name(config_directive)
# if ret < 0:
# print(f"CONFIG OVERRIDE {config_directive} Error {res}")
# else:
# config = orjson.loads(res["json_data"])
# print("OVERRIDN CFG:", config)
# for key, value in config.items():
# if hasattr(cfg, key):
# print(f"Overriding {key} with {value}")
# setattr(cfg, key, value)

View File

@ -0,0 +1,463 @@
from typing import Any, List, Tuple
from uuid import UUID, uuid4
from v2realbot.common.model import RunManagerRecord, StrategyInstance, RunDay, StrategyInstance, Runner, RunRequest, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, RunArchiveChange, Bar, TradeEvent, TestList, Intervals, ConfigItem, InstantIndicator, DataTablesRequest
from v2realbot.utils.utils import validate_and_format_time, AttributeDict, zoneNY, zonePRG, safe_get, dict_replace_value, Store, parse_toml_string, json_serial, is_open_hours, send_to_telegram, concatenate_weekdays, transform_data
from v2realbot.utils.ilog import delete_logs
from v2realbot.common.PrescribedTradeModel import Trade, TradeDirection, TradeStatus, TradeStoplossType
from datetime import datetime
from v2realbot.loader.trade_offline_streamer import Trade_Offline_Streamer
from threading import Thread, current_thread, Event, enumerate
from v2realbot.config import STRATVARS_UNCHANGEABLES, ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_LIVE_API_KEY, ACCOUNT1_LIVE_SECRET_KEY, DATA_DIR,MEDIA_DIRECTORY, RUNNER_DETAIL_DIRECTORY
import importlib
from alpaca.trading.requests import GetCalendarRequest
from alpaca.trading.client import TradingClient
#from alpaca.trading.models import Calendar
from queue import Queue
from tinydb import TinyDB, Query, where
from tinydb.operations import set
import orjson
import numpy as np
from rich import print
import pandas as pd
from traceback import format_exc
from datetime import timedelta, time
from threading import Lock
import v2realbot.common.db as db
import v2realbot.common.transform as tr
from sqlite3 import OperationalError, Row
import v2realbot.strategyblocks.indicators.custom as ci
from v2realbot.strategyblocks.inits.init_indicators import initialize_dynamic_indicators
from v2realbot.strategyblocks.indicators.indicators_hub import populate_dynamic_indicators
from v2realbot.interfaces.backtest_interface import BacktestInterface
import os
import v2realbot.reporting.metricstoolsimage as mt
import gzip
import os
import msgpack
import v2realbot.controller.services as cs
import v2realbot.scheduler.ap_scheduler as aps
# Functions for your 'run_manager' table
# CREATE TABLE "run_manager" (
# "moddus" TEXT NOT NULL,
# "id" varchar(32),
# "strat_id" varchar(32) NOT NULL,
# "symbol" TEXT,
# "account" TEXT NOT NULL,
# "mode" TEXT NOT NULL,
# "note" TEXT,
# "ilog_save" BOOLEAN,
# "bt_from" TEXT,
# "bt_to" TEXT,
# "weekdays_filter" TEXT,
# "batch_id" TEXT,
# "start_time" TEXT NOT NULL,
# "stop_time" TEXT NOT NULL,
# "status" TEXT NOT NULL,
# "last_processed" TEXT,
# "history" TEXT,
# "valid_from" TEXT,
# "valid_to" TEXT,
# "testlist_id" TEXT,
# "runner_id" varchar2(32),
# PRIMARY KEY("id")
# )
# CREATE INDEX idx_moddus ON run_manager (moddus);
# CREATE INDEX idx_status ON run_manager (status);
# CREATE INDEX idx_status_moddus ON run_manager (status, moddus);
# CREATE INDEX idx_valid_from_to ON run_manager (valid_from, valid_to);
# CREATE INDEX idx_stopped_batch_id ON runner_header (stopped, batch_id);
# CREATE INDEX idx_search_value ON runner_header (strat_id, batch_id);
##weekdays are stored as comma separated values
# Fetching (assume 'weekdays' field is a comma-separated string)
# weekday_str = record['weekdays']
# weekdays = [int(x) for x in weekday_str.split(',')]
# # ... logic to check whether today's weekday is in 'weekdays'
# # Storing
# weekdays = [1, 2, 5] # Example
# weekday_str = ",".join(str(x) for x in weekdays)
# update_data = {'weekdays': weekday_str}
# # ... use in an SQL UPDATE statement
# for row in records:
# row['weekdays_filter'] = [int(x) for x in row['weekdays_filter'].split(',')] if row['weekdays_filter'] else []
#get stratin info return
# strat : StrategyInstance = None
# result, strat = cs.get_stratin("625760ac-6376-47fa-8989-1e6a3f6ab66a")
# if result == 0:
# print(strat)
# else:
# print("Error:", strat)
# Fetch all
#result, records = fetch_all_run_manager_records()
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
def fetch_all_run_manager_records() -> list[RunManagerRecord]:
conn = db.pool.get_connection()
try:
conn.row_factory = Row
cursor = conn.cursor()
cursor.execute('SELECT * FROM run_manager')
rows = cursor.fetchall()
results = []
#Transform row to object
for row in rows:
#add transformed object into result list
results.append(tr.row_to_runmanager(row))
return 0, results
finally:
conn.row_factory = None
db.pool.release_connection(conn)
# Fetch by strategy_id
# result, record = fetch_run_manager_record_by_id('625760ac-6376-47fa-8989-1e6a3f6ab66a')
def fetch_run_manager_record_by_id(strategy_id) -> RunManagerRecord:
conn = db.pool.get_connection()
try:
conn.row_factory = Row
cursor = conn.cursor()
cursor.execute('SELECT * FROM run_manager WHERE id = ?', (str(strategy_id),))
row = cursor.fetchone()
if row is None:
return -2, "not found"
else:
return 0, tr.row_to_runmanager(row)
except Exception as e:
print("ERROR while fetching all records:", str(e) + format_exc())
return -2, str(e) + format_exc()
finally:
conn.row_factory = None
db.pool.release_connection(conn)
def add_run_manager_record(new_record: RunManagerRecord):
#validation/standardization of time
new_record.start_time = validate_and_format_time(new_record.start_time)
if new_record.start_time is None:
return -2, f"Invalid start_time format {new_record.start_time}"
if new_record.stop_time is not None:
new_record.stop_time = validate_and_format_time(new_record.stop_time)
if new_record.stop_time is None:
return -2, f"Invalid stop_time format {new_record.stop_time}"
if new_record.batch_id is None:
new_record.batch_id = str(uuid4())[:8]
conn = db.pool.get_connection()
try:
strat : StrategyInstance = None
result, strat = cs.get_stratin(id=str(new_record.strat_id))
if result == 0:
new_record.symbol = strat.symbol
else:
return -1, f"Strategy {new_record.strat_id} not found"
cursor = conn.cursor()
# Construct a suitable INSERT query based on your RunManagerRecord fields
insert_query = """
INSERT INTO run_manager (moddus, id, strat_id, symbol,account, mode, note,ilog_save,
market, bt_from, bt_to, weekdays_filter, batch_id,
start_time, stop_time, status, last_processed,
history, valid_from, valid_to, testlist_id)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,?)
"""
values = [
new_record.moddus, str(new_record.id), str(new_record.strat_id), new_record.symbol, new_record.account, new_record.mode, new_record.note,
int(new_record.ilog_save), new_record.market,
new_record.bt_from.isoformat() if new_record.bt_from is not None else None,
new_record.bt_to.isoformat() if new_record.bt_to is not None else None,
",".join(str(x) for x in new_record.weekdays_filter) if new_record.weekdays_filter else None,
new_record.batch_id, new_record.start_time,
new_record.stop_time, new_record.status,
new_record.last_processed.isoformat() if new_record.last_processed is not None else None,
new_record.history,
new_record.valid_from.isoformat() if new_record.valid_from is not None else None,
new_record.valid_to.isoformat() if new_record.valid_to is not None else None,
new_record.testlist_id
]
db.execute_with_retry(cursor, insert_query, values)
conn.commit()
#Add APS scheduler job refresh
res, result = aps.initialize_jobs()
if res < 0:
return -2, f"Error initializing jobs: {res} {result}"
return 0, new_record.id # Assuming success, you might return something more descriptive
except Exception as e:
print("ERROR while adding record:", str(e) + format_exc())
return -2, str(e) + format_exc()
finally:
db.pool.release_connection(conn)
# Update (example)
# update_data = {'last_started': '2024-02-13 10:35:00'}
# result, message = update_run_manager_record('625760ac-6376-47fa-8989-1e6a3f6ab66a', update_data)
def update_run_manager_record(record_id, updated_record: RunManagerRecord):
#validation/standardization of time
updated_record.start_time = validate_and_format_time(updated_record.start_time)
if updated_record.start_time is None:
return -2, f"Invalid start_time format {updated_record.start_time}"
if updated_record.stop_time is not None:
updated_record.stop_time = validate_and_format_time(updated_record.stop_time)
if updated_record.stop_time is None:
return -2, f"Invalid stop_time format {updated_record.stop_time}"
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
#strategy lookup check, if strategy still exists
strat : StrategyInstance = None
result, strat = cs.get_stratin(id=str(updated_record.strat_id))
if result == 0:
updated_record.symbol = strat.symbol
else:
return -1, f"Strategy {updated_record.strat_id} not found"
#remove values with None, so they are not updated
#updated_record_dict = updated_record.dict(exclude_none=True)
# Construct update query and handle weekdays conversion
update_query = 'UPDATE run_manager SET '
update_params = []
for key, value in updated_record.dict().items(): # Iterate over model attributes
if key in ['id', 'strat_running']: # Skip updating the primary key
continue
update_query += f"{key} = ?, "
if key == "ilog_save":
value = int(value)
elif key in ["strat_id", "runner_id"]:
value = str(value) if value else None
elif key == "weekdays_filter":
value = ",".join(str(x) for x in value) if value else None
elif key in ['valid_from', 'valid_to', 'bt_from', 'bt_to', 'last_processed']:
value = value.isoformat() if value else None
update_params.append(value)
# if 'weekdays_filter' in updated_record.dict():
# updated_record.weekdays_filter = ",".join(str(x) for x in updated_record.weekdays_filter)
update_query = update_query[:-2] # Remove trailing comma and space
update_query += ' WHERE id = ?'
update_params.append(str(record_id))
db.execute_with_retry(cursor, update_query, update_params)
#cursor.execute(update_query, update_params)
conn.commit()
#Add APS scheduler job refresh
res, result = aps.initialize_jobs()
if res < 0:
return -2, f"Error initializing jobs: {res} {result}"
except Exception as e:
print("ERROR while updating record:", str(e) + format_exc())
return -2, str(e) + format_exc()
finally:
db.pool.release_connection(conn)
return 0, record_id
# result, message = delete_run_manager_record('625760ac-6376-47fa-8989-1e6a3f6ab66a')
def delete_run_manager_record(record_id):
conn = db.pool.get_connection()
try:
cursor = conn.cursor()
db.execute_with_retry(cursor, 'DELETE FROM run_manager WHERE id = ?', (str(record_id),))
#cursor.execute('DELETE FROM run_manager WHERE id = ?', (str(strategy_id),))
conn.commit()
except Exception as e:
print("ERROR while deleting record:", str(e) + format_exc())
return -2, str(e) + format_exc()
finally:
db.pool.release_connection(conn)
return 0, record_id
def fetch_scheduled_candidates_for_start_and_stop(market_datetime_now, market) -> tuple[int, dict]:
"""
Fetches all active records from the 'run_manager' table where the mode is 'schedule'. It checks if the current
time in the America/New_York timezone is within the operational intervals specified by 'start_time' and 'stop_time'
for each record. This function is designed to correctly handle scenarios where the operational interval crosses
midnight, as well as intervals contained within a single day.
The function localizes 'valid_from', 'valid_to', 'start_time', and 'stop_time' using the 'zoneNY' timezone object
for accurate comparison with the current time.
Parameters:
market_datetime_now (datetime): The current date and time in the America/New_York timezone.
market (str): The market identifier.
Returns:
Tuple[int, dict]: A tuple where the first element is a status code (0 for success, -2 for error), and the
second element is a dictionary. This dictionary has keys 'start' and 'stop', each containing a list of
RunManagerRecord objects meeting the respective criteria. If an error occurs, the second element is a
descriptive error message.
Note:
- This function assumes that the 'zoneNY' pytz timezone object is properly defined and configured to represent
the America/New York timezone.
- It also assumes that the 'run_manager' table exists in the database with the required columns.
- 'start_time' and 'stop_time' are expected to be strings representing times in 24-hour format.
- If 'valid_from', 'valid_to', 'start_time', or 'stop_time' are NULL in the database, they are considered as
having unlimited boundaries.
Pozor: je jeste jeden okrajovy pripad, kdy by to nemuselo zafungovat: kdyby casy byly nastaveny pro
beh strategie pres pulnoc, ale zapla by se pozdeji az po pulnoci
(https://chat.openai.com/c/3c77674a-8a2c-45aa-afbd-ab140f473e07)
"""
conn = db.pool.get_connection()
try:
conn.row_factory = Row
cursor = conn.cursor()
# Get current datetime in America/New York timezone
market_datetime_now_str = market_datetime_now.strftime('%Y-%m-%d %H:%M:%S')
current_time_str = market_datetime_now.strftime('%H:%M')
print("current_market_datetime_str:", market_datetime_now_str)
print("current_time_str:", current_time_str)
# Select also supports scenarios where strategy runs overnight
# SQL query to fetch records with active status and date constraints for both start and stop times
query = """
SELECT *,
CASE
WHEN start_time <= stop_time AND (? >= start_time AND ? < stop_time) OR
start_time > stop_time AND (? >= start_time OR ? < stop_time) THEN 1
ELSE 0
END as is_start_time,
CASE
WHEN start_time <= stop_time AND (? >= stop_time OR ? < start_time) OR
start_time > stop_time AND (? >= stop_time AND ? < start_time) THEN 1
ELSE 0
END as is_stop_time
FROM run_manager
WHERE status = 'active' AND moddus = 'schedule' AND
((valid_from IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_from) <= ?) AND
(valid_to IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_to) >= ?))
"""
cursor.execute(query, (current_time_str, current_time_str, current_time_str, current_time_str,
current_time_str, current_time_str, current_time_str, current_time_str,
market_datetime_now_str, market_datetime_now_str))
rows = cursor.fetchall()
start_candidates = []
stop_candidates = []
for row in rows:
run_manager_record = tr.row_to_runmanager(row)
if row['is_start_time']:
start_candidates.append(run_manager_record)
if row['is_stop_time']:
stop_candidates.append(run_manager_record)
results = {'start': start_candidates, 'stop': stop_candidates}
return 0, results
except Exception as e:
msg_err = f"ERROR while fetching records for start and stop times with datetime {market_datetime_now_str}: {str(e)} {format_exc()}"
print(msg_err)
return -2, msg_err
finally:
conn.row_factory = None
db.pool.release_connection(conn)
def fetch_startstop_scheduled_candidates(market_datetime_now, time_check, market = "US") -> tuple[int, list[RunManagerRecord]]:
"""
Fetches all active records from the 'run_manager' table where moddus is schedule, the current date and time
in the America/New_York timezone falls between the 'valid_from' and 'valid_to' datetime
fields, and either 'start_time' or 'stop_time' matches the specified condition with the current time.
If 'valid_from', 'valid_to', or the time column ('start_time'/'stop_time') are NULL, they are considered
as having unlimited boundaries.
The function localizes the 'valid_from', 'valid_to', and the time column times using the 'zoneNY'
timezone object for accurate comparison with the current time.
Parameters:
market_datetime_now (datetime): Current datetime in the market timezone.
market (str): The market for which to fetch candidates.
time_check (str): Either 'start' or 'stop', indicating which time condition to check.
Returns:
Tuple[int, list[RunManagerRecord]]: A tuple where the first element is a status code
(0 for success, -2 for error), and the second element is a list of RunManagerRecord
objects meeting the criteria. If an error occurs, the second element is a descriptive
error message.
Note:
This function assumes that the 'zoneNY' pytz timezone object is properly defined and
configured to represent the America/New York timezone. It also assumes that the
'run_manager' table exists in the database with the columns as described in the
provided schema.
"""
if time_check not in ['start', 'stop']:
return -2, "Invalid time_check parameter. Must be 'start' or 'stop'."
conn = db.pool.get_connection()
try:
conn.row_factory = Row
cursor = conn.cursor()
# Get current datetime in America/New York timezone
market_datetime_now_str = market_datetime_now.strftime('%Y-%m-%d %H:%M:%S')
current_time_str = market_datetime_now.strftime('%H:%M')
print("current_market_datetime_str:", market_datetime_now_str)
print("current_time_str:", current_time_str)
# SQL query to fetch records with active status, date constraints, and time condition
time_column = 'start_time' if time_check == 'start' else 'stop_time'
query = f"""
SELECT * FROM run_manager
WHERE status = 'active' AND moddus = 'schedule' AND
((valid_from IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_from) <= ?) AND
(valid_to IS NULL OR strftime('%Y-%m-%d %H:%M:%S', valid_to) >= ?)) AND
({time_column} IS NULL OR {time_column} <= ?)
"""
cursor.execute(query, (market_datetime_now_str, market_datetime_now_str, current_time_str))
rows = cursor.fetchall()
results = [tr.row_to_runmanager(row) for row in rows]
return 0, results
except Exception as e:
msg_err = f"ERROR while fetching records based on {time_check} time with datetime {market_datetime_now_str}: {str(e)} {format_exc()}"
print(msg_err)
return -2, msg_err
finally:
conn.row_factory = None
db.pool.release_connection(conn)
if __name__ == "__main__":
res, sada = fetch_startstop_scheduled_candidates(datetime.now().astimezone(zoneNY), "start")
if res == 0:
print(sada)
else:
print("Error:", sada)
# from apscheduler.schedulers.background import BackgroundScheduler
# import time
# def print_hello():
# print("Hello")
# def schedule_job():
# scheduler = BackgroundScheduler()
# scheduler.add_job(print_hello, 'interval', seconds=10)
# scheduler.start()
# schedule_job()

View File

@ -0,0 +1 @@
#PLACEHOLDER TO RUNNER_DETAILS SERVICES - refactored

File diff suppressed because it is too large Load Diff

View File

View File

View File

View File

View File

View File

View File

View File

View File

@ -1,6 +1,11 @@
from enum import Enum
from alpaca.trading.enums import OrderSide, OrderStatus, OrderType
class BarType(str, Enum):
TIME = "time"
VOLUME = "volume"
DOLLAR = "dollar"
class Env(str, Enum):
PROD = "prod"
TEST = "test"
@ -52,6 +57,16 @@ class Account(str, Enum):
"""
ACCOUNT1 = "ACCOUNT1"
ACCOUNT2 = "ACCOUNT2"
class Moddus(str, Enum):
"""
Moddus for RunManager record
schedule - scheduled record
queue - queued record
"""
SCHEDULE = "schedule"
QUEUE = "queue"
class RecordType(str, Enum):
"""
Represents output of aggregator
@ -60,9 +75,19 @@ class RecordType(str, Enum):
BAR = "bar"
CBAR = "cbar"
CBARVOLUME = "cbarvolume"
CBARDOLLAR = "cbardollar"
CBARRENKO = "cbarrenko"
TRADE = "trade"
class SchedulerStatus(str, Enum):
"""
ACTIVE - active scheduling
SUSPENDED - suspended for scheduling
"""
ACTIVE = "active"
SUSPENDED = "suspended"
class Mode(str, Enum):
"""
LIVE - live on production
@ -76,7 +101,6 @@ class Mode(str, Enum):
BT = "backtest"
PREP = "prep"
class StartBarAlign(str, Enum):
"""
Represents first bar start time alignement according to timeframe
@ -84,4 +108,10 @@ class StartBarAlign(str, Enum):
RANDOM = first bar starts when first trade occurs
"""
ROUND = "round"
RANDOM = "random"
RANDOM = "random"
class Market(str, Enum):
US = "US"
CRYPTO = "CRYPTO"

View File

@ -2,9 +2,9 @@ from alpaca.trading.enums import OrderSide, OrderType
from threading import Lock
from v2realbot.interfaces.general_interface import GeneralInterface
from v2realbot.backtesting.backtester import Backtester
from v2realbot.config import BT_DELAYS, COUNT_API_REQUESTS
from datetime import datetime
from v2realbot.utils.utils import zoneNY
import v2realbot.utils.config_handler as cfh
""""
backtester methods can be called
@ -19,7 +19,7 @@ class BacktestInterface(GeneralInterface):
def __init__(self, symbol, bt: Backtester) -> None:
self.symbol = symbol
self.bt = bt
self.count_api_requests = COUNT_API_REQUESTS
self.count_api_requests = cfh.config_handler.get_val('COUNT_API_REQUESTS')
self.mincnt = list([dict(minute=0,count=0)])
#TODO time v API nejspis muzeme dat pryc a BT bude si to brat primo ze self.time (nezapomenout na + BT_DELAYS)
# self.time = self.bt.time
@ -43,33 +43,33 @@ class BacktestInterface(GeneralInterface):
def buy(self, size = 1, repeat: bool = False):
self.count()
#add REST API latency
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.BUY,size=size,order_type = OrderType.MARKET)
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.BUY,size=size,order_type = OrderType.MARKET)
"""buy limit"""
def buy_l(self, price: float, size: int = 1, repeat: bool = False, force: int = 0):
self.count()
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.BUY,size=size,price=price,order_type = OrderType.LIMIT)
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.BUY,size=size,price=price,order_type = OrderType.LIMIT)
"""sell market"""
def sell(self, size = 1, repeat: bool = False):
self.count()
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.SELL,size=size,order_type = OrderType.MARKET)
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.SELL,size=size,order_type = OrderType.MARKET)
"""sell limit"""
async def sell_l(self, price: float, size = 1, repeat: bool = False):
self.count()
return self.bt.submit_order(time=self.bt.time + BT_DELAYS.strat_to_sub,symbol=self.symbol,side=OrderSide.SELL,size=size,price=price,order_type = OrderType.LIMIT)
return self.bt.submit_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),symbol=self.symbol,side=OrderSide.SELL,size=size,price=price,order_type = OrderType.LIMIT)
"""replace order"""
async def repl(self, orderid: str, price: float = None, size: int = None, repeat: bool = False):
self.count()
return self.bt.replace_order(time=self.bt.time + BT_DELAYS.strat_to_sub,id=orderid,size=size,price=price)
return self.bt.replace_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'),id=orderid,size=size,price=price)
"""cancel order"""
#TBD exec predtim?
def cancel(self, orderid: str):
self.count()
return self.bt.cancel_order(time=self.bt.time + BT_DELAYS.strat_to_sub, id=orderid)
return self.bt.cancel_order(time=self.bt.time + cfh.config_handler.get_val('BT_DELAYS','strat_to_sub'), id=orderid)
"""get positions ->(size,avgp)"""
#TBD exec predtim?

View File

@ -40,7 +40,9 @@ class LiveInterface(GeneralInterface):
return market_order.id
except Exception as e:
print("Nepodarilo se odeslat buy", str(e))
reason = "Nepodarilo se market buy:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
return -1
"""buy limit"""
@ -65,7 +67,9 @@ class LiveInterface(GeneralInterface):
return limit_order.id
except Exception as e:
print("Nepodarilo se odeslat limitku", str(e))
reason = "Nepodarilo se odeslat buy limitku:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
return -1
"""sell market"""
@ -87,7 +91,9 @@ class LiveInterface(GeneralInterface):
return market_order.id
except Exception as e:
print("Nepodarilo se odeslat sell", str(e))
reason = "Nepodarilo se odeslat sell:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
return -1
"""sell limit"""
@ -112,8 +118,9 @@ class LiveInterface(GeneralInterface):
return limit_order.id
except Exception as e:
print("Nepodarilo se odeslat sell_l", str(e))
#raise Exception(e)
reason = "Nepodarilo se odeslat sell limitku:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
return -1
"""order replace"""
@ -136,7 +143,9 @@ class LiveInterface(GeneralInterface):
if e.code == 42210000: return orderid
else:
##mozna tady proste vracet vzdy ok
print("Neslo nahradit profitku. Problem",str(e))
reason = "Neslo nahradit profitku. Problem:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
return -1
#raise Exception(e)
@ -150,7 +159,9 @@ class LiveInterface(GeneralInterface):
#order doesnt exist
if e.code == 40410000: return 0
else:
print("nepovedlo se zrusit objednavku", str(e))
reason = "Nepovedlo se zrusit objednavku:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
#raise Exception(e)
return -1
@ -162,7 +173,7 @@ class LiveInterface(GeneralInterface):
return a.avg_entry_price, a.qty
except (APIError, Exception) as e:
#no position
if e.code == 40410000: return 0,0
if hasattr(e, 'code') and e.code == 40410000: return 0,0
else:
reason = "Exception when calling LIVE interface pos, REPEATING:" + str(e) + format_exc()
print("API ERROR: Nepodarilo se ziskat pozici.", reason)
@ -178,7 +189,9 @@ class LiveInterface(GeneralInterface):
#list of Orders (orderlist[0].id)
return orderlist
except Exception as e:
print("Chyba pri dotazeni objednávek.", str(e))
reason = "Chyba pri dotazeni objednávek:" + str(e) + format_exc()
print(reason)
send_to_telegram(reason)
#raise Exception (e)
return -1

File diff suppressed because it is too large Load Diff

View File

@ -3,7 +3,7 @@
"""
from v2realbot.enums.enums import RecordType, StartBarAlign
from datetime import datetime, timedelta
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, Queue,is_open_hours,zoneNY
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, Queue,is_open_hours,zoneNY, zoneUTC
from queue import Queue
from rich import print
from v2realbot.enums.enums import Mode
@ -11,9 +11,10 @@ import threading
from copy import deepcopy
from msgpack import unpackb
import os
from v2realbot.config import DATA_DIR, GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN, AGG_EXCLUDED_TRADES
import pickle
from v2realbot.config import DATA_DIR
import dill
import gzip
import v2realbot.utils.config_handler as cfh
class TradeAggregator:
def __init__(self,
@ -24,7 +25,7 @@ class TradeAggregator:
align: StartBarAlign = StartBarAlign.ROUND,
mintick: int = 0,
exthours: bool = False,
excludes: list = AGG_EXCLUDED_TRADES,
excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'),
skip_cache: bool = False):
"""
UPDATED VERSION - vrací více záznamů
@ -47,7 +48,7 @@ class TradeAggregator:
self.excludes = excludes
self.skip_cache = skip_cache
if mintick >= resolution:
if resolution > 0 and mintick >= resolution:
print("Mintick musi byt mensi nez resolution")
raise Exception
@ -149,7 +150,7 @@ class TradeAggregator:
# else:
data['t'] = parse_alpaca_timestamp(data['t'])
if not is_open_hours(datetime.fromtimestamp(data['t'])) and self.exthours is False:
if not is_open_hours(datetime.fromtimestamp(data['t'], tz=zoneUTC)) and self.exthours is False:
#print("AGG: trade not in open hours skipping", datetime.fromtimestamp(data['t']).astimezone(zoneNY))
return []
@ -178,14 +179,30 @@ class TradeAggregator:
# return
# else: pass
if self.rectype in (RecordType.BAR, RecordType.CBAR):
return await self.calculate_time_bar(data, symbol)
# if self.rectype in (RecordType.BAR, RecordType.CBAR):
# return await self.calculate_time_bar(data, symbol)
if self.rectype == RecordType.CBARVOLUME:
return await self.calculate_volume_bar(data, symbol)
# if self.rectype == RecordType.CBARVOLUME:
# return await self.calculate_volume_bar(data, symbol)
if self.rectype == RecordType.CBARRENKO:
return await self.calculate_renko_bar(data, symbol)
# if self.rectype == RecordType.CBARVOLUME:
# return await self.calculate_volume_bar(data, symbol)
# if self.rectype == RecordType.CBARRENKO:
# return await self.calculate_renko_bar(data, symbol)
match self.rectype:
case RecordType.BAR | RecordType.CBAR:
return await self.calculate_time_bar(data, symbol)
case RecordType.CBARVOLUME:
return await self.calculate_volume_bar(data, symbol)
case RecordType.CBARDOLLAR:
return await self.calculate_dollar_bar(data, symbol)
case RecordType.CBARRENKO:
return await self.calculate_renko_bar(data, symbol)
async def calculate_time_bar(self, data, symbol):
#print("barstart",datetime.fromtimestamp(self.bar_start))
@ -276,7 +293,7 @@ class TradeAggregator:
self.diff_price = True
self.last_price = data['p']
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
self.trades_too_close = True
else:
self.trades_too_close = False
@ -303,13 +320,13 @@ class TradeAggregator:
#TODO: do budoucna vymyslet, kdyz bude mene tradu, tak to radit vzdy do spravneho intervalu
#zarovname time prvniho baru podle timeframu kam patří (např. 5, 10, 15 ...) (ROUND)
if self.align == StartBarAlign.ROUND and self.bar_start == 0:
t = datetime.fromtimestamp(data['t'])
t = datetime.fromtimestamp(data['t'], tz=zoneUTC)
t = t - timedelta(seconds=t.second % self.resolution,microseconds=t.microsecond)
self.bar_start = datetime.timestamp(t)
#nebo pouzijeme datum tradu zaokrouhlene na vteriny (RANDOM)
else:
#ulozime si jeho timestamp (odtum pocitame resolution)
t = datetime.fromtimestamp(int(data['t']))
t = datetime.fromtimestamp(int(data['t']), tz=zoneUTC)
#timestamp
self.bar_start = int(data['t'])
@ -359,7 +376,7 @@ class TradeAggregator:
if self.mintick != 0 and self.lastBarConfirmed:
#d zacatku noveho baru musi ubehnout x sekund nez posilame updazte
#pocatek noveho baru + Xs musi byt vetsi nez aktualni trade
if (self.newBar['time'] + timedelta(seconds=self.mintick)) > datetime.fromtimestamp(data['t']):
if (self.newBar['time'] + timedelta(seconds=self.mintick)) > datetime.fromtimestamp(data['t'], tz=zoneUTC):
#print("waiting for mintick")
return []
else:
@ -426,7 +443,7 @@ class TradeAggregator:
"trades": 1,
"hlcc4": data['p'],
"confirmed": 0,
"time": datetime.fromtimestamp(data['t']),
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
@ -460,7 +477,7 @@ class TradeAggregator:
"trades": 1,
"hlcc4":data['p'],
"confirmed": 1,
"time": datetime.fromtimestamp(data['t']),
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
@ -523,7 +540,7 @@ class TradeAggregator:
self.diff_price = True
self.last_price = data['p']
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
self.trades_too_close = True
else:
self.trades_too_close = False
@ -551,6 +568,179 @@ class TradeAggregator:
else:
return []
#WIP - revidovant kod a otestovat
async def calculate_dollar_bar(self, data, symbol):
""""
Agreguje DOLLAR BARS -
hlavni promenne
- self.openedBar (dict) = stavová obsahují aktivní nepotvrzený bar
- confirmedBars (list) = nestavová obsahuje confirmnute bary, které budou na konci funkceflushnuty
"""""
#volume_bucket = 10000 #daily MA volume z emackova na 30 deleno 50ti - dat do configu
dollar_bucket = self.resolution
#potvrzene pripravene k vraceni
confirmedBars = []
#potvrdi existujici a nastavi k vraceni
def confirm_existing():
self.openedBar['confirmed'] = 1
self.openedBar['vwap'] = self.vwaphelper / self.openedBar['volume']
self.vwaphelper = 0
#ulozime zacatek potvrzeneho baru
#self.lastBarConfirmed = self.openedBar['time']
self.openedBar['updated'] = data['t']
confirmedBars.append(deepcopy(self.openedBar))
self.openedBar = None
#TBD po každém potvrzení zvýšíme čas o nanosekundu (pro zobrazení v gui)
#data['t'] = data['t'] + 0.000001
#init unconfirmed - velikost bucketu kontrolovana predtim
def initialize_unconfirmed(size):
#inicializuji pro nový bar
self.vwaphelper += (data['p'] * size)
self.barindex +=1
self.openedBar = {
"close": data['p'],
"high": data['p'],
"low": data['p'],
"open": data['p'],
"volume": size,
"trades": 1,
"hlcc4": data['p'],
"confirmed": 0,
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
"resolution":dollar_bucket
}
def update_unconfirmed(size):
#spočteme vwap - potřebujeme předchozí hodnoty
self.vwaphelper += (data['p'] * size)
self.openedBar['updated'] = data['t']
self.openedBar['close'] = data['p']
self.openedBar['high'] = max(self.openedBar['high'],data['p'])
self.openedBar['low'] = min(self.openedBar['low'],data['p'])
self.openedBar['volume'] = self.openedBar['volume'] + size
self.openedBar['trades'] = self.openedBar['trades'] + 1
self.openedBar['vwap'] = self.vwaphelper / self.openedBar['volume']
#pohrat si s timto round
self.openedBar['hlcc4'] = round((self.openedBar['high']+self.openedBar['low']+self.openedBar['close']+self.openedBar['close'])/4,3)
#init new - confirmed
def initialize_confirmed(size):
#ulozime zacatek potvrzeneho baru
#self.lastBarConfirmed = datetime.fromtimestamp(data['t'])
self.barindex +=1
confirmedBars.append({
"close": data['p'],
"high": data['p'],
"low": data['p'],
"open": data['p'],
"volume": size,
"trades": 1,
"hlcc4":data['p'],
"confirmed": 1,
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
"resolution": dollar_bucket
})
#current trade dollar value
trade_dollar_val = int(data['s'])*float(data['p'])
#existuje stávající bar a vejdeme se do nej
if self.openedBar is not None and trade_dollar_val + self.openedBar['volume']*self.openedBar['close'] < dollar_bucket:
#vejdeme se do stávajícího baru (tzn. neprekracujeme bucket)
update_unconfirmed(int(data['s']))
#updatujeme stávající nepotvrzeny bar
#nevejdem se do nej nebo neexistuje predchozi bar
else:
#1)existuje predchozi bar - doplnime zbytkem do valikosti bucketu a nastavime confirmed
if self.openedBar is not None:
#doplnime je zbytkem (v bucket left-je zbyvajici volume)
opened_bar_dollar_val = self.openedBar['volume']*self.openedBar['close']
bucket_left = int((dollar_bucket - opened_bar_dollar_val)/float(data['p']))
# - update and confirm bar
update_unconfirmed(bucket_left)
confirm_existing()
#zbytek mnozství jde do dalsiho zpracovani
data['s'] = int(data['s']) - bucket_left
#nastavime cas o nanosekundu vyssi
data['t'] = round((data['t']) + 0.000001,6)
#2 vytvarime novy bar (bary) a vejdeme se do nej
if int(data['s'])*float(data['p']) < dollar_bucket:
#vytvarime novy nepotvrzeny bar
initialize_unconfirmed(int(data['s']))
#nevejdeme se do nej - pak vytvarime 1 až N dalsich baru (posledni nepotvrzený)
else:
# >>> for i in range(0, 550, 500):
# ... print(i)
# ...
# 0
# 500
#vytvarime plne potvrzene buckety (kolik se jich plne vejde)
for size in range(int(dollar_bucket/float(data['p'])), int(data['s']), int(dollar_bucket/float(data['p']))):
initialize_confirmed(dollar_bucket/float(data['p']))
#nastavime cas o nanosekundu vyssi
data['t'] = round((data['t']) + 0.000001,6)
#create complete full bucket with same prices and size
#naplnit do return pole
#pokud je zbytek vytvorime z nej nepotvrzeny bar
zbytek = int(data['s'])*float(data['p']) % dollar_bucket
#ze zbytku vytvorime nepotvrzeny bar
if zbytek > 0:
#prevedeme zpatky na volume
zbytek = int(zbytek/float(data['p']))
initialize_unconfirmed(zbytek)
#create new open bar with size zbytek s otevrenym
#je cena stejna od predchoziho tradu? pro nepotvrzeny cbar vracime jen pri zmene ceny
if self.last_price == data['p']:
self.diff_price = False
else:
self.diff_price = True
self.last_price = data['p']
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
self.trades_too_close = True
else:
self.trades_too_close = False
#uložíme do předchozí hodnoty (poznáme tak open a close)
self.lasttimestamp = data['t']
self.iterace += 1
# print(self.iterace, data)
#pokud mame confirm bary, tak FLUSHNEME confirm a i případný open (zrejme se pak nejaky vytvoril)
if len(confirmedBars) > 0:
return_set = confirmedBars + ([self.openedBar] if self.openedBar is not None else [])
confirmedBars = []
return return_set
#nemame confirm, FLUSHUJEME CBARVOLUME open - neresime zmenu ceny, ale neposilame kulomet (pokud nam nevytvari conf. bar)
if self.openedBar is not None and self.rectype == RecordType.CBARDOLLAR:
#zkousime pustit i stejnou cenu(potrebujeme kvuli MYSELLU), ale blokoval kulomet,tzn. trady mensi nez GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN (1ms)
#if self.diff_price is True:
if self.trades_too_close is False:
return [self.openedBar]
else:
return []
else:
return []
async def calculate_renko_bar(self, data, symbol):
""""
Agreguje RENKO BARS - dle brick size
@ -566,8 +756,14 @@ class TradeAggregator:
Ve strategii je třeba počítat s tím, že open v nepotvrzeném baru není finální.
"""""
if self.resolution < 0: # Treat as percentage
reference_price = self.lastConfirmedBar['close'] if self.lastConfirmedBar is not None else float(data['p'])
brick_size = abs(self.resolution) * reference_price / 100.0
else: # Treat as absolute value pocet ticku
brick_size = self.resolution
#pocet ticku např. 10ticků, případně pak na procenta
brick_size = self.resolution
#brick_size = self.resolution
#potvrzene pripravene k vraceni
confirmedBars = []
#potvrdi existujici a nastavi k vraceni
@ -598,7 +794,7 @@ class TradeAggregator:
"trades": 1,
"hlcc4": data['p'],
"confirmed": 0,
"time": datetime.fromtimestamp(data['t']),
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
@ -633,7 +829,7 @@ class TradeAggregator:
"trades": 1,
"hlcc4":data['p'],
"confirmed": 1,
"time": datetime.fromtimestamp(data['t']),
"time": datetime.fromtimestamp(data['t'], tz=zoneUTC),
"updated": data['t'],
"vwap": data['p'],
"index": self.barindex,
@ -676,7 +872,7 @@ class TradeAggregator:
self.diff_price = True
self.last_price = data['p']
if float(data['t']) - float(self.lasttimestamp) < GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN:
if float(data['t']) - float(self.lasttimestamp) < cfh.config_handler.get_val('GROUP_TRADES_WITH_TIMESTAMP_LESS_THAN'):
self.trades_too_close = True
else:
self.trades_too_close = False
@ -709,7 +905,7 @@ class TradeAggregator:
#a take excludes result = ''.join(self.excludes.sort())
self.excludes.sort() # Sorts the list in place
excludes_str = ''.join(map(str, self.excludes)) # Joins the sorted elements after converting them to strings
cache_file = self.__class__.__name__ + '-' + self.symbol + '-' + str(int(date_from.timestamp())) + '-' + str(int(date_to.timestamp())) + '-' + str(self.rectype) + "-" + str(self.resolution) + "-" + str(self.minsize) + "-" + str(self.align) + '-' + str(self.mintick) + str(self.exthours) + excludes_str + '.cache'
cache_file = self.__class__.__name__ + '-' + self.symbol + '-' + str(int(date_from.timestamp())) + '-' + str(int(date_to.timestamp())) + '-' + str(self.rectype) + "-" + str(self.resolution) + "-" + str(self.minsize) + "-" + str(self.align) + '-' + str(self.mintick) + str(self.exthours) + excludes_str + '.cache.gz'
file_path = DATA_DIR + "/aggcache/" + cache_file
#print(file_path)
return file_path
@ -719,7 +915,7 @@ class TradeAggregator:
file_path = self.populate_file_name(date_from, date_to)
if self.skip_cache is False and os.path.exists(file_path):
##daily aggregated file exists
with open (file_path, 'rb') as fp:
with gzip.open (file_path, 'rb') as fp:
cachedobject = dill.load(fp)
print("AGG CACHE loaded ", file_path)
@ -752,7 +948,7 @@ class TradeAggregator:
file_path = self.populate_file_name(self.cache_from, self.cache_to)
with open(file_path, 'wb') as fp:
with gzip.open(file_path, 'wb') as fp:
dill.dump(self.cached_object, fp)
print(f"AGG CACHE stored ({num}) :{file_path}")
print(f"DATES from:{self.cache_from.strftime('%d.%m.%Y %H:%M')} to:{self.cache_to.strftime('%d.%m.%Y %H:%M')}")
@ -772,7 +968,7 @@ class TradeAggregator2Queue(TradeAggregator):
Child of TradeAggregator - sends items to given queue
In the future others will be added - TradeAggToTxT etc.
"""
def __init__(self, symbol: str, queue: Queue, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = AGG_EXCLUDED_TRADES, skip_cache: bool = False):
def __init__(self, symbol: str, queue: Queue, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), skip_cache: bool = False):
super().__init__(rectype=rectype, resolution=resolution, minsize=minsize, update_ltp=update_ltp, align=align, mintick=mintick, exthours=exthours, excludes=excludes, skip_cache=skip_cache)
self.queue = queue
self.symbol = symbol
@ -817,7 +1013,7 @@ class TradeAggregator2List(TradeAggregator):
""""
stores records to the list
"""
def __init__(self, symbol: str, btdata: list, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = AGG_EXCLUDED_TRADES, skip_cache: bool = False):
def __init__(self, symbol: str, btdata: list, rectype: RecordType = RecordType.BAR, resolution: int = 5, minsize: int = 100, update_ltp: bool = False, align: StartBarAlign = StartBarAlign.ROUND, mintick: int = 0, exthours: bool = False, excludes: list = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), skip_cache: bool = False):
super().__init__(rectype=rectype, resolution=resolution, minsize=minsize, update_ltp=update_ltp, align=align, mintick=mintick, exthours=exthours, excludes=excludes, skip_cache=skip_cache)
self.btdata = btdata
self.symbol = symbol

View File

@ -0,0 +1,570 @@
import pandas as pd
import numpy as np
from numba import jit
from alpaca.data.historical import StockHistoricalDataClient
from sqlalchemy import column
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
from alpaca.data.requests import StockTradesRequest
import time as time_module
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data
import pyarrow
from traceback import format_exc
from datetime import timedelta, datetime, time
from concurrent.futures import ThreadPoolExecutor
import os
import gzip
import pickle
import random
from alpaca.data.models import BarSet, QuoteSet, TradeSet
import v2realbot.utils.config_handler as cfh
from v2realbot.enums.enums import BarType
from tqdm import tqdm
""""
Module used for vectorized aggregation of trades.
Includes fetch (remote/cached) methods and numba aggregator function for TIME BASED, VOLUME BASED and DOLLAR BARS
"""""
def aggregate_trades(symbol: str, trades_df: pd.DataFrame, resolution: int, type: BarType = BarType.TIME):
""""
Accepts dataframe with trades keyed by symbol. Preparess dataframe to
numpy and calls Numba optimized aggregator for given bar type. (time/volume/dollar)
"""""
trades_df = trades_df.loc[symbol]
trades_df= trades_df.reset_index()
ticks = trades_df[['timestamp', 'price', 'size']].to_numpy()
# Extract the timestamps column (assuming it's the first column)
timestamps = ticks[:, 0]
# Convert the timestamps to Unix timestamps in seconds with microsecond precision
unix_timestamps_s = np.array([ts.timestamp() for ts in timestamps], dtype='float64')
# Replace the original timestamps in the NumPy array with the converted Unix timestamps
ticks[:, 0] = unix_timestamps_s
ticks = ticks.astype(np.float64)
#based on type, specific aggregator function is called
match type:
case BarType.TIME:
ohlcv_bars = generate_time_bars_nb(ticks, resolution)
case BarType.VOLUME:
ohlcv_bars = generate_volume_bars_nb(ticks, resolution)
case BarType.DOLLAR:
ohlcv_bars = generate_dollar_bars_nb(ticks, resolution)
case _:
raise ValueError("Invalid bar type. Supported types are 'time', 'volume' and 'dollar'.")
# Convert the resulting array back to a DataFrame
columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'trades']
if type == BarType.DOLLAR:
columns.append('amount')
columns.append('updated')
if type == BarType.TIME:
columns.append('vwap')
columns.append('buyvolume')
columns.append('sellvolume')
if type == BarType.VOLUME:
columns.append('buyvolume')
columns.append('sellvolume')
ohlcv_df = pd.DataFrame(ohlcv_bars, columns=columns)
ohlcv_df['time'] = pd.to_datetime(ohlcv_df['time'], unit='s').dt.tz_localize('UTC').dt.tz_convert(zoneNY)
#print(ohlcv_df['updated'])
ohlcv_df['updated'] = pd.to_datetime(ohlcv_df['updated'], unit="s").dt.tz_localize('UTC').dt.tz_convert(zoneNY)
# Round to microseconds to maintain six decimal places
ohlcv_df['updated'] = ohlcv_df['updated'].dt.round('us')
ohlcv_df.set_index('time', inplace=True)
#ohlcv_df.index = ohlcv_df.index.tz_localize('UTC').tz_convert(zoneNY)
return ohlcv_df
# Function to ensure fractional seconds are present
def ensure_fractional_seconds(timestamp):
if '.' not in timestamp:
# Inserting .000000 before the timezone indicator 'Z'
return timestamp.replace('Z', '.000000Z')
else:
return timestamp
def convert_dict_to_multiindex_df(tradesResponse):
""""
Converts dictionary from cache or from remote (raw input) to multiindex dataframe.
with microsecond precision (from nanoseconds in the raw data)
"""""
# Create a DataFrame for each key and add the key as part of the MultiIndex
dfs = []
for key, values in tradesResponse.items():
df = pd.DataFrame(values)
# Rename columns
# Select and order columns explicitly
#print(df)
df = df[['t', 'x', 'p', 's', 'i', 'c','z']]
df.rename(columns={'t': 'timestamp', 'c': 'conditions', 'p': 'price', 's': 'size', 'x': 'exchange', 'z':'tape', 'i':'id'}, inplace=True)
df['symbol'] = key # Add ticker as a column
# Apply the function to ensure all timestamps have fractional seconds
#zvazit zda toto ponechat a nebo dat jen pri urcitem erroru pri to_datetime
#pripadne pak pridelat efektivnejsi pristup, aneb nahrazeni NaT - https://chatgpt.com/c/d2be6f87-b38f-4050-a1c6-541d100b1474
df['timestamp'] = df['timestamp'].apply(ensure_fractional_seconds)
df['timestamp'] = pd.to_datetime(df['timestamp'], errors='coerce') # Convert 't' from string to datetime before setting it as an index
#Adjust to microsecond precision
df.loc[df['timestamp'].notna(), 'timestamp'] = df['timestamp'].dt.floor('us')
df.set_index(['symbol', 'timestamp'], inplace=True) # Set the multi-level index using both 'ticker' and 't'
df = df.tz_convert(zoneNY, level='timestamp')
dfs.append(df)
# Concatenate all DataFrames into a single DataFrame with MultiIndex
final_df = pd.concat(dfs)
return final_df
def dict_to_df(tradesResponse, start, end, exclude_conditions = None, minsize = None):
""""
Transforms dict to Tradeset, then df and to zone aware
Also filters to start and end if necessary (ex. 9:30 to 15:40 is required only)
NOTE: prepodkladame, ze tradesResponse je dict from Raw data (cached/remote)
"""""
df = convert_dict_to_multiindex_df(tradesResponse)
#REQUIRED FILTERING
#pokud je zacatek pozdeji nebo konec driv tak orizneme
if (start.time() > time(9, 30) or end.time() < time(16, 0)):
print(f"filtrujeme {start.time()} {end.time()}")
# Define the time range
# start_time = pd.Timestamp(start.time(), tz=zoneNY).time()
# end_time = pd.Timestamp(end.time(), tz=zoneNY).time()
# Create a mask to filter rows within the specified time range
mask = (df.index.get_level_values('timestamp') >= start) & \
(df.index.get_level_values('timestamp') <= end)
# Apply the mask to the DataFrame
df = df[mask]
if exclude_conditions is not None:
print(f"excluding conditions {exclude_conditions}")
# Create a mask to exclude rows with any of the specified conditions
mask = df['conditions'].apply(lambda x: any(cond in exclude_conditions for cond in x))
# Filter out the rows with specified conditions
df = df[~mask]
if minsize is not None:
print(f"minsize {minsize}")
#exclude conditions
df = df[df['size'] >= minsize]
return df
def fetch_daily_stock_trades(symbol, start, end, exclude_conditions=None, minsize=None, force_remote=False, max_retries=5, backoff_factor=1):
#doc for this function
"""
Attempts to fetch stock trades either from cache or remote. When remote, it uses retry mechanism with exponential backoff.
Also it stores the data to cache if it is not already there.
by using force_remote - forcess using remote data always and thus refreshing cache for these dates
Attributes:
:param symbol: The stock symbol to fetch trades for.
:param start: The start time for the trade data.
:param end: The end time for the trade data.
:exclude_conditions: list of string conditions to exclude from the data
:minsize minimum size of trade to be included in the data
:force_remote will always use remote data and refresh cache
:param max_retries: Maximum number of retries.
:param backoff_factor: Factor to determine the next sleep time.
:return: TradesResponse object.
:raises: ConnectionError if all retries fail.
We use tradecache only for main sessison requests = 9:30 to 16:00
Do budoucna ukládat celý den BAC-20240203.cache.gz a z toho si pak filtrovat bud main sesssionu a extended
Ale zatim je uloženo jen main session v BAC-timestampopenu-timestampclose.cache.gz
"""
is_same_day = start.date() == end.date()
# Determine if the requested times fall within the main session
in_main_session = (time(9, 30) <= start.time() < time(16, 0)) and (time(9, 30) <= end.time() <= time(16, 0))
file_path = ''
if in_main_session:
filename_start = zoneNY.localize(datetime.combine(start.date(), time(9, 30)))
filename_end = zoneNY.localize(datetime.combine(end.date(), time(16, 0)))
daily_file = f"{symbol}-{int(filename_start.timestamp())}-{int(filename_end.timestamp())}.cache.gz"
file_path = f"{DATA_DIR}/tradecache/{daily_file}"
if not force_remote and os.path.exists(file_path):
print(f"Searching {str(start.date())} cache: " + daily_file)
with gzip.open(file_path, 'rb') as fp:
tradesResponse = pickle.load(fp)
print("FOUND in CACHE", daily_file)
return dict_to_df(tradesResponse, start, end, exclude_conditions, minsize)
print("NOT FOUND. Fetching from remote")
client = StockHistoricalDataClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True)
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbol, start=start, end=end)
last_exception = None
for attempt in range(max_retries):
try:
tradesResponse = client.get_stock_trades(stockTradeRequest)
is_empty = not tradesResponse[symbol]
print(f"Remote fetched: {is_empty=}", start, end)
if in_main_session and not is_empty:
current_time = datetime.now().astimezone(zoneNY)
if not (start < current_time < end):
with gzip.open(file_path, 'wb') as fp:
pickle.dump(tradesResponse, fp)
print("Saving to Trade CACHE", file_path)
else: # Don't save the cache if the market is still open
print("Not saving trade cache, market still open today")
return pd.DataFrame() if is_empty else dict_to_df(tradesResponse, start, end, exclude_conditions, minsize)
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
last_exception = e
time_module.sleep(backoff_factor * (2 ** attempt) + random.uniform(0, 1)) # Adding random jitter
print("All attempts to fetch data failed.")
raise ConnectionError(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
def fetch_trades_parallel(symbol, start_date, end_date, exclude_conditions = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES'), minsize = 100, force_remote = False, max_workers=None):
"""
Fetches trades for each day between start_date and end_date during market hours (9:30-16:00) in parallel and concatenates them into a single DataFrame.
:param symbol: Stock symbol.
:param start_date: Start date as datetime.
:param end_date: End date as datetime.
:return: DataFrame containing all trades from start_date to end_date.
"""
futures = []
results = []
market_open_days = fetch_calendar_data(start_date, end_date)
day_count = len(market_open_days)
print("Contains", day_count, " market days")
max_workers = min(10, max(2, day_count // 2)) if max_workers is None else max_workers # Heuristic: half the days to process, but at least 1 and no more than 10
with ThreadPoolExecutor(max_workers=max_workers) as executor:
#for single_date in (start_date + timedelta(days=i) for i in range((end_date - start_date).days + 1)):
for market_day in tqdm(market_open_days, desc="Processing market days"):
#start = datetime.combine(single_date, time(9, 30)) # Market opens at 9:30 AM
#end = datetime.combine(single_date, time(16, 0)) # Market closes at 4:00 PM
interval_from = zoneNY.localize(market_day.open)
interval_to = zoneNY.localize(market_day.close)
#pripadne orizneme pokud je pozadovane pozdejsi zacatek a drivejsi konek
start = start_date if interval_from < start_date else interval_from
#start = max(start_date, interval_from)
end = end_date if interval_to > end_date else interval_to
#end = min(end_date, interval_to)
future = executor.submit(fetch_daily_stock_trades, symbol, start, end, exclude_conditions, minsize, force_remote)
futures.append(future)
for future in tqdm(futures, desc="Fetching data"):
try:
result = future.result()
results.append(result)
except Exception as e:
print(f"Error fetching data for a day: {e}")
# Batch concatenation to improve speed
batch_size = 10
batches = [results[i:i + batch_size] for i in range(0, len(results), batch_size)]
final_df = pd.concat([pd.concat(batch, ignore_index=False) for batch in batches], ignore_index=False)
return final_df
#original version
#return pd.concat(results, ignore_index=False)
@jit(nopython=True)
def generate_dollar_bars_nb(ticks, amount_per_bar):
""""
Generates Dollar based bars from ticks.
There is also simple prevention of aggregation from different days
as described here https://chatgpt.com/c/17804fc1-a7bc-495d-8686-b8392f3640a2
Downside: split days by UTC (which is ok for main session, but when extended hours it should be reworked by preprocessing new column identifying session)
When trade is split into multiple bars it is counted as trade in each of the bars.
Other option: trade count can be proportionally distributed by weight (0.2 to 1st bar, 0.8 to 2nd bar) - but this is not implemented yet
https://chatgpt.com/c/ff4802d9-22a2-4b72-8ab7-97a91e7a515f
"""""
ohlcv_bars = []
remaining_amount = amount_per_bar
# Initialize bar values based on the first tick to avoid uninitialized values
open_price = ticks[0, 1]
high_price = ticks[0, 1]
low_price = ticks[0, 1]
close_price = ticks[0, 1]
volume = 0
trades_count = 0
current_day = np.floor(ticks[0, 0] / 86400) # Calculate the initial day from the first tick timestamp
bar_time = ticks[0, 0] # Initialize bar time with the time of the first tick
for tick in ticks:
tick_time = tick[0]
price = tick[1]
tick_volume = tick[2]
tick_amount = price * tick_volume
tick_day = np.floor(tick_time / 86400) # Calculate the day of the current tick
# Check if the new tick is from a different day, then close the current bar
if tick_day != current_day:
if trades_count > 0:
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, amount_per_bar, tick_time])
# Reset for the new day using the current tick data
open_price = price
high_price = price
low_price = price
close_price = price
volume = 0
trades_count = 0
remaining_amount = amount_per_bar
current_day = tick_day
bar_time = tick_time
# Start new bar if needed because of the dollar value
while tick_amount > 0:
if tick_amount < remaining_amount:
# Add the entire tick to the current bar
high_price = max(high_price, price)
low_price = min(low_price, price)
close_price = price
volume += tick_volume
remaining_amount -= tick_amount
trades_count += 1
tick_amount = 0
else:
# Calculate the amount of volume that fits within the remaining dollar amount
volume_to_add = remaining_amount / price
volume += volume_to_add # Update the volume here before appending and resetting
# Append the partially filled bar to the list
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count + 1, amount_per_bar, tick_time])
# Fill the current bar and continue with a new bar
tick_volume -= volume_to_add
tick_amount -= remaining_amount
# Reset bar values for the new bar using the current tick data
open_price = price
high_price = price
low_price = price
close_price = price
volume = 0 # Reset volume for the new bar
trades_count = 0
remaining_amount = amount_per_bar
# Increment bar time if splitting a trade
if tick_volume > 0: #pokud v tradu je jeste zbytek nastavujeme cas o nanosekundu vetsi
bar_time = tick_time + 1e-6
else:
bar_time = tick_time #jinak nastavujeme cas ticku
#bar_time = tick_time
# Add the last bar if it contains any trades
if trades_count > 0:
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, amount_per_bar, tick_time])
return np.array(ohlcv_bars)
@jit(nopython=True)
def generate_volume_bars_nb(ticks, volume_per_bar):
""""
Generates Volume based bars from ticks.
NOTE: UTC day split here (doesnt aggregate trades from different days)
but realized from UTC (ok for main session) - but needs rework for extension by preprocessing ticks_df and introduction sesssion column
When trade is split into multiple bars it is counted as trade in each of the bars.
Other option: trade count can be proportionally distributed by weight (0.2 to 1st bar, 0.8 to 2nd bar) - but this is not implemented yet
https://chatgpt.com/c/ff4802d9-22a2-4b72-8ab7-97a91e7a515f
"""""
ohlcv_bars = []
remaining_volume = volume_per_bar
# Initialize bar values based on the first tick to avoid uninitialized values
open_price = ticks[0, 1]
high_price = ticks[0, 1]
low_price = ticks[0, 1]
close_price = ticks[0, 1]
volume = 0
trades_count = 0
current_day = np.floor(ticks[0, 0] / 86400) # Calculate the initial day from the first tick timestamp
bar_time = ticks[0, 0] # Initialize bar time with the time of the first tick
buy_volume = 0 # Volume of buy trades
sell_volume = 0 # Volume of sell trades
prev_price = ticks[0, 1] # Initialize previous price for the first tick
for tick in ticks:
tick_time = tick[0]
price = tick[1]
tick_volume = tick[2]
tick_day = np.floor(tick_time / 86400) # Calculate the day of the current tick
# Check if the new tick is from a different day, then close the current bar
if tick_day != current_day:
if trades_count > 0:
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, tick_time, buy_volume, sell_volume])
# Reset for the new day using the current tick data
open_price = price
high_price = price
low_price = price
close_price = price
volume = 0
trades_count = 0
remaining_volume = volume_per_bar
current_day = tick_day
bar_time = tick_time # Update bar time to the current tick time
buy_volume = 0
sell_volume = 0
# Reset previous tick price (calulating imbalance for each day from the start)
prev_price = price
# Start new bar if needed because of the volume
while tick_volume > 0:
if tick_volume < remaining_volume:
# Add the entire tick to the current bar
high_price = max(high_price, price)
low_price = min(low_price, price)
close_price = price
volume += tick_volume
remaining_volume -= tick_volume
trades_count += 1
# Update buy and sell volumes
if price > prev_price:
buy_volume += tick_volume
elif price < prev_price:
sell_volume += tick_volume
tick_volume = 0
else:
# Fill the current bar and continue with a new bar
volume_to_add = remaining_volume
volume += volume_to_add
tick_volume -= volume_to_add
trades_count += 1
# Update buy and sell volumes
if price > prev_price:
buy_volume += volume_to_add
elif price < prev_price:
sell_volume += volume_to_add
# Append the completed bar to the list
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, tick_time, buy_volume, sell_volume])
# Reset bar values for the new bar using the current tick data
open_price = price
high_price = price
low_price = price
close_price = price
volume = 0
trades_count = 0
remaining_volume = volume_per_bar
buy_volume = 0
sell_volume = 0
# Increment bar time if splitting a trade
if tick_volume > 0: # If there's remaining volume in the trade, set bar time slightly later
bar_time = tick_time + 1e-6
else:
bar_time = tick_time # Otherwise, set bar time to the tick time
prev_price = price
# Add the last bar if it contains any trades
if trades_count > 0:
ohlcv_bars.append([bar_time, open_price, high_price, low_price, close_price, volume, trades_count, tick_time, buy_volume, sell_volume])
return np.array(ohlcv_bars)
@jit(nopython=True)
def generate_time_bars_nb(ticks, resolution):
# Initialize the start and end time
start_time = np.floor(ticks[0, 0] / resolution) * resolution
end_time = np.floor(ticks[-1, 0] / resolution) * resolution
# # Calculate number of bars
# num_bars = int((end_time - start_time) // resolution + 1)
# Using a list to append data only when trades exist
ohlcv_bars = []
# Variables to track the current bar
current_bar_index = -1
open_price = 0
high_price = -np.inf
low_price = np.inf
close_price = 0
volume = 0
trades_count = 0
vwap_cum_volume_price = 0 # Cumulative volume * price
cum_volume = 0 # Cumulative volume for VWAP
buy_volume = 0 # Volume of buy trades
sell_volume = 0 # Volume of sell trades
prev_price = ticks[0, 1] # Initialize previous price for the first tick
prev_day = np.floor(ticks[0, 0] / 86400) # Calculate the initial day from the first tick timestamp
for tick in ticks:
curr_time = tick[0] #updated time
tick_time = np.floor(tick[0] / resolution) * resolution
price = tick[1]
tick_volume = tick[2]
tick_day = np.floor(tick_time / 86400) # Calculate the day of the current tick
#if the new tick is from a new day, reset previous tick price (calculating imbalance starts over)
if tick_day != prev_day:
prev_price = price
prev_day = tick_day
# Check if the tick belongs to a new bar
if tick_time != start_time + current_bar_index * resolution:
if current_bar_index >= 0 and trades_count > 0: # Save the previous bar if trades happened
vwap = vwap_cum_volume_price / cum_volume if cum_volume > 0 else 0
ohlcv_bars.append([start_time + current_bar_index * resolution, open_price, high_price, low_price, close_price, volume, trades_count, curr_time, vwap, buy_volume, sell_volume])
# Reset bar values
current_bar_index = int((tick_time - start_time) / resolution)
open_price = price
high_price = price
low_price = price
volume = 0
trades_count = 0
vwap_cum_volume_price = 0
cum_volume = 0
buy_volume = 0
sell_volume = 0
# Update the OHLCV values for the current bar
high_price = max(high_price, price)
low_price = min(low_price, price)
close_price = price
volume += tick_volume
trades_count += 1
vwap_cum_volume_price += price * tick_volume
cum_volume += tick_volume
# Update buy and sell volumes
if price > prev_price:
buy_volume += tick_volume
elif price < prev_price:
sell_volume += tick_volume
prev_price = price
# Save the last processed bar
if trades_count > 0:
vwap = vwap_cum_volume_price / cum_volume if cum_volume > 0 else 0
ohlcv_bars.append([start_time + current_bar_index * resolution, open_price, high_price, low_price, close_price, volume, trades_count, curr_time, vwap, buy_volume, sell_volume])
return np.array(ohlcv_bars)
# Example usage
if __name__ == '__main__':
pass
#example in agg_vect.ipynb

View File

@ -1,14 +1,13 @@
from v2realbot.loader.aggregator import TradeAggregator, TradeAggregator2List, TradeAggregator2Queue
#from v2realbot.loader.cacher import get_cached_agg_data
from alpaca.trading.requests import GetCalendarRequest
from alpaca.trading.client import TradingClient
from alpaca.data.live import StockDataStream
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR, OFFLINE_MODE
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR
from alpaca.data.enums import DataFeed
from alpaca.data.historical import StockHistoricalDataClient
from alpaca.data.requests import StockLatestQuoteRequest, StockBarsRequest, StockTradesRequest
from threading import Thread, current_thread
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY
from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data
from v2realbot.utils.tlog import tlog
from datetime import datetime, timedelta, date
from threading import Thread
@ -16,6 +15,7 @@ import asyncio
from msgpack.ext import Timestamp
from msgpack import packb
from pandas import to_datetime
import gzip
import pickle
import os
from rich import print
@ -25,13 +25,15 @@ from tqdm import tqdm
import time
from traceback import format_exc
from collections import defaultdict
import requests
import v2realbot.utils.config_handler as cfh
"""
Trade offline data streamer, based on Alpaca historical data.
"""
class Trade_Offline_Streamer(Thread):
#pro BT se pripojujeme vzdy k primarnimu uctu - pouze tahame historicka data + calendar
client = StockHistoricalDataClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True)
clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
#clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
def __init__(self, time_from: datetime, time_to: datetime, btdata) -> None:
# Call the Thread class's init function
Thread.__init__(self)
@ -63,6 +65,35 @@ class Trade_Offline_Streamer(Thread):
def stop(self):
pass
def fetch_stock_trades(self, symbol, start, end, max_retries=5, backoff_factor=1):
"""
Attempts to fetch stock trades with exponential backoff. Raises an exception if all retries fail.
:param symbol: The stock symbol to fetch trades for.
:param start: The start time for the trade data.
:param end: The end time for the trade data.
:param max_retries: Maximum number of retries.
:param backoff_factor: Factor to determine the next sleep time.
:return: TradesResponse object.
:raises: ConnectionError if all retries fail.
"""
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbol, start=start, end=end)
last_exception = None
for attempt in range(max_retries):
try:
tradesResponse = self.client.get_stock_trades(stockTradeRequest)
print("Remote Fetch DAY DATA Complete", start, end)
return tradesResponse
except Exception as e:
print(f"Attempt {attempt + 1} failed: {e}")
last_exception = e
time.sleep(backoff_factor * (2 ** attempt))
print("All attempts to fetch data failed.")
send_to_telegram(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
raise ConnectionError(f"Failed to fetch stock trades after {max_retries} retries. Last exception: {str(last_exception)} and {format_exc()}")
# Override the run() function of Thread class
#odebrano async
def main(self):
@ -73,6 +104,8 @@ class Trade_Offline_Streamer(Thread):
print("call add streams to queue first")
return 0
cfh.config_handler.print_current_config()
#iterujeme nad streamy
for i in self.streams:
self.uniquesymbols.add(i.symbol)
@ -106,25 +139,21 @@ class Trade_Offline_Streamer(Thread):
#datetime.fromtimestamp(data['updated']).astimezone(zoneNY))
#REFACTOR STARTS HERE
#print(f"{self.time_from=} {self.time_to=}")
if OFFLINE_MODE:
if cfh.config_handler.get_val('OFFLINE_MODE'):
#just one day - same like time_from
den = str(self.time_to.date())
bt_day = Calendar(date=den,open="9:30",close="16:00")
cal_dates = [bt_day]
else:
calendar_request = GetCalendarRequest(start=self.time_from,end=self.time_to)
#toto zatim workaround - dat do retry funkce a obecne vymyslet exception handling, abych byl notifikovan a bylo videt okamzite v logu a na frontendu
try:
cal_dates = self.clientTrading.get_calendar(calendar_request)
except Exception as e:
print("CHYBA - retrying in 4s: " + str(e) + format_exc())
time.sleep(5)
cal_dates = self.clientTrading.get_calendar(calendar_request)
start_date = self.time_from # Assuming this is your start date
end_date = self.time_to # Assuming this is your end date
cal_dates = fetch_calendar_data(start_date, end_date)
#zatim podpora pouze main session
live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
#zatim podpora pouze 1 symbolu, predelat na froloop vsech symbolu ze symbpole
#minimalni jednotka pro CACHE je 1 den - a to jen marketopen to marketclose (extended hours not supported yet)
for day in cal_dates:
@ -167,9 +196,10 @@ class Trade_Offline_Streamer(Thread):
# stream.send_cache_to_output(cache)
# to_rem.append(stream)
#cache resime jen kdyz backtestujeme cely den
#cache resime jen kdyz backtestujeme cely den a mame sip datapoint (iex necachujeme)
#pokud ne tak ani necteme, ani nezapisujeme do cache
if self.time_to >= day.close:
if (self.time_to >= day.close and self.time_from <= day.open) and live_data_feed == DataFeed.SIP:
#tento odstavec obchazime pokud je nastaveno "dont_use_cache"
stream_btdata = self.to_run[symbpole[0]][0]
cache_btdata, file_btdata = stream_btdata.get_cache(day.open, day.close)
@ -197,7 +227,7 @@ class Trade_Offline_Streamer(Thread):
stream_main.enable_cache_output(day.open, day.close)
#trade daily file
daily_file = str(symbpole[0]) + '-' + str(int(day.open.timestamp())) + '-' + str(int(day.close.timestamp())) + '.cache'
daily_file = str(symbpole[0]) + '-' + str(int(day.open.timestamp())) + '-' + str(int(day.close.timestamp())) + '.cache.gz'
print(daily_file)
file_path = DATA_DIR + "/tradecache/"+daily_file
@ -207,23 +237,31 @@ class Trade_Offline_Streamer(Thread):
#pokud je start_time < trade < end_time
#odesíláme do queue
#jinak pass
with open (file_path, 'rb') as fp:
with gzip.open (file_path, 'rb') as fp:
tradesResponse = pickle.load(fp)
print("Loading from Trade CACHE", file_path)
#daily file doesnt exist
else:
# TODO refactor pro zpracovani vice symbolu najednou(multithreads), nyni predpokladame pouze 1
stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbpole[0], start=day.open,end=day.close)
tradesResponse = self.client.get_stock_trades(stockTradeRequest)
#implement retry mechanism
symbol = symbpole[0] # Assuming symbpole[0] is your target symbol
day_open = day.open # Assuming day.open is the start time
day_close = day.close # Assuming day.close is the end time
tradesResponse = self.fetch_stock_trades(symbol, day_open, day_close)
# # TODO refactor pro zpracovani vice symbolu najednou(multithreads), nyni predpokladame pouze 1
# stockTradeRequest = StockTradesRequest(symbol_or_symbols=symbpole[0], start=day.open,end=day.close)
# tradesResponse = self.client.get_stock_trades(stockTradeRequest)
print("Remote Fetch DAY DATA Complete", day.open, day.close)
#pokud jde o dnešní den a nebyl konec trhu tak cache neukládáme
if day.open < datetime.now().astimezone(zoneNY) < day.close:
print("not saving trade cache, market still open today")
#pokud jde o dnešní den a nebyl konec trhu tak cache neukládáme, pripadne pri iex datapointu necachujeme
if (day.open < datetime.now().astimezone(zoneNY) < day.close) or live_data_feed == DataFeed.IEX:
print("not saving trade cache, market still open today or IEX datapoint")
#ic(datetime.now().astimezone(zoneNY))
#ic(day.open, day.close)
else:
with open(file_path, 'wb') as fp:
with gzip.open(file_path, 'wb') as fp:
pickle.dump(tradesResponse, fp)
#zde už máme daily data
@ -257,7 +295,7 @@ class Trade_Offline_Streamer(Thread):
cnt = 1
for t in tqdm(tradesResponse[symbol]):
for t in tqdm(tradesResponse[symbol], desc="Loading Trades"):
#protoze je zde cely den, poustime dal, jen ty relevantni
#pokud je start_time < trade < end_time
@ -270,6 +308,9 @@ class Trade_Offline_Streamer(Thread):
#tmp = to_datetime(t['t'], utc=True).timestamp()
#obcas se v response objevoval None radek
if t is None:
continue
datum = to_datetime(t['t'], utc=True)

View File

@ -4,7 +4,7 @@
"""
from v2realbot.loader.aggregator import TradeAggregator2Queue
from alpaca.data.live import StockDataStream
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, ACCOUNT1_PAPER_FEED
from v2realbot.config import LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY
from alpaca.data.historical import StockHistoricalDataClient
from alpaca.data.requests import StockLatestQuoteRequest, StockBarsRequest, StockTradesRequest
from threading import Thread, current_thread
@ -12,6 +12,7 @@ from v2realbot.utils.utils import parse_alpaca_timestamp, ltp
from datetime import datetime, timedelta
from threading import Thread, Lock
from msgpack import packb
import v2realbot.utils.config_handler as cfh
"""
Shared streamer (can be shared amongst concurrently running strategies)
@ -19,9 +20,12 @@ from msgpack import packb
by strategies
"""
class Trade_WS_Streamer(Thread):
live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
##tento ws streamer je pouze jeden pro vsechny, tzn. vyuziváme natvrdo placena data primarniho uctu (nezalezi jestli paper nebo live)
client = StockDataStream(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=True, websocket_params={}, feed=ACCOUNT1_PAPER_FEED)
msg = f"Realtime Websocket connection will use FEED: {live_data_feed} and credential of ACCOUNT1"
print(msg)
#cfh.config_handler.print_current_config()
client = StockDataStream(LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, raw_data=True, websocket_params={}, feed=live_data_feed)
#uniquesymbols = set()
_streams = []
#to_run = dict()
@ -38,10 +42,23 @@ class Trade_WS_Streamer(Thread):
return False
def add_stream(self, obj: TradeAggregator2Queue):
print(Trade_WS_Streamer.msg)
print("stav pred pridavanim", Trade_WS_Streamer._streams)
Trade_WS_Streamer._streams.append(obj)
if Trade_WS_Streamer.client._running is False:
print("websocket zatim nebezi, pouze pridavame do pole")
#zde delame refresh clienta (pokud se zmenilo live_data_feed)
# live_data_feed = cfh.config_handler.get_val('LIVE_DATA_FEED')
# #po otestování přepnout jen pokud se live_data_feed změnil
# #if live_data_feed != Trade_WS_Streamer.live_data_feed:
# # Trade_WS_Streamer.live_data_feed = live_data_feed
# msg = f"REFRESH OF CLIENT! Realtime Websocket connection will use FEED: {live_data_feed} and credential of ACCOUNT1"
# print(msg)
# #cfh.config_handler.print_current_config()
# Trade_WS_Streamer.client = StockDataStream(LIVE_DATA_API_KEY, LIVE_DATA_SECRET_KEY, raw_data=True, websocket_params={}, feed=live_data_feed)
else:
print("websocket client bezi")
if self.symbol_exists(obj.symbol):
@ -59,7 +76,12 @@ class Trade_WS_Streamer(Thread):
#if it is the last item at all, stop the client from running
if len(Trade_WS_Streamer._streams) == 0:
print("removed last item from WS, stopping the client")
Trade_WS_Streamer.client.stop()
#Trade_WS_Streamer.client.stop_ws()
#Trade_WS_Streamer.client.stop()
#zkusíme explicitně zavolat kroky pro disconnect od ws
if Trade_WS_Streamer.client._stop_stream_queue.empty():
Trade_WS_Streamer.client._stop_stream_queue.put_nowait({"should_stop": True})
Trade_WS_Streamer.client._should_run = False
return
if not self.symbol_exists(obj.symbol):

View File

@ -1,26 +1,26 @@
import os,sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY, LOG_FILE
os.environ["KERAS_BACKEND"] = "jax"
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY, LOG_PATH, MODEL_DIR, VBT_DOC_DIRECTORY
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from datetime import datetime
import os
from rich import print
from fastapi import FastAPI, Depends, HTTPException, status
from fastapi import FastAPI, Depends, HTTPException, status, File, UploadFile, Response
from fastapi.security import APIKeyHeader
import uvicorn
from uuid import UUID
import v2realbot.controller.services as cs
from v2realbot.utils.ilog import get_log_window
from v2realbot.common.model import StrategyInstance, RunnerView, RunRequest, Trade, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, Bar, RunArchiveChange, TestList, ConfigItem, InstantIndicator, DataTablesRequest
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Depends, HTTPException, status, WebSocketException, Cookie, Query
from fastapi.responses import FileResponse, StreamingResponse
from v2realbot.common.model import RunManagerRecord, StrategyInstance, RunnerView, RunRequest, Trade, RunArchive, RunArchiveView, RunArchiveViewPagination, RunArchiveDetail, Bar, RunArchiveChange, TestList, ConfigItem, InstantIndicator, DataTablesRequest, AnalyzerInputs
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Depends, HTTPException, status, WebSocketException, Cookie, Query, Request
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from v2realbot.enums.enums import Env, Mode
from typing import Annotated
import os
import psutil
import uvicorn
import json
import orjson
from queue import Queue, Empty
from threading import Thread
import asyncio
@ -33,7 +33,18 @@ from time import sleep
import v2realbot.reporting.metricstools as mt
from v2realbot.reporting.metricstoolsimage import generate_trading_report_image
from traceback import format_exc
from v2realbot.reporting.optimizecutoffs import find_optimal_cutoff
#from v2realbot.reporting.optimizecutoffs import find_optimal_cutoff
import v2realbot.reporting.analyzer as ci
import shutil
from starlette.responses import JSONResponse, HTMLResponse, FileResponse, RedirectResponse
import mlroom
import mlroom.utils.mlutils as ml
from typing import List
import v2realbot.controller.run_manager as rm
import v2realbot.scheduler.ap_scheduler as aps
import re
import v2realbot.controller.configs as cf
import v2realbot.controller.services as cs
#from async io import Queue, QueueEmpty
#
# install()
@ -64,14 +75,68 @@ def api_key_auth(api_key: str = Depends(X_API_KEY)):
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Forbidden"
)
def authenticate_user(credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
correct_username = "david"
correct_password = "david"
if credentials.username == correct_username and credentials.password == correct_password:
return True
else:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect username or password",
headers={"WWW-Authenticate": "Basic"},
)
app = FastAPI()
root = os.path.dirname(os.path.abspath(__file__))
app.mount("/static", StaticFiles(html=True, directory=os.path.join(root, 'static')), name="static")
#app.mount("/static", StaticFiles(html=True, directory=os.path.join(root, 'static')), name="static")
app.mount("/media", StaticFiles(directory=str(MEDIA_DIRECTORY)), name="media")
#app.mount("/", StaticFiles(html=True, directory=os.path.join(root, 'static')), name="www")
security = HTTPBasic()
@app.get("/static/{path:path}")
async def static_files(request: Request, path: str, authenticated: bool = Depends(authenticate_user)):
root = os.path.dirname(os.path.abspath(__file__))
static_dir = os.path.join(root, 'static')
if not path or path == "/":
file_path = os.path.join(static_dir, 'index.html')
else:
file_path = os.path.join(static_dir, path)
# Check if path is a directory
if os.path.isdir(file_path):
# If it's a directory, try to serve index.html within that directory
index_path = os.path.join(file_path, 'index.html')
if os.path.exists(index_path):
return FileResponse(index_path)
else:
# Optionally, you can return a directory listing or a custom 404 page here
return HTMLResponse("Directory listing not enabled.", status_code=403)
if not os.path.exists(file_path):
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(file_path)
@app.get("/vbt-doc/{file_path:path}")
async def serve_protected_docs(file_path: str, credentials: HTTPBasicCredentials = Depends(authenticate_user)):
file_location = VBT_DOC_DIRECTORY / file_path
if file_location.is_dir(): # If it's a directory, serve index.html
index_file = file_location / "index.html"
if index_file.exists():
return FileResponse(index_file)
else:
raise HTTPException(status_code=404, detail="Index file not found")
elif file_location.exists():
return FileResponse(file_location)
else:
raise HTTPException(status_code=404, detail="File not found")
def get_current_username(
credentials: Annotated[HTTPBasicCredentials, Depends(security)]
@ -93,9 +158,9 @@ async def get_api_key(
return session or api_key
#TODO predelat z Async?
@app.get("/static")
async def get(username: Annotated[str, Depends(get_current_username)]):
return FileResponse("index.html")
# @app.get("/static")
# async def get(username: Annotated[str, Depends(get_current_username)]):
# return FileResponse("index.html")
@app.websocket("/runners/{runner_id}/ws")
async def websocket_endpoint(
@ -244,11 +309,13 @@ def _run_stratin(stratin_id: UUID, runReq: RunRequest):
runReq.bt_to = zoneNY.localize(runReq.bt_to)
#pokud jedeme nad test intervaly anebo je požadováno více dní - pouštíme jako batch day by day
#do budoucna dát na FE jako flag
if runReq.mode != Mode.LIVE and runReq.test_batch_id is not None or (runReq.bt_from.date() != runReq.bt_to.date()):
#print(runReq)
if runReq.mode not in [Mode.LIVE, Mode.PAPER] and (runReq.test_batch_id is not None or (runReq.bt_from is not None and runReq.bt_to is not None and runReq.bt_from.date() != runReq.bt_to.date())):
res, id = cs.run_batch_stratin(id=stratin_id, runReq=runReq)
else:
if runReq.weekdays_filter is not None:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Weekday only for backtest mode with batch (not single day)")
#not necessary for live/paper the weekdays are simply ignored, in the future maybe add validation if weekdays are presented
#if runReq.weekdays_filter is not None:
# raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Weekday only for backtest mode with batch (not single day)")
res, id = cs.run_stratin(id=stratin_id, runReq=runReq)
if res == 0: return id
elif res < 0:
@ -324,14 +391,14 @@ def migrate():
end_positions=row.get('end_positions'),
end_positions_avgp=row.get('end_positions_avgp'),
metrics=row.get('open_orders'),
#metrics=json.loads(row.get('metrics')) if row.get('metrics') else None,
#metrics=orjson.loads(row.get('metrics')) if row.get('metrics') else None,
stratvars_toml=row.get('stratvars_toml')
)
def get_all_archived_runners():
conn = pool.get_connection()
try:
conn.row_factory = lambda c, r: json.loads(r[0])
conn.row_factory = lambda c, r: orjson.loads(r[0])
c = conn.cursor()
res = c.execute(f"SELECT data FROM runner_header")
finally:
@ -376,7 +443,7 @@ def migrate():
SET strat_id=?, batch_id=?, symbol=?, name=?, note=?, started=?, stopped=?, mode=?, account=?, bt_from=?, bt_to=?, strat_json=?, settings=?, ilog_save=?, profit=?, trade_count=?, end_positions=?, end_positions_avgp=?, metrics=?, stratvars_toml=?
WHERE runner_id=?
''',
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, json.dumps(ra.strat_json), json.dumps(ra.settings), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, json.dumps(ra.metrics), ra.stratvars_toml, str(ra.id)))
(str(ra.strat_id), ra.batch_id, ra.symbol, ra.name, ra.note, ra.started, ra.stopped, ra.mode, ra.account, ra.bt_from, ra.bt_to, orjson.dumps(ra.strat_json).decode('utf-8'), orjson.dumps(ra.settings).decode('utf-8'), ra.ilog_save, ra.profit, ra.trade_count, ra.end_positions, ra.end_positions_avgp, orjson.dumps(ra.metrics).decode('utf-8'), ra.stratvars_toml, str(ra.id)))
conn.commit()
finally:
@ -454,6 +521,16 @@ def _delete_archived_runners_byIDs(runner_ids: list[UUID]):
elif res < 0:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"Error: {res}:{id}")
#get runners list based on batch_id
@app.get("/archived_runners/batch/{batch_id}", dependencies=[Depends(api_key_auth)])
def _get_archived_runnerslist_byBatchID(batch_id: str) -> list[UUID]:
res, set =cs.get_archived_runnerslist_byBatchID(batch_id)
if res == 0:
return set
else:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
#delete archive runner from header and detail
@app.delete("/archived_runners/batch/{batch_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
def _delete_archived_runners_byBatchID(batch_id: str):
@ -465,10 +542,11 @@ def _delete_archived_runners_byBatchID(batch_id: str):
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not changed: {res}:{batch_id}:{id}")
#WIP - TOM indicator preview from frontend
#return indicator value for archived runner
#WIP - TOM indicator preview from frontend f
#return indicator value for archived runner, return values list0 - bar indicators, list1 - ticks indicators
#TBD mozna predelat na dict pro prehlednost
@app.put("/archived_runners/{runner_id}/previewindicator", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
def _preview_indicator_byTOML(runner_id: UUID, indicator: InstantIndicator) -> list[float]:
def _preview_indicator_byTOML(runner_id: UUID, indicator: InstantIndicator) -> list[dict]:
#mozna pak pridat name
res, vals = cs.preview_indicator_byTOML(id=runner_id, indicator=indicator)
if res == 0: return vals
@ -509,13 +587,23 @@ def _get_all_archived_runners_detail() -> list[RunArchiveDetail]:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
#get archived runners detail by id
# @app.get("/archived_runners_detail/{runner_id}", dependencies=[Depends(api_key_auth)])
# def _get_archived_runner_details_byID(runner_id) -> RunArchiveDetail:
# res, set = cs.get_archived_runner_details_byID(runner_id)
# if res == 0:
# return set
# else:
# raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id} a {set}")
#this is the variant of above that skips parsing of json and returns JSON string returned from db
@app.get("/archived_runners_detail/{runner_id}", dependencies=[Depends(api_key_auth)])
def _get_archived_runner_details_byID(runner_id) -> RunArchiveDetail:
res, set = cs.get_archived_runner_details_byID(runner_id)
def _get_archived_runner_details_byID(runner_id: UUID):
res, data = cs.get_archived_runner_details_byID(id=runner_id, parsed=False)
if res == 0:
return set
# Return the raw JSON string as a plain Response
return Response(content=data, media_type="application/json")
else:
raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id} a {set}")
raise HTTPException(status_code=404, detail=f"No runner with id: {runner_id}. {data}")
#get archived runners detail by id
@app.get("/archived_runners_log/{runner_id}", dependencies=[Depends(api_key_auth)])
@ -526,30 +614,68 @@ def _get_archived_runner_log_byID(runner_id: UUID, timestamp_from: float, timest
else:
raise HTTPException(status_code=404, detail=f"No logs found with id: {runner_id} and between {timestamp_from} and {timestamp_to}")
def remove_ansi_codes(text):
ansi_escape = re.compile(r'\x1B[@-_][0-?]*[ -/]*[@-~]')
return ansi_escape.sub('', text)
# endregion
# A simple function to read the last lines of a file
def tail(file_path, n=10, buffer_size=1024):
with open(file_path, 'rb') as f:
f.seek(0, 2) # Move to the end of the file
file_size = f.tell()
lines = []
buffer = bytearray()
# def tail(file_path, n=10, buffer_size=1024):
# try:
# with open(file_path, 'rb') as f:
# f.seek(0, 2) # Move to the end of the file
# file_size = f.tell()
# lines = []
# buffer = bytearray()
for i in range(file_size // buffer_size + 1):
read_start = max(-buffer_size * (i + 1), -file_size)
f.seek(read_start, 2)
read_size = min(buffer_size, file_size - buffer_size * i)
buffer[0:0] = f.read(read_size) # Prepend to buffer
# for i in range(file_size // buffer_size + 1):
# read_start = max(-buffer_size * (i + 1), -file_size)
# f.seek(read_start, 2)
# read_size = min(buffer_size, file_size - buffer_size * i)
# buffer[0:0] = f.read(read_size) # Prepend to buffer
if buffer.count(b'\n') >= n + 1:
break
# if buffer.count(b'\n') >= n + 1:
# break
lines = buffer.decode(errors='ignore').splitlines()[-n:]
return lines
# lines = buffer.decode(errors='ignore').splitlines()[-n:]
# lines = [remove_ansi_codes(line) for line in lines]
# return lines
# except Exception as e:
# return [str(e) + format_exc()]
#updated version that reads lines line by line
def tail(file_path, n=10):
try:
with open(file_path, 'rb') as f:
f.seek(0, 2) # Move to the end of the file
file_size = f.tell()
lines = []
line = b''
f.seek(-1, 2) # Start at the last byte
while len(lines) < n and f.tell() != 0:
byte = f.read(1)
if byte == b'\n':
# Decode, remove ANSI codes, and append the line
lines.append(remove_ansi_codes(line.decode(errors='ignore')))
line = b''
else:
line = byte + line
f.seek(-2, 1) # Move backwards by two bytes
if line:
# Append any remaining line after removing ANSI codes
lines.append(remove_ansi_codes(line.decode(errors='ignore')))
return lines[::-1] # Reverse the list to get the lines in correct order
except Exception as e:
return [str(e)]
@app.get("/log", dependencies=[Depends(api_key_auth)])
def read_log(lines: int = 10):
log_path = LOG_FILE
def read_log(lines: int = 700, logfile: str = "strat.log"):
log_path = LOG_PATH / logfile
return {"lines": tail(log_path, lines)}
#get alpaca history bars
@ -583,23 +709,46 @@ def _generate_report_image(runner_ids: list[UUID]):
res, stream = generate_trading_report_image(runner_ids=runner_ids,stream=True)
if res == 0: return StreamingResponse(stream, media_type="image/png",headers={"Content-Disposition": "attachment; filename=report.png"})
elif res < 0:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{id}")
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{stream}")
except Exception as e:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {str(e)}" + format_exc())
#TODO toto bude zaklad pro obecnou funkci, ktera bude volat ruzne analyzy
#vstupem bude obecny objekt, ktery ponese nazev analyzy + atributy
@app.post("/batches/optimizecutoff/{batch_id}", dependencies=[Depends(api_key_auth)], responses={200: {"content": {"image/png": {}}}})
def _generate_analysis(batch_id: str):
@app.post("/batches/optimizecutoff", dependencies=[Depends(api_key_auth)], responses={200: {"content": {"image/png": {}}}})
def _optimize_cutoff(analyzerInputs: AnalyzerInputs):
try:
res, stream = find_optimal_cutoff(batch_id=batch_id, steps=50, stream=True)
if len(analyzerInputs.runner_ids) == 0 and analyzerInputs.batch_id is None:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: batch_id or runner_ids required")
#bude predelano na obecny analyzator s obecnym rozhrannim
res, stream = ci.find_optimal_cutoff.find_optimal_cutoff(runner_ids=analyzerInputs.runner_ids, batch_id=analyzerInputs.batch_id, stream=True, **analyzerInputs.params)
if res == 0: return StreamingResponse(stream, media_type="image/png",headers={"Content-Disposition": "attachment; filename=optimizedcutoff.png"})
elif res < 0:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{id}")
except Exception as e:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {str(e)}" + format_exc())
#obecna funkce pro analyzy
#vstupem bude obecny objekt, ktery ponese nazev analyzy + atributy
@app.post("/batches/analytics", dependencies=[Depends(api_key_auth)], responses={200: {"content": {"image/png": {}}}})
def _generate_analysis(analyzerInputs: AnalyzerInputs):
try:
if (analyzerInputs.runner_ids is None or len(analyzerInputs.runner_ids) == 0) and analyzerInputs.batch_id is None:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: batch_id or runner_ids required")
funct = "ci."+analyzerInputs.function+"."+analyzerInputs.function
custom_function = eval(funct)
stream = None
res, stream = custom_function(runner_ids=analyzerInputs.runner_ids, batch_id=analyzerInputs.batch_id, stream=True, **analyzerInputs.params)
if res == 0: return StreamingResponse(stream, media_type="image/png")
elif res < 0:
print("Error when generating analysis: ",str(stream))
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {res}:{stream}")
except Exception as e:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error: {str(e)}" + format_exc())
#TestList APIS - do budoucna predelat SQL do separatnich funkci
@app.post('/testlists/', dependencies=[Depends(api_key_auth)])
@ -610,7 +759,7 @@ def create_record(testlist: TestList):
# Insert the record into the database
conn = pool.get_connection()
cursor = conn.cursor()
cursor.execute("INSERT INTO test_list (id, name, dates) VALUES (?, ?, ?)", (testlist.id, testlist.name, json.dumps(testlist.dates, default=json_serial)))
cursor.execute("INSERT INTO test_list (id, name, dates) VALUES (?, ?, ?)", (testlist.id, testlist.name, orjson.dumps(testlist.dates, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME).decode('utf-8')))
conn.commit()
pool.release_connection(conn)
return testlist
@ -626,7 +775,7 @@ def get_testlists():
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
# API endpoint to retrieve a single record by ID
@app.get('/testlists/{record_id}')
@app.get('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
def get_testlist(record_id: str):
res, testlist = cs.get_testlist_byID(record_id=record_id)
@ -636,7 +785,7 @@ def get_testlist(record_id: str):
raise HTTPException(status_code=404, detail='Record not found')
# API endpoint to update a record
@app.put('/testlists/{record_id}')
@app.put('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
def update_testlist(record_id: str, testlist: TestList):
# Check if the record exists
conn = pool.get_connection()
@ -648,7 +797,7 @@ def update_testlist(record_id: str, testlist: TestList):
raise HTTPException(status_code=404, detail='Record not found')
# Update the record in the database
cursor.execute("UPDATE test_list SET name = ?, dates = ? WHERE id = ?", (testlist.name, json.dumps(testlist.dates, default=json_serial), record_id))
cursor.execute("UPDATE test_list SET name = ?, dates = ? WHERE id = ?", (testlist.name, orjson.dumps(testlist.dates, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME).decode('utf-8'), record_id))
conn.commit()
pool.release_connection(conn)
@ -656,7 +805,7 @@ def update_testlist(record_id: str, testlist: TestList):
return testlist
# API endpoint to delete a record
@app.delete('/testlists/{record_id}')
@app.delete('/testlists/{record_id}', dependencies=[Depends(api_key_auth)])
def delete_testlist(record_id: str):
# Check if the record exists
conn = pool.get_connection()
@ -679,7 +828,7 @@ def delete_testlist(record_id: str):
# Get all config items
@app.get("/config-items/", dependencies=[Depends(api_key_auth)])
def get_all_items() -> list[ConfigItem]:
res, sada = cs.get_all_config_items()
res, sada = cf.get_all_config_items()
if res == 0:
return sada
else:
@ -689,7 +838,7 @@ def get_all_items() -> list[ConfigItem]:
# Get a config item by ID
@app.get("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
def get_item(item_id: int)-> ConfigItem:
res, sada = cs.get_config_item_by_id(item_id)
res, sada = cf.get_config_item_by_id(item_id)
if res == 0:
return sada
else:
@ -698,7 +847,7 @@ def get_item(item_id: int)-> ConfigItem:
# Get a config item by Name
@app.get("/config-items-by-name/", dependencies=[Depends(api_key_auth)])
def get_item(item_name: str)-> ConfigItem:
res, sada = cs.get_config_item_by_name(item_name)
res, sada = cf.get_config_item_by_name(item_name)
if res == 0:
return sada
else:
@ -707,7 +856,7 @@ def get_item(item_name: str)-> ConfigItem:
# Create a new config item
@app.post("/config-items/", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
def create_item(config_item: ConfigItem) -> ConfigItem:
res, sada = cs.create_config_item(config_item)
res, sada = cf.create_config_item(config_item)
if res == 0: return sada
else:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id} {sada}")
@ -716,11 +865,11 @@ def create_item(config_item: ConfigItem) -> ConfigItem:
# Update a config item by ID
@app.put("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
def update_item(item_id: int, config_item: ConfigItem) -> ConfigItem:
res, sada = cs.get_config_item_by_id(item_id)
res, sada = cf.get_config_item_by_id(item_id)
if res != 0:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
res, sada = cs.update_config_item(item_id, config_item)
res, sada = cf.update_config_item(item_id, config_item)
if res == 0: return sada
else:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id}")
@ -729,17 +878,189 @@ def update_item(item_id: int, config_item: ConfigItem) -> ConfigItem:
# Delete a config item by ID
@app.delete("/config-items/{item_id}", dependencies=[Depends(api_key_auth)])
def delete_item(item_id: int) -> dict:
res, sada = cs.get_config_item_by_id(item_id)
res, sada = cf.get_config_item_by_id(item_id)
if res != 0:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=f"No data found")
res, sada = cs.delete_config_item(item_id)
res, sada = cf.delete_config_item(item_id)
if res == 0: return sada
else:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error not created: {res}:{id}")
# endregion
# region scheduler
# 1. Fetch All RunManagerRecords
@app.get("/run_manager_records/", dependencies=[Depends(api_key_auth)], response_model=List[RunManagerRecord])
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
def get_all_run_manager_records():
result, records = rm.fetch_all_run_manager_records()
if result != 0:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error fetching records")
return records
# 2. Fetch RunManagerRecord by ID
@app.get("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], response_model=RunManagerRecord)
#TODO zvazit rozsireni vystupu o strat_status (running/stopped)
def get_run_manager_record(record_id: UUID):
result, record = rm.fetch_run_manager_record_by_id(record_id)
if result == -2: # Record not found
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Record not found")
elif result != 0:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Error fetching record")
return record
# 3. Update RunManagerRecord
@app.patch("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
def update_run_manager_record(record_id: UUID, update_data: RunManagerRecord):
#make dates zone aware zoneNY
# if update_data.valid_from is not None:
# update_data.valid_from = zoneNY.localize(update_data.valid_from)
# if update_data.valid_to is not None:
# update_data.valid_to = zoneNY.localize(update_data.valid_to)
result, message = rm.update_run_manager_record(record_id, update_data)
if result == -2: # Update failed
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=message)
elif result != 0:
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Error during update {result} {message}")
return {"message": "Record updated successfully"}
# 4. Delete RunManagerRecord
@app.delete("/run_manager_records/{record_id}", dependencies=[Depends(api_key_auth)], status_code=status.HTTP_200_OK)
def delete_run_manager_record(record_id: UUID):
result, message = rm.delete_run_manager_record(record_id)
if result == -2: # Delete failed
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=message)
elif result != 0:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error during deletion {result} {message}")
return {"message": "Record deleted successfully"}
@app.post("/run_manager_records/", status_code=status.HTTP_201_CREATED)
def create_run_manager_record(new_record: RunManagerRecord, api_key_auth: Depends = Depends(api_key_auth)):
#make date zone aware - convert to zoneNY
# if new_record.valid_from is not None:
# new_record.valid_from = zoneNY.localize(new_record.valid_from)
# if new_record.valid_to is not None:
# new_record.valid_to = zoneNY.localize(new_record.valid_to)
result, record_id = rm.add_run_manager_record(new_record)
if result != 0:
raise HTTPException(status_code=status.HTTP_406_NOT_ACCEPTABLE, detail=f"Error during record creation: {result} {record_id}")
return {"id": record_id}
# endregion
#model section
#UPLOAD MODEL
@app.post("/model/upload_model", dependencies=[Depends(api_key_auth)])
async def _upload_model(file: UploadFile = File(...)):
# Specify the directory to save the file
#save_directory = DATA_DIR+'/models/'
save_directory = MODEL_DIR
os.makedirs(save_directory, exist_ok=True)
# Extract just the filename, discarding any path information
base_filename = os.path.basename(file.filename)
file_path = os.path.join(save_directory, base_filename)
# Save the uploaded file
with open(file_path, "wb") as buffer:
while True:
data = await file.read(1024) # Read in chunks
if not data:
break
buffer.write(data)
print(f"saved to {file_path=} file:{base_filename=}")
return {"filename": base_filename, "location": file_path}
#LIST MODELS
@app.get("/model/list-models", dependencies=[Depends(api_key_auth)])
def list_models():
#models_directory = DATA_DIR + '/models/'
models_directory = MODEL_DIR
# Ensure the directory exists
if not os.path.exists(models_directory):
return {"error": "Models directory does not exist."}
# List all files in the directory
model_files = sorted(os.listdir(models_directory))
return {"models": model_files}
@app.post("/model/upload-model", dependencies=[Depends(api_key_auth)])
def upload_model(file: UploadFile = File(...)):
if not file:
raise HTTPException(status_code=400, detail="No file uploaded.")
file_location = os.path.join(MODEL_DIR, file.filename)
with open(file_location, "wb+") as file_object:
shutil.copyfileobj(file.file, file_object)
return JSONResponse(status_code=200, content={"message": "Model uploaded successfully."})
@app.delete("/model/delete-model/{model_name}", dependencies=[Depends(api_key_auth)])
def delete_model(model_name: str):
model_path = os.path.join(MODEL_DIR, model_name)
if os.path.exists(model_path):
os.remove(model_path)
return {"message": "Model deleted successfully."}
else:
raise HTTPException(status_code=404, detail="Model not found.")
@app.get("/model/download-model/{model_name}", dependencies=[Depends(api_key_auth)])
def download_model(model_name: str):
model_path = os.path.join(MODEL_DIR, model_name)
if os.path.exists(model_path):
return FileResponse(path=model_path, filename=model_name, media_type='application/octet-stream')
else:
raise HTTPException(status_code=404, detail="Model not found.")
@app.get("/model/metadata/{model_name}", dependencies=[Depends(api_key_auth)])
def get_metadata(model_name: str):
try:
#loadujeme pouze v modu cfg only
model_instance = ml.load_model(file=model_name, directory=MODEL_DIR, cfg_only = True)
try:
metadata = model_instance.metadata
except AttributeError:
metadata = model_instance.__dict__
del metadata["scalerX"]
del metadata["scalerY"]
del metadata["model"]
except Exception as e:
metadata = "No Metada" + str(e) + format_exc()
return metadata
except Exception as e:
raise HTTPException(status_code=404, detail="Model not found."+str(e) + format_exc())
# model_path = os.path.join(MODEL_DIR, model_name)
# if os.path.exists(model_path):
# # Example: Retrieve metadata from a file or generate it
# metadata = {
# "name": model_name,
# "size": os.path.getsize(model_path),
# "last_modified": os.path.getmtime(model_path),
# # ... other metadata fields ...
# }
@app.get("/system-info")
def get_system_info():
"""Get system info, e.g. disk free space, used percentage ... """
disk_total = round(psutil.disk_usage('/').total / 1024**3, 1)
disk_used = round(psutil.disk_usage('/').used / 1024**3, 1)
disk_free = round(psutil.disk_usage('/').free / 1024**3, 1)
disk_used_percentage = round(psutil.disk_usage('/').percent, 1)
# memory_total = round(psutil.virtual_memory().total / 1024**3, 1)
# memory_perc = round(psutil.virtual_memory().percent, 1)
# cpu_time_user = round(psutil.cpu_times().user,1)
# cpu_time_system = round(psutil.cpu_times().system,1)
# cpu_time_idle = round(psutil.cpu_times().idle,1)
# network_sent = round(psutil.net_io_counters().bytes_sent / 1024**3, 6)
# network_recv = round(psutil.net_io_counters().bytes_recv / 1024**3, 6)
return {"disk_space": {"total": disk_total, "used": disk_used, "free" : disk_free, "used_percentage" : disk_used_percentage},
# "memory": {"total": memory_total, "used_percentage": memory_perc},
# "cpu_time" : {"user": cpu_time_user, "system": cpu_time_system, "idle": cpu_time_idle},
# "network": {"sent": network_sent, "received": network_recv}
}
# Thread function to insert data from the queue into the database
def insert_queue2db():
@ -754,7 +1075,7 @@ def insert_queue2db():
c = insert_conn.cursor()
insert_data = []
for i in loglist:
row = (str(runner_id), i["time"], json.dumps(i, default=json_serial))
row = (str(runner_id), i["time"], orjson.dumps(i, default=json_serial, option=orjson.OPT_PASSTHROUGH_DATETIME|orjson.OPT_NON_STR_KEYS).decode('utf-8'))
insert_data.append(row)
c.executemany("INSERT INTO runner_logs VALUES (?,?,?)", insert_data)
insert_conn.commit()
@ -766,7 +1087,10 @@ def insert_queue2db():
insert_queue.put(data) # Put the data back into the queue for retry
sleep(1) # You can adjust the sleep duration
else:
raise # If it's another error, raise it
raise # If it's another error, raise it
except Exception as e:
print("ERROR INSERT LOGQUEUE MODULE:" + str(e)+format_exc())
print(data)
#join cekej na dokonceni vsech
for i in cs.db.runners:
@ -779,15 +1103,25 @@ if __name__ == "__main__":
insert_thread = Thread(target=insert_queue2db)
insert_thread.start()
#attach debugGER to be able to debug scheduler jobs (run in separate threads)
# debugpy.listen(('localhost', 5678))
# print("Waiting for debugger to attach...")
# debugpy.wait_for_client() # Script will pause here until debugger is attached
#init scheduled tasks from schedule table
#Add APS scheduler job refresh
res, result = aps.initialize_jobs()
if res < 0:
#raise exception
raise Exception(f"Error {res} initializing APS jobs, error {result}")
uvicorn.run("__main__:app", host="0.0.0.0", port=8000, reload=False)
except Exception as e:
print("Error intializing app: " + str(e) + format_exc())
aps.scheduler.shutdown(wait=False)
finally:
print("closing insert_conn connection")
insert_conn.close()
print("closed")
##TODO pridat moznost behu na PAPER a LIVE per strategie
# zjistit zda order notification websocket muze bezet na obou soucasne
# pokud ne, mohl bych vyuzivat jen zive data
# a pro paper trading(live interface) a notifications bych pouzival separatni paper ucet
# to by asi slo

View File

@ -1,389 +0,0 @@
# from sklearn.preprocessing import StandardScaler
# # from keras.models import Sequential
# from v2realbot.enums.enums import PredOutput, Source, TargetTRFM
# from v2realbot.config import DATA_DIR
# from joblib import dump
# # import v2realbot.ml.mlutils as mu
# from v2realbot.utils.utils import slice_dict_lists
# import numpy as np
# from copy import deepcopy
# import v2realbot.controller.services as cs
# #Basic classes for machine learning
# #drzi model a jeho zakladni nastaveni
# #Sample Data
# sample_bars = {
# 'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
# 'high': [10, 11, 12, 13, 14,10, 11, 12, 13, 14,10, 11, 12, 13, 14],
# 'low': [8, 9, 7, 6, 8,8, 9, 7, 6, 8,8, 9, 7, 6, 8],
# 'volume': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300],
# 'close': [9, 10, 11, 12, 13,9, 10, 11, 12, 13,9, 10, 11, 12, 13],
# 'open': [9, 10, 8, 8, 8,9, 10, 8, 8, 8,9, 10, 8, 8, 8],
# 'resolution': [1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1, 1, 1, 1]
# }
# sample_indicators = {
# 'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
# 'fastslope': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
# 'fsdelta': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
# 'fastslope2': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
# 'ema': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300]
# }
# #Trida, která drzi instanci ML modelu a jeho konfigurace
# #take se pouziva jako nastroj na pripravu dat pro train a predikci
# #pozor samotna data trida neobsahuje, jen konfiguraci a pak samotny model
# class ModelML:
# def __init__(self, name: str,
# pred_output: PredOutput,
# bar_features: list,
# ind_features: list,
# input_sequences: int,
# target: str,
# target_reference: str,
# train_target_steps: int, #train
# train_target_transformation: TargetTRFM, #train
# train_epochs: int, #train
# train_runner_ids: list = None, #train
# train_batch_id: str = None, #train
# version: str = "1",
# note : str = None,
# use_bars: bool = True,
# train_remove_cross_sequences: bool = False, #train
# #standardne StandardScaler
# scalerX: StandardScaler = StandardScaler(),
# scalerY: StandardScaler = StandardScaler(),
# model, #Sequential = Sequential()
# )-> None:
# self.name = name
# self.version = version
# self.note = note
# self.pred_output: PredOutput = pred_output
# #model muze byt take bez barů, tzn. jen indikatory
# self.use_bars = use_bars
# #zajistime poradi
# bar_features.sort()
# ind_features.sort()
# self.bar_features = bar_features
# self.ind_features = ind_features
# if (train_runner_ids is None or len(train_runner_ids) == 0) and train_batch_id is None:
# raise Exception("train_runner_ids nebo train_batch_id musi byt vyplnene")
# self.train_runner_ids = train_runner_ids
# self.train_batch_id = train_batch_id
# #target cílový sloupec, který je používám přímo nebo transformován na binary
# self.target = target
# self.target_reference = target_reference
# self.train_target_steps = train_target_steps
# self.train_target_transformation = train_target_transformation
# self.input_sequences = input_sequences
# self.train_epochs = train_epochs
# #keep cross sequences between runners
# self.train_remove_cross_sequences = train_remove_cross_sequences
# self.scalerX = scalerX
# self.scalerY = scalerY
# self.model = model
# def save(self):
# filename = mu.get_full_filename(self.name,self.version)
# dump(self, filename)
# print(f"model {self.name} save")
# #create X data with features
# def column_stack_source(self, bars, indicators, verbose = 1) -> np.array:
# #create SOURCE DATA with features
# # bars and indicators dictionary and features as input
# poradi_sloupcu_inds = [feature for feature in self.ind_features if feature in indicators]
# indicator_data = np.column_stack([indicators[feature] for feature in self.ind_features if feature in indicators])
# if len(bars)>0:
# bar_data = np.column_stack([bars[feature] for feature in self.bar_features if feature in bars])
# poradi_sloupcu_bars = [feature for feature in self.bar_features if feature in bars]
# if verbose == 1:
# print("poradi sloupce v source_data", str(poradi_sloupcu_bars + poradi_sloupcu_inds))
# combined_day_data = np.column_stack([bar_data,indicator_data])
# else:
# combined_day_data = indicator_data
# if verbose == 1:
# print("poradi sloupce v source_data", str(poradi_sloupcu_inds))
# return combined_day_data
# #create TARGET(Y) data
# def column_stack_target(self, bars, indicators) -> np.array:
# target_base = []
# target_reference = []
# try:
# try:
# target_base = bars[self.target]
# except KeyError:
# target_base = indicators[self.target]
# try:
# target_reference = bars[self.target_reference]
# except KeyError:
# target_reference = indicators[self.target_reference]
# except KeyError:
# pass
# target_day_data = np.column_stack([target_base, target_reference])
# return target_day_data
# def load_runners_as_list(self, runner_id_list = None, batch_id = None):
# """Loads all runners data (bars, indicators) for given runners into list of dicts.
# List of runners/train_batch_id may be provided, or self.train_runner_ids/train_batch_id is taken instead.
# Returns:
# tuple (barslist, indicatorslist,) - lists with dictionaries for each runner
# """
# if runner_id_list is not None:
# runner_ids = runner_id_list
# print("loading runners for ",str(runner_id_list))
# elif batch_id is not None:
# print("Loading runners for train_batch_id:", batch_id)
# res, runner_ids = cs.get_archived_runnerslist_byBatchID(batch_id)
# elif self.train_batch_id is not None:
# print("Loading runners for TRAINING BATCH self.train_batch_id:", self.train_batch_id)
# res, runner_ids = cs.get_archived_runnerslist_byBatchID(self.train_batch_id)
# #pripadne bereme z listu runneru
# else:
# runner_ids = self.train_runner_ids
# print("loading runners for TRAINING runners ",str(self.train_runner_ids))
# barslist = []
# indicatorslist = []
# ind_keys = None
# for runner_id in runner_ids:
# bars, indicators = mu.load_runner(runner_id)
# print(f"runner:{runner_id}")
# if self.use_bars:
# barslist.append(bars)
# print(f"bars keys {len(bars)} lng {len(bars[self.bar_features[0]])}")
# indicatorslist.append(indicators)
# print(f"indi keys {len(indicators)} lng {len(indicators[self.ind_features[0]])}")
# if ind_keys is not None and ind_keys != len(indicators):
# raise Exception("V runnerech musi byt stejny pocet indikatoru")
# else:
# ind_keys = len(indicators)
# return barslist, indicatorslist
# #toto nejspis rozdelit na TRAIN mod (kdy ma smysl si brat nataveni napr. remove cross)
# def create_sequences(self, combined_data, target_data = None, remove_cross_sequences: bool = False, rows_in_day = None):
# """Creates sequences of given length seq and optionally target N steps in the future.
# Returns X(source) a Y(transformed target) - vrací take Y_untransformed - napr. referencni target column pro zobrazeni v grafu (napr. cenu)
# Volby pro transformaci targetu:
# - KEEPVAL (keep value as is)
# - KEEPVAL_MOVE(keep value, move target N steps in the future)
# další na zámysl (nejspíš ale data budu připravovat ve stratu a využívat jen KEEPy nahoře)
# - BINARY_prefix - sloupec založený na podmínce, výsledek je 0,1
# - BINARY_TREND RISING - podmínka založena, že v target columnu stoupají/klesají po target N steps
# (podvarianty BINARY TREND RISING(0-1), FALLING(0-1), BOTH(-1 - ))
# - BINARY_READY - předpřipravený sloupec(vytvořený ve strategii jako indikator), stačí jen posunout o target step
# - BINARY_READY_POSUNUTY - předpřipraveny sloupec (již posunutýo o target M) - stačí brát as is
# Args:
# combined_data: A list of combined data.
# target_data: A list of target data (0-target,1-target ref.column)
# remove_cross_sequences: If to remove crossday sequences
# rows_in_day: helper dict to remove crossday sequences
# return_untr: whether to return untransformed reference column
# Returns:
# A list of X sequences and a list of y sequences.
# """
# if remove_cross_sequences is True and rows_in_day is None:
# raise Exception("To remove crossday sequences, rows_in_day param required.")
# if target_data is not None and len(target_data) > 0:
# target_data_untr = target_data[:,1]
# target_data = target_data[:,0]
# else:
# target_data_untr = []
# target_data = []
# X_train = []
# y_train = []
# y_untr = []
# #comb data shape (4073, 13)
# #target shape (4073, 1)
# print("Start Sequencing")
# #range sekvence podle toho jestli je pozadovan MOVE nebo NE
# if self.train_target_transformation == TargetTRFM.KEEPVAL_MOVE:
# right_offset = self.input_sequences + self.train_target_steps
# else:
# right_offset= self.input_sequences
# for i in range(len(combined_data) - right_offset):
# #take neresime cross sekvence kdyz neni vyplneni target nebo neni vyplnena rowsinaday
# if remove_cross_sequences is True and not self.is_same_day(i,i + right_offset, rows_in_day):
# print(f"sekvence vyrazena. NEW Zacatek {combined_data[i, 0]} konec {combined_data[i + right_offset, 0]}")
# continue
# #pridame sekvenci
# X_train.append(combined_data[i:i + self.input_sequences])
# #target hodnotu bude ponecha (na radku mame jiz cilovy target)
# #nebo vezme hodnotu z N(train_target_steps) baru vpredu a da jako target k radku
# #je rizeno nastavenim right_offset vyse
# if target_data is not None and len(target_data) > 0:
# y_train.append(target_data[i + right_offset])
# #udela binary transformaci targetu
# # elif self.target_transformation == TargetTRFM.BINARY_TREND_UP:
# # #mini loop od 0 do počtu target steps - zda jsou successively rising
# # #radeji budu resit vizualne conditional indikatorem pri priprave dat
# # rising = False
# # for step in range(0,self.train_target_steps):
# # if target_data[i + self.input_sequences + step] < target_data[i + self.input_sequences + step + 1]:
# # rising = True
# # else:
# # rising = False
# # break
# # y_train.append([1] if rising else [0])
# # #tato zakomentovana varianta porovnava jen cenu ted a cenu na target baru
# # #y_train.append([1] if target_data[i + self.input_sequences] < target_data[i + self.input_sequences + self.train_target_steps] else [0])
# if target_data is not None and len(target_data) > 0:
# y_untr.append(target_data_untr[i + self.input_sequences])
# return np.array(X_train), np.array(y_train), np.array(y_untr)
# def is_same_day(self, idx_start, idx_end, rows_in_day):
# """Helper for sequencing enables to recognize if the start/end index are from the same day.
# Used for sequences to remove cross runner(day) sequences.
# Args:
# idx_start: Start index
# idx_end: End index
# rows_in_day: 1D array containing number of rows(bars,inds) for each day.
# Cumsumed defines edges where each day ends. [10,30,60]
# Returns:
# A boolean
# refactor to vectors if possible
# i_b, i_e
# podm_pole = i_b<pole and i_s >= pole
# [10,30,60]
# """
# for i in rows_in_day:
# #jde o polozku na pomezi - vyhazujeme
# if idx_start < i and idx_end >= i:
# return False
# if idx_start < i and idx_end < i:
# return True
# return None
# #vytvori X a Y data z nastaveni self
# #pro vybrane runnery stahne data, vybere sloupce dle faature a target
# #a vrátí jako sloupce v numpy poli
# #zaroven vraci i rows_in_day pro nasledny sekvencing
# def load_data(self, runners_ids: list = None, batch_id: list = None, source: Source = Source.RUNNERS):
# """Service to load data for the model. Can be used for training or for vector prediction.
# If input data are not provided, it will get the value from training model configuration (train_runners_ids, train_batch_id)
# Args:
# runner_ids:
# batch_id:
# source: To load sample data.
# Returns:
# source_data,target_data,rows_in_day
# """
# rows_in_day = []
# indicatorslist = []
# #bud natahneme samply
# if source == Source.SAMPLES:
# if self.use_bars:
# bars = sample_bars
# else:
# bars = {}
# indicators = sample_indicators
# indicatorslist.append(indicators)
# #nebo dotahneme pozadovane runnery
# else:
# #nalodujeme vsechny runnery jako listy (bud z runnerids nebo dle batchid)
# barslist, indicatorslist = self.load_runners_as_list(runner_id_list=runners_ids, batch_id=batch_id)
# #nerozumim
# bl = deepcopy(barslist)
# il = deepcopy(indicatorslist)
# #a zmergujeme jejich data dohromady
# bars = mu.merge_dicts(bl)
# indicators = mu.merge_dicts(il)
# #zaroven vytvarime pomocny list, kde stale drzime pocet radku per day (pro nasledny sekvencing)
# #zatim nad indikatory - v budoucnu zvazit, kdyby jelo neco jen nad barama
# for i, val in enumerate(indicatorslist):
# #pro prvni klic z indikatoru pocteme cnt
# pocet = len(indicatorslist[i][self.ind_features[0]])
# print("pro runner vkladame pocet", pocet)
# rows_in_day.append(pocet)
# rows_in_day = np.array(rows_in_day)
# rows_in_day = np.cumsum(rows_in_day)
# print("celkove pole rows_in_day(cumsum):", rows_in_day)
# print("Data LOADED.")
# print(f"number of indicators {len(indicators)}")
# print(f"number of bar elements{len(bars)}")
# print(f"ind list length {len(indicators['time'])}")
# print(f"bar list length {len(bars['time'])}")
# self.validate_available_features(bars, indicators)
# print("Preparing FEATURES")
# source_data, target_data = self.stack_bars_indicators(bars, indicators)
# return source_data, target_data, rows_in_day
# def validate_available_features(self, bars, indicators):
# for k in self.bar_features:
# if not k in bars.keys():
# raise Exception(f"Missing bar feature {k}")
# for k in self.ind_features:
# if not k in indicators.keys():
# raise Exception(f"Missing ind feature {k}")
# def stack_bars_indicators(self, bars, indicators):
# print("Stacking dicts to numpy")
# print("Source - X")
# source_data = self.column_stack_source(bars, indicators)
# print("shape", np.shape(source_data))
# print("Target - Y", self.target)
# target_data = self.column_stack_target(bars, indicators)
# print("shape", np.shape(target_data))
# return source_data, target_data
# #pomocna sluzba, ktera provede vsechny transformace a inverzni scaling a vyleze z nej predikce
# #vstupem je standardni format ve strategii (state.bars, state.indicators)
# #vystupem je jedna hodnota
# def predict(self, bars, indicators) -> float:
# #oriznuti podle seqence - pokud je nastaveno v modelu
# lastNbars = slice_dict_lists(bars, self.input_sequences)
# lastNindicators = slice_dict_lists(indicators, self.input_sequences)
# # print("last5bars", lastNbars)
# # print("last5indicators",lastNindicators)
# combined_live_data = self.column_stack_source(lastNbars, lastNindicators, verbose=0)
# #print("combined_live_data",combined_live_data)
# combined_live_data = self.scalerX.transform(combined_live_data)
# combined_live_data = np.array(combined_live_data)
# #print("last 5 values combined data shape", np.shape(combined_live_data))
# #converts to 3D array
# # 1 number of samples in the array.
# # 2 represents the sequence length.
# # 3 represents the number of features in the data.
# combined_live_data = combined_live_data.reshape((1, self.input_sequences, combined_live_data.shape[1]))
# # Make a prediction
# prediction = self.model(combined_live_data, training=False)
# #prediction = prediction.reshape((1, 1))
# # Convert the prediction back to the original scale
# prediction = self.scalerY.inverse_transform(prediction)
# return float(prediction)

View File

@ -1,55 +0,0 @@
import numpy as np
# import v2realbot.controller.services as cs
from joblib import load
from v2realbot.config import DATA_DIR
def get_full_filename(name, version = "1"):
return DATA_DIR+'/models/'+name+'_v'+version+'.pkl'
def load_model(name, version = "1"):
filename = get_full_filename(name, version)
return load(filename)
#pomocne funkce na manipulaci s daty
def merge_dicts(dict_list):
# Initialize an empty merged dictionary
merged_dict = {}
# Iterate through the dictionaries in the list
for i,d in enumerate(dict_list):
for key, value in d.items():
if key in merged_dict:
merged_dict[key] += value
else:
merged_dict[key] = value
#vlozime element s idenitfikaci runnera
return merged_dict
# # Initialize the merged dictionary with the first dictionary in the list
# merged_dict = dict_list[0].copy()
# merged_dict["index"] = []
# # Iterate through the remaining dictionaries and concatenate their lists
# for i, d in enumerate(dict_list[1:]):
# merged_dict["index"] =
# for key, value in d.items():
# if key in merged_dict:
# merged_dict[key] += value
# else:
# merged_dict[key] = value
# return merged_dict
def load_runner(runner_id):
res, sada = cs.get_archived_runner_details_byID(runner_id)
if res == 0:
print("ok")
else:
print("error",res,sada)
raise Exception(f"error loading runner {runner_id} : {res} {sada}")
bars = sada["bars"]
indicators = sada["indicators"][0]
return bars, indicators

View File

@ -0,0 +1,104 @@
import matplotlib
import matplotlib.dates as mdates
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
import pandas as pd
def daily_profit_distribution(runner_ids: list = None, batch_id: str = None, stream: bool = False):
try:
res, trades, days_cnt = load_trades(runner_ids, batch_id)
if res != 0:
raise Exception("Error in loading trades")
#print(trades)
# Convert list of Trade objects to DataFrame
trades_df = pd.DataFrame([t.__dict__ for t in trades if t.status == "closed"])
# Ensure 'exit_time' is a datetime object and make it timezone-naive if necessary
trades_df['exit_time'] = pd.to_datetime(trades_df['exit_time']).dt.tz_convert(zoneNY)
trades_df['date'] = trades_df['exit_time'].dt.date
daily_profit = trades_df.groupby(['date', 'direction']).profit.sum().unstack(fill_value=0)
#print("dp",daily_profit)
daily_cumulative_profit = trades_df.groupby('date').profit.sum().cumsum()
# Create the plot
fig, ax1 = plt.subplots(figsize=(10, 6))
# Bar chart for daily profit composition
daily_profit.plot(kind='bar', stacked=True, ax=ax1, color=['green', 'red'], zorder=2)
ax1.set_ylabel('Daily Profit')
ax1.set_xlabel('Date')
#ax1.xaxis.set_major_locator(MaxNLocator(10))
# Line chart for cumulative daily profit
#ax2 = ax1.twinx()
#print(daily_cumulative_profit)
#print(daily_cumulative_profit.index)
#ax2.plot(daily_cumulative_profit.index, daily_cumulative_profit, color='yellow', linestyle='-', linewidth=2, zorder=3)
#ax2.set_ylabel('Cumulative Profit')
# Setting the secondary y-axis range dynamically based on cumulative profit values
# ax2.set_ylim(daily_cumulative_profit.min() - (daily_cumulative_profit.std() * 2),
# daily_cumulative_profit.max() + (daily_cumulative_profit.std() * 2))
# Dark mode settings
ax1.set_facecolor('black')
# ax1.grid(True)
#ax2.set_facecolor('black')
fig.patch.set_facecolor('black')
ax1.tick_params(colors='white')
#ax2.tick_params(colors='white')
# ax1.xaxis_date()
# ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d.%m.', tz=zoneNY))
ax1.tick_params(axis='x', rotation=45)
# Footer
footer_text = f'Days Count: {days_cnt} | Parameters: {{"runner_ids": {len(runner_ids) if runner_ids is not None else None}, "batch_id": {batch_id}, "stream": {stream}}}'
plt.figtext(0.5, 0.01, footer_text, wrap=True, horizontalalignment='center', fontsize=8, color='white')
# Save or stream the plot
if stream:
img_stream = BytesIO()
plt.savefig(img_stream, format='png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
img_stream.seek(0)
plt.close(fig)
return (0, img_stream)
else:
plt.savefig(f'{__name__}.png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
plt.close(fig)
return (0, None)
except Exception as e:
# Detailed error reporting
return (-1, str(e) + format_exc())
# Local debugging
if __name__ == '__main__':
batch_id = "6f9b012c"
res, val = daily_profit_distribution(batch_id=batch_id)
print(res, val)

View File

@ -0,0 +1,8 @@
import os
for filename in os.listdir("v2realbot/reporting/analyzer"):
if filename.endswith(".py") and filename != "__init__.py":
# __import__(filename[:-3])
__import__(f"v2realbot.reporting.analyzer.{filename[:-3]}")
#importlib.import_module()

View File

@ -0,0 +1,104 @@
import matplotlib
import matplotlib.dates as mdates
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
import pandas as pd
def daily_profit_distribution(runner_ids: list = None, batch_id: str = None, stream: bool = False):
try:
res, trades, days_cnt = load_trades(runner_ids, batch_id)
if res != 0:
raise Exception("Error in loading trades")
#print(trades)
# Convert list of Trade objects to DataFrame
trades_df = pd.DataFrame([t.__dict__ for t in trades if t.status == "closed"])
# Ensure 'exit_time' is a datetime object and make it timezone-naive if necessary
trades_df['exit_time'] = pd.to_datetime(trades_df['exit_time']).dt.tz_convert(zoneNY)
trades_df['date'] = trades_df['exit_time'].dt.date
daily_profit = trades_df.groupby(['date', 'direction']).profit.sum().unstack(fill_value=0)
#print("dp",daily_profit)
daily_cumulative_profit = trades_df.groupby('date').profit.sum().cumsum()
# Create the plot
fig, ax1 = plt.subplots(figsize=(10, 6))
# Bar chart for daily profit composition
daily_profit.plot(kind='bar', stacked=True, ax=ax1, color=['green', 'red'], zorder=2)
ax1.set_ylabel('Daily Profit')
ax1.set_xlabel('Date')
#ax1.xaxis.set_major_locator(MaxNLocator(10))
# Line chart for cumulative daily profit
#ax2 = ax1.twinx()
#print(daily_cumulative_profit)
#print(daily_cumulative_profit.index)
#ax2.plot(daily_cumulative_profit.index, daily_cumulative_profit, color='yellow', linestyle='-', linewidth=2, zorder=3)
#ax2.set_ylabel('Cumulative Profit')
# Setting the secondary y-axis range dynamically based on cumulative profit values
# ax2.set_ylim(daily_cumulative_profit.min() - (daily_cumulative_profit.std() * 2),
# daily_cumulative_profit.max() + (daily_cumulative_profit.std() * 2))
# Dark mode settings
ax1.set_facecolor('black')
# ax1.grid(True)
#ax2.set_facecolor('black')
fig.patch.set_facecolor('black')
ax1.tick_params(colors='white')
#ax2.tick_params(colors='white')
# ax1.xaxis_date()
# ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d.%m.', tz=zoneNY))
ax1.tick_params(axis='x', rotation=45)
# Footer
footer_text = f'Days Count: {days_cnt} | Parameters: {{"runner_ids": {len(runner_ids) if runner_ids is not None else None}, "batch_id": {batch_id}, "stream": {stream}}}'
plt.figtext(0.5, 0.01, footer_text, wrap=True, horizontalalignment='center', fontsize=8, color='white')
# Save or stream the plot
if stream:
img_stream = BytesIO()
plt.savefig(img_stream, format='png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
img_stream.seek(0)
plt.close(fig)
return (0, img_stream)
else:
plt.savefig(f'{__name__}.png', bbox_inches='tight', facecolor=fig.get_facecolor(), edgecolor='none')
plt.close(fig)
return (0, None)
except Exception as e:
# Detailed error reporting
return (-1, str(e) + format_exc())
# Local debugging
if __name__ == '__main__':
batch_id = "6f9b012c"
res, val = daily_profit_distribution(batch_id=batch_id)
print(res, val)

View File

@ -0,0 +1,203 @@
import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from traceback import format_exc
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
def example_plugin(runner_ids: list = None, batch_id: str = None, stream: bool = False, rem_outliers:bool = False, file: str = "optimalcutoff.png",steps:int = 50):
try:
res, trades, days = load_trades(runner_ids, batch_id)
if res < 0:
return (res, trades)
cnt_max = days
#in trades is list of Trades
#print(trades)
##THIS IS how you can fetch historical data for given period and for given TimeFrame (if needed in future)
# symbol = sada.symbol
# #hour bars for backtested period
# print(start_date,end_date)
# bars= get_historical_bars(symbol, start_date, end_date, TimeFrame.Hour)
# print("bars for given period",bars)
# """Bars a dictionary with the following keys:
# * high: A list of high prices
# * low: A list of low prices
# * volume: A list of volumes
# * close: A list of close prices
# * hlcc4: A list of HLCC4 indicators
# * open: A list of open prices
# * time: A list of times in UTC (ISO 8601 format)
# * trades: A list of number of trades
# * resolution: A list of resolutions (all set to 'D')
# * confirmed: A list of booleans (all set to True)
# * vwap: A list of VWAP indicator
# * updated: A list of booleans (all set to True)
# * index: A list of integers (from 0 to the length of the list of daily bars)
# """
# Filter to only use trades with status 'CLOSED'
closed_trades = [trade for trade in trades if trade.status == TradeStatus.CLOSED]
#print(closed_trades)
if len(closed_trades) == 0:
return -1, "image generation no closed trades"
# # Group trades by date and calculate daily profits
# trades_by_day = defaultdict(list)
# for trade in trades:
# if trade.status == TradeStatus.CLOSED and trade.exit_time:
# trade_day = trade.exit_time.date()
# trades_by_day[trade_day].append(trade)
# Precompute daily cumulative profits
daily_cumulative_profits = defaultdict(list)
for trade in trades:
if trade.status == TradeStatus.CLOSED and trade.exit_time:
day = trade.exit_time.date()
daily_cumulative_profits[day].append(trade.profit)
for day in daily_cumulative_profits:
daily_cumulative_profits[day] = np.cumsum(daily_cumulative_profits[day])
if rem_outliers:
# Remove outliers based on z-scores
def remove_outliers(cumulative_profits):
all_profits = [profit[-1] for profit in cumulative_profits.values() if len(profit) > 0]
z_scores = zscore(all_profits)
print(z_scores)
filtered_profits = {}
for day, profits in cumulative_profits.items():
if len(profits) > 0:
day_z_score = z_scores[list(cumulative_profits.keys()).index(day)]
if abs(day_z_score) < 3: # Adjust threshold as needed
filtered_profits[day] = profits
return filtered_profits
daily_cumulative_profits = remove_outliers(daily_cumulative_profits)
# OPT2 Calculate profit_range and loss_range based on all cumulative profits
all_cumulative_profits = np.concatenate([profits for profits in daily_cumulative_profits.values()])
max_cumulative_profit = np.max(all_cumulative_profits)
min_cumulative_profit = np.min(all_cumulative_profits)
profit_range = (0, max_cumulative_profit) if max_cumulative_profit > 0 else (0, 0)
loss_range = (min_cumulative_profit, 0) if min_cumulative_profit < 0 else (0, 0)
print("Calculated ranges", profit_range, loss_range)
num_points = steps # Adjust for speed vs accuracy
profit_cutoffs = np.linspace(*profit_range, num_points)
loss_cutoffs = np.linspace(*loss_range, num_points)
# OPT 3Statically define ranges for loss and profit cutoffs
# profit_range = (0, 1000) # Adjust based on your data
# loss_range = (-1000, 0)
# num_points = 20 # Adjust for speed vs accuracy
profit_cutoffs = np.linspace(*profit_range, num_points)
loss_cutoffs = np.linspace(*loss_range, num_points)
total_profits_matrix = np.zeros((len(profit_cutoffs), len(loss_cutoffs)))
for i, profit_cutoff in enumerate(profit_cutoffs):
for j, loss_cutoff in enumerate(loss_cutoffs):
total_profit = 0
for daily_profit in daily_cumulative_profits.values():
cutoff_index = np.where((daily_profit >= profit_cutoff) | (daily_profit <= loss_cutoff))[0]
if cutoff_index.size > 0:
total_profit += daily_profit[cutoff_index[0]]
else:
total_profit += daily_profit[-1] if daily_profit.size > 0 else 0
total_profits_matrix[i, j] = total_profit
# Find the optimal combination
optimal_idx = np.unravel_index(total_profits_matrix.argmax(), total_profits_matrix.shape)
optimal_profit_cutoff = profit_cutoffs[optimal_idx[0]]
optimal_loss_cutoff = loss_cutoffs[optimal_idx[1]]
max_profit = total_profits_matrix[optimal_idx]
# Plotting
# Setting up dark mode for the plots
plt.style.use('dark_background')
# Optionally, you can further customize colors, labels, and axes
params = {
'axes.titlesize': 9,
'axes.labelsize': 8,
'xtick.labelsize': 9,
'ytick.labelsize': 9,
'axes.labelcolor': '#a9a9a9', #a1a3aa',
'axes.facecolor': '#121722', #'#0e0e0e', #202020', # Dark background for plot area
'axes.grid': False, # Turn off the grid globally
'grid.color': 'gray', # If the grid is on, set grid line color
'grid.linestyle': '--', # Grid line style
'grid.linewidth': 1,
'xtick.color': '#a9a9a9',
'ytick.color': '#a9a9a9',
'axes.edgecolor': '#a9a9a9'
}
plt.rcParams.update(params)
plt.figure(figsize=(10, 8))
sns.heatmap(total_profits_matrix, xticklabels=np.rint(loss_cutoffs).astype(int), yticklabels=np.rint(profit_cutoffs).astype(int), cmap="viridis")
plt.xticks(rotation=90) # Rotate x-axis labels to be vertical
plt.yticks(rotation=0) # Keep y-axis labels horizontal
plt.gca().invert_yaxis()
plt.gca().invert_xaxis()
plt.suptitle(f"Total Profit for Combinations of Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
plt.title(f"Optimal Profit Cutoff: {optimal_profit_cutoff:.2f}, Optimal Loss Cutoff: {optimal_loss_cutoff:.2f}, Max Profit: {max_profit:.2f}", fontsize=10)
plt.xlabel("Loss Cutoff")
plt.ylabel("Profit Cutoff")
if stream is False:
plt.savefig(file)
plt.close()
print(f"Optimal Profit Cutoff(rem_outliers:{rem_outliers}): {optimal_profit_cutoff}, Optimal Loss Cutoff: {optimal_loss_cutoff}, Max Profit: {max_profit}")
return 0, None
else:
# Return the image as a BytesIO stream
img_stream = BytesIO()
plt.savefig(img_stream, format='png')
plt.close()
img_stream.seek(0) # Rewind the stream to the beginning
return 0, img_stream
except Exception as e:
# Detailed error reporting
return (-1, str(e) + format_exc())
# Example usage
# trades = [list of Trade objects]
if __name__ == '__main__':
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
# generate_trading_report_image(runner_ids=id_list)
batch_id = "73ad1866"
res, val = example_plugin(batch_id=batch_id, file="optimal_cutoff_vectorized.png",steps=20)
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")
print(res,val)

View File

@ -0,0 +1,246 @@
import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
#LOSS and PROFIT without GRAPH
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, mode:str="absolute", rem_outliers:bool = False, z_score_threshold:int = 3, file: str = "optimalcutoff.png",steps:int = 50):
#TODO dopracovat drawdown a minimalni a maximalni profity nikoliv cumulovane, zamyslet se
#TODO list of runner_ids
#TODO pridelat na vytvoreni runnera a batche, samostatne REST API + na remove archrunnera
if runner_ids is None and batch_id is None:
return -2, f"runner_id or batch_id must be present"
if batch_id is not None:
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id)
if res != 0:
print(f"no batch {batch_id} found")
return -1, f"no batch {batch_id} found"
trades = []
cnt_max = len(runner_ids)
cnt = 0
#zatim zjistujeme start a end z min a max dni - jelikoz muze byt i seznam runner_ids a nejenom batch
end_date = None
start_date = None
for id in runner_ids:
cnt += 1
#get runner
res, sada =cs.get_archived_runner_header_byID(id)
if res != 0:
print(f"no runner {id} found")
return -1, f"no runner {id} found"
#print("archrunner")
#print(sada)
if cnt == 1:
start_date = sada.bt_from if sada.mode in [Mode.BT,Mode.PREP] else sada.started
if cnt == cnt_max:
end_date = sada.bt_to if sada.mode in [Mode.BT or Mode.PREP] else sada.stopped
# Parse trades
trades_dicts = sada.metrics["prescr_trades"]
for trade_dict in trades_dicts:
trade_dict['last_update'] = datetime.fromtimestamp(trade_dict.get('last_update')).astimezone(zoneNY) if trade_dict['last_update'] is not None else None
trade_dict['entry_time'] = datetime.fromtimestamp(trade_dict.get('entry_time')).astimezone(zoneNY) if trade_dict['entry_time'] is not None else None
trade_dict['exit_time'] = datetime.fromtimestamp(trade_dict.get('exit_time')).astimezone(zoneNY) if trade_dict['exit_time'] is not None else None
trades.append(Trade(**trade_dict))
#print(trades)
# symbol = sada.symbol
# #hour bars for backtested period
# print(start_date,end_date)
# bars= get_historical_bars(symbol, start_date, end_date, TimeFrame.Hour)
# print("bars for given period",bars)
# """Bars a dictionary with the following keys:
# * high: A list of high prices
# * low: A list of low prices
# * volume: A list of volumes
# * close: A list of close prices
# * hlcc4: A list of HLCC4 indicators
# * open: A list of open prices
# * time: A list of times in UTC (ISO 8601 format)
# * trades: A list of number of trades
# * resolution: A list of resolutions (all set to 'D')
# * confirmed: A list of booleans (all set to True)
# * vwap: A list of VWAP indicator
# * updated: A list of booleans (all set to True)
# * index: A list of integers (from 0 to the length of the list of daily bars)
# """
# Filter to only use trades with status 'CLOSED'
closed_trades = [trade for trade in trades if trade.status == TradeStatus.CLOSED]
#print(closed_trades)
if len(closed_trades) == 0:
return -1, "image generation no closed trades"
# # Group trades by date and calculate daily profits
# trades_by_day = defaultdict(list)
# for trade in trades:
# if trade.status == TradeStatus.CLOSED and trade.exit_time:
# trade_day = trade.exit_time.date()
# trades_by_day[trade_day].append(trade)
# Precompute daily cumulative profits
daily_cumulative_profits = defaultdict(list)
for trade in trades:
if trade.status == TradeStatus.CLOSED and trade.exit_time:
day = trade.exit_time.date()
if mode == "absolute":
daily_cumulative_profits[day].append(trade.profit)
#relative profit
else:
daily_cumulative_profits[day].append(trade.rel_profit)
for day in daily_cumulative_profits:
daily_cumulative_profits[day] = np.cumsum(daily_cumulative_profits[day])
if rem_outliers:
# Remove outliers based on z-scores
def remove_outliers(cumulative_profits):
all_profits = [profit[-1] for profit in cumulative_profits.values() if len(profit) > 0]
z_scores = zscore(all_profits)
print(z_scores)
filtered_profits = {}
for day, profits in cumulative_profits.items():
if len(profits) > 0:
day_z_score = z_scores[list(cumulative_profits.keys()).index(day)]
if abs(day_z_score) < z_score_threshold: # Adjust threshold as needed
filtered_profits[day] = profits
return filtered_profits
daily_cumulative_profits = remove_outliers(daily_cumulative_profits)
# OPT1 Dynamically calculate profit_range and loss_range - based on eod daily profit
# all_final_profits = [profits[-1] for profits in daily_cumulative_profits.values() if len(profits) > 0]
# max_profit = max(all_final_profits)
# min_profit = min(all_final_profits)
# profit_range = (0, max_profit) if max_profit > 0 else (0, 0)
# loss_range = (min_profit, 0) if min_profit < 0 else (0, 0)
if mode == "absolute":
# OPT2 Calculate profit_range and loss_range based on all cumulative profits
all_cumulative_profits = np.concatenate([profits for profits in daily_cumulative_profits.values()])
max_cumulative_profit = np.max(all_cumulative_profits)
min_cumulative_profit = np.min(all_cumulative_profits)
profit_range = (0, max_cumulative_profit) if max_cumulative_profit > 0 else (0, 0)
loss_range = (min_cumulative_profit, 0) if min_cumulative_profit < 0 else (0, 0)
else:
#for relative - hardcoded
profit_range = (0, 1) # Adjust based on your data
loss_range = (-1, 0)
print("Ranges", profit_range, loss_range)
num_points = steps # Adjust for speed vs accuracy
profit_cutoffs = np.linspace(*profit_range, num_points)
loss_cutoffs = np.linspace(*loss_range, num_points)
total_profits_matrix = np.zeros((len(profit_cutoffs), len(loss_cutoffs)))
for i, profit_cutoff in enumerate(profit_cutoffs):
for j, loss_cutoff in enumerate(loss_cutoffs):
total_profit = 0
for daily_profit in daily_cumulative_profits.values():
cutoff_index = np.where((daily_profit >= profit_cutoff) | (daily_profit <= loss_cutoff))[0]
if cutoff_index.size > 0:
total_profit += daily_profit[cutoff_index[0]]
else:
total_profit += daily_profit[-1] if daily_profit.size > 0 else 0
total_profits_matrix[i, j] = total_profit
# Find the optimal combination
optimal_idx = np.unravel_index(total_profits_matrix.argmax(), total_profits_matrix.shape)
optimal_profit_cutoff = profit_cutoffs[optimal_idx[0]]
optimal_loss_cutoff = loss_cutoffs[optimal_idx[1]]
max_profit = total_profits_matrix[optimal_idx]
# Plotting
# Setting up dark mode for the plots
plt.style.use('dark_background')
# Optionally, you can further customize colors, labels, and axes
params = {
'axes.titlesize': 9,
'axes.labelsize': 8,
'xtick.labelsize': 9,
'ytick.labelsize': 9,
'axes.labelcolor': '#a9a9a9', #a1a3aa',
'axes.facecolor': '#121722', #'#0e0e0e', #202020', # Dark background for plot area
'axes.grid': False, # Turn off the grid globally
'grid.color': 'gray', # If the grid is on, set grid line color
'grid.linestyle': '--', # Grid line style
'grid.linewidth': 1,
'xtick.color': '#a9a9a9',
'ytick.color': '#a9a9a9',
'axes.edgecolor': '#a9a9a9'
}
plt.rcParams.update(params)
plt.figure(figsize=(10, 8))
sns.heatmap(total_profits_matrix, xticklabels=np.rint(loss_cutoffs).astype(int) if mode == "absolute" else np.around(loss_cutoffs, decimals=3), yticklabels=np.rint(profit_cutoffs).astype(int) if mode == "absolute" else np.around(profit_cutoffs, decimals=3), cmap="viridis")
plt.xticks(rotation=90) # Rotate x-axis labels to be vertical
plt.yticks(rotation=0) # Keep y-axis labels horizontal
plt.gca().invert_yaxis()
plt.gca().invert_xaxis()
plt.suptitle(f"Total {mode} Profit for Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
plt.title(f"Optimal Profit Cutoff: {optimal_profit_cutoff:.2f}, Optimal Loss Cutoff: {optimal_loss_cutoff:.2f}, Max Profit: {max_profit:.2f}", fontsize=10)
plt.xlabel("Loss Cutoff")
plt.ylabel("Profit Cutoff")
if stream is False:
plt.savefig(file)
plt.close()
print(f"Optimal Profit Cutoff(rem_outliers:{rem_outliers}): {optimal_profit_cutoff}, Optimal Loss Cutoff: {optimal_loss_cutoff}, Max Profit: {max_profit}")
return 0, None
else:
# Return the image as a BytesIO stream
img_stream = BytesIO()
plt.savefig(img_stream, format='png')
plt.close()
img_stream.seek(0) # Rewind the stream to the beginning
return 0, img_stream
# Example usage
# trades = [list of Trade objects]
if __name__ == '__main__':
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
# generate_trading_report_image(runner_ids=id_list)
batch_id = "c76b4414"
#vstup = AnalyzerInputs(**params)
res, val = find_optimal_cutoff(batch_id=batch_id, mode="relative", z_score_threshold=2, file="optimal_cutoff_vectorized.png",steps=20)
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")
print(res,val)

View File

@ -10,6 +10,7 @@ from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
@ -23,8 +24,9 @@ from scipy.stats import zscore
from io import BytesIO
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
#LOSS and PROFIT without GRAPH
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, rem_outliers:bool = False, file: str = "optimalcutoff.png",steps:int = 50):
#HEATMAPA pro RELATIVNI PROFIT - WIP
#po dodelani dat do stejné funkce jen s parametrem typ
def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: bool = False, rem_outliers:bool = False, z_score_threshold:int = 3, file: str = "optimalcutoff.png",steps:int = 50):
#TODO dopracovat drawdown a minimalni a maximalni profity nikoliv cumulovane, zamyslet se
#TODO list of runner_ids
@ -130,7 +132,7 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
for day, profits in cumulative_profits.items():
if len(profits) > 0:
day_z_score = z_scores[list(cumulative_profits.keys()).index(day)]
if abs(day_z_score) < 3: # Adjust threshold as needed
if abs(day_z_score) < z_score_threshold: # Adjust threshold as needed
filtered_profits[day] = profits
return filtered_profits
@ -211,7 +213,7 @@ def find_optimal_cutoff(runner_ids: list = None, batch_id: str = None, stream: b
plt.yticks(rotation=0) # Keep y-axis labels horizontal
plt.gca().invert_yaxis()
plt.gca().invert_xaxis()
plt.suptitle("Total Profit for Combinations of Profit and Loss Cutoffs", fontsize=16)
plt.suptitle(f"Total Profit for Combinations of Profit/Loss Cutoffs ({cnt_max})", fontsize=16)
plt.title(f"Optimal Profit Cutoff: {optimal_profit_cutoff:.2f}, Optimal Loss Cutoff: {optimal_loss_cutoff:.2f}, Max Profit: {max_profit:.2f}", fontsize=10)
plt.xlabel("Loss Cutoff")
plt.ylabel("Profit Cutoff")
@ -235,6 +237,7 @@ if __name__ == '__main__':
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
# generate_trading_report_image(runner_ids=id_list)
batch_id = "c76b4414"
vstup = AnalyzerInputs(**params)
res, val = find_optimal_cutoff(batch_id=batch_id, file="optimal_cutoff_vectorized.png",steps=20)
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")

View File

@ -0,0 +1,99 @@
import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
def ls_profit_distribution(runner_ids: List = None, batch_id: str = None, stream: bool = False) -> Tuple[int, Optional[BytesIO]]:
try:
# Load trades
result, trades, days_cnt = load_trades(runner_ids, batch_id)
# Proceed only if trades are successfully loaded
if result == 0:
# Filter trades based on direction and calculate profit
long_trades = [trade for trade in trades if trade.direction == TradeDirection.LONG]
short_trades = [trade for trade in trades if trade.direction == TradeDirection.SHORT]
long_profits = [trade.profit for trade in long_trades]
short_profits = [trade.profit for trade in short_trades]
# Setting up dark mode for visualization with custom parameters
plt.style.use('dark_background')
custom_params = {
'axes.titlesize': 9,
'axes.labelsize': 8,
'xtick.labelsize': 9,
'ytick.labelsize': 9,
'axes.labelcolor': '#a9a9a9',
'axes.facecolor': '#121722',
'axes.grid': False,
'grid.color': 'gray',
'grid.linestyle': '--',
'grid.linewidth': 1,
'xtick.color': '#a9a9a9',
'ytick.color': '#a9a9a9',
'axes.edgecolor': '#a9a9a9'
}
plt.rcParams.update(custom_params)
plt.figure(figsize=(10, 6))
sns.histplot(long_profits, color='blue', label='Long Trades', kde=True)
sns.histplot(short_profits, color='red', label='Short Trades', kde=True)
plt.xlabel('Profit')
plt.ylabel('Number of Trades')
plt.title('Profit Distribution by Trade Direction')
plt.legend()
# Handling the output
if stream:
img_stream = BytesIO()
plt.savefig(img_stream, format='png')
plt.close()
img_stream.seek(0)
return (0, img_stream)
else:
plt.savefig('profit_distribution.png')
plt.close()
return (0, None)
else:
return (-1, None) # Error handling in case of unsuccessful trade loading
except Exception as e:
# Detailed error reporting
return (-1, str(e) + format_exc())
# Example usage
# trades = [list of Trade objects]
if __name__ == '__main__':
# id_list = ["e8938b2e-8462-441a-8a82-d823c6a025cb"]
# generate_trading_report_image(runner_ids=id_list)
batch_id = "73ad1866"
res, val = ls_profit_distribution(batch_id=batch_id)
#res, val = find_optimal_cutoff(batch_id=batch_id, rem_outliers=True, file="optimal_cutoff_vectorized_nooutliers.png")
print(res,val)

View File

@ -0,0 +1,82 @@
import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
def profit_distribution_by_month(runner_ids: List = None, batch_id: str = None, stream: bool = False) -> Tuple[int, BytesIO or None]:
try:
# Load trades
res, trades, days_cnt = load_trades(runner_ids, batch_id)
if res != 0:
raise Exception("Error in loading trades")
# Filter trades by status and create DataFrame
df_trades = pd.DataFrame([t.dict() for t in trades if t.status == 'closed'])
# Extract month and year from trade exit time
df_trades['month'] = df_trades['exit_time'].apply(lambda x: x.strftime('%Y-%m') if x is not None else None)
# Group by direction and month, and sum the profits
grouped = df_trades.groupby(['direction', 'month']).profit.sum().unstack(fill_value=0)
# Visualization
plt.style.use('dark_background')
fig, ax = plt.subplots(figsize=(10, 6))
# Plotting
grouped.T.plot(kind='bar', ax=ax)
# Styling
ax.set_title('Profit Distribution by Month: Long vs Short')
ax.set_xlabel('Month')
ax.set_ylabel('Total Profit')
ax.legend(title='Trade Direction')
# Adding footer
plt.figtext(0.99, 0.01, f'Days Count: {days_cnt}', horizontalalignment='right')
# Save or stream
if stream:
img = BytesIO()
plt.savefig(img, format='png')
plt.close()
img.seek(0)
return (0, img)
else:
plt.savefig('profit_distribution_by_month.png')
plt.close()
return (0, None)
except Exception as e:
# Detailed error reporting
return (-1, str(e) + format_exc())
# Local debugging
if __name__ == '__main__':
batch_id = "73ad1866"
res, val = profit_distribution_by_month(batch_id=batch_id)
print(res, val)

View File

@ -0,0 +1,106 @@
import matplotlib
import matplotlib.dates as mdates
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
# Assuming Trade, TradeStatus, TradeDirection, TradeStoplossType classes are defined elsewhere
def profit_sum_by_hour(runner_ids: list = None, batch_id: str = None, stream: bool = False, group_by: str = 'entry_time'):
try:
# Load trades
res, trades, days_cnt = load_trades(runner_ids, batch_id)
if res != 0:
raise Exception("Error in loading trades")
# Filter closed trades
closed_trades = [trade for trade in trades if trade.status == 'closed']
total_closed_trades = len(closed_trades)
# Extract hour and profit/loss based on group_by parameter
hourly_profit_loss = {}
hourly_trade_count = {}
for trade in closed_trades:
# Determine the time attribute to group by
time_attribute = getattr(trade, group_by) if group_by in ['entry_time', 'exit_time'] else trade.entry_time
if time_attribute:
hour = time_attribute.hour
hourly_profit_loss.setdefault(hour, []).append(trade.profit)
hourly_trade_count[hour] = hourly_trade_count.get(hour, 0) + 1
# Aggregate profits and losses by hour
hourly_aggregated = {hour: sum(profits) for hour, profits in hourly_profit_loss.items()}
# Visualization
hours = list(hourly_aggregated.keys())
profits = list(hourly_aggregated.values())
trade_counts = [hourly_trade_count.get(hour, 0) for hour in hours]
plt.style.use('dark_background')
colors = ['blue' if profit >= 0 else 'orange' for profit in profits]
bars = plt.bar(hours, profits, color=colors)
# Make the grid subtler
plt.grid(True, color='gray', linestyle='--', linewidth=0.5, alpha=0.5)
plt.xlabel('Hour of Day')
plt.ylabel('Profit/Loss')
plt.title(f'Distribution of Profit/Loss Sum by Hour ({group_by.replace("_", " ").title()})')
# Add trade count and percentage inside the bars
for bar, count in zip(bars, trade_counts):
height = bar.get_height()
percent = (count / total_closed_trades) * 100
# Position the text inside the bars
position = height - 20 if height > 0 else height + 20
plt.text(bar.get_x() + bar.get_width() / 2., position,
f'{count} Trades\n({percent:.1f}%)', ha='center', va='center', color='white', fontsize=9)
# Adjust footer position and remove large gap
footer_text = f'Days Count: {days_cnt} | Parameters: {{"runner_ids": {len(runner_ids) if runner_ids is not None else None}, "batch_id": {batch_id}, "stream": {stream}, "group_by": "{group_by}"}}'
plt.gcf().subplots_adjust(bottom=0.2)
plt.figtext(0.5, 0.02, footer_text, ha="center", fontsize=8, color='gray', bbox=dict(facecolor='black', edgecolor='none', pad=3.0))
# Output
if stream:
img = BytesIO()
plt.savefig(img, format='png', bbox_inches='tight')
plt.close()
img.seek(0)
return (0, img)
else:
plt.savefig('profit_loss_by_hour.png', bbox_inches='tight')
plt.close()
return (0, None)
except Exception as e:
# Detailed error reporting
plt.close()
return (-1, str(e))
# Local debugging
if __name__ == '__main__':
batch_id = "9e990e4b"
# Example usage with group_by parameter
res, val = profit_sum_by_hour(batch_id=batch_id, group_by='exit_time')
print(res, val)

View File

@ -0,0 +1,129 @@
import matplotlib
import matplotlib.dates as mdates
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from v2realbot.reporting.load_trades import load_trades
from typing import Tuple, Optional, List
from traceback import format_exc
import pandas as pd
def summarize_trade_metrics(runner_ids: list = None, batch_id: str = None, stream: bool = False):
try:
res, trades, days_cnt = load_trades(runner_ids, batch_id)
if res != 0:
raise Exception("Error in loading trades")
closed_trades = [trade for trade in trades if trade.status == "closed"]
# Calculate metrics
metrics = calculate_metrics(closed_trades)
# Generate and process image
img_stream = generate_table_image(metrics)
# Add footer to image
#img_stream = add_footer_to_image(img_stream, days_cnt, runner_ids, batch_id, stream)
# Output handling
if stream:
img_stream.seek(0)
return (0, img_stream)
else:
with open(f'summarize_trade_metrics_{batch_id}.png', 'wb') as f:
f.write(img_stream.getbuffer())
return (0, None)
except Exception as e:
# Detailed error reporting
return (-1, str(e)+format_exc())
def calculate_metrics(closed_trades):
if not closed_trades:
return {}
total_profit = sum(trade.profit for trade in closed_trades)
max_profit = max(trade.profit for trade in closed_trades)
min_profit = min(trade.profit for trade in closed_trades)
total_trades = len(closed_trades)
long_trades = sum(1 for trade in closed_trades if trade.direction == "long")
short_trades = sum(1 for trade in closed_trades if trade.direction == "short")
# Daily Metrics Calculation
trades_by_day = {}
for trade in closed_trades:
day = trade.entry_time.date() if trade.entry_time else None
if day:
trades_by_day.setdefault(day, []).append(trade)
avg_trades_per_day = sum(len(trades) for trades in trades_by_day.values()) / len(trades_by_day)
avg_long_trades_per_day = sum(sum(1 for trade in trades if trade.direction == "long") for trades in trades_by_day.values()) / len(trades_by_day)
avg_short_trades_per_day = sum(sum(1 for trade in trades if trade.direction == "short") for trades in trades_by_day.values()) / len(trades_by_day)
return {
"Average Profit": total_profit / total_trades,
"Maximum Profit": max_profit,
"Minimum Profit": min_profit,
"Total Number of Trades": total_trades,
"Number of Long Trades": long_trades,
"Number of Short Trades": short_trades,
"Average Trades per Day": avg_trades_per_day,
"Average Long Trades per Day": avg_long_trades_per_day,
"Average Short Trades per Day": avg_short_trades_per_day
}
def generate_table_image(metrics):
fig, ax = plt.subplots(figsize=(10, 6))
ax.axis('tight')
ax.axis('off')
# Convert metrics to a 2D array where each row is a list
cell_text = [[value] for value in metrics.values()]
# Convert dict keys to a list for row labels
row_labels = list(metrics.keys())
ax.table(cellText=cell_text,
rowLabels=row_labels,
loc='center')
plt.subplots_adjust(left=0.2, top=0.8)
plt.title("Trade Metrics Summary", color='white')
img_stream = BytesIO()
plt.savefig(img_stream, format='png', bbox_inches='tight', pad_inches=0.1, facecolor='black')
plt.close(fig)
return img_stream
def add_footer_to_image(img_stream, days_cnt, runner_ids, batch_id, stream):
# Implementation for adding a footer to the image
# This can be done using PIL (Python Imaging Library) or other image processing libraries
# For simplicity, I'm leaving this as a placeholder
pass
# Local debugging
if __name__ == '__main__':
batch_id = "73ad1866"
res, val = summarize_trade_metrics(batch_id=batch_id)
print(res, val)

View File

@ -0,0 +1,70 @@
import matplotlib
import matplotlib.dates as mdates
#matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from datetime import datetime
from typing import List
from enum import Enum
import numpy as np
import v2realbot.controller.services as cs
from rich import print
from v2realbot.common.model import AnalyzerInputs
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
from v2realbot.utils.utils import isrising, isfalling,zoneNY, price2dec, safe_get#, print
from pathlib import Path
from v2realbot.config import WEB_API_KEY, DATA_DIR, MEDIA_DIRECTORY
from v2realbot.enums.enums import RecordType, StartBarAlign, Mode, Account, OrderSide
from io import BytesIO
from v2realbot.utils.historicals import get_historical_bars
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from collections import defaultdict
from scipy.stats import zscore
from io import BytesIO
from typing import Tuple, Optional, List
from v2realbot.common.PrescribedTradeModel import TradeDirection, TradeStatus, Trade, TradeStoplossType
def load_trades(runner_ids: List = None, batch_id: str = None) -> Tuple[int, List[Trade], int]:
if runner_ids is None and batch_id is None:
return -2, f"runner_id or batch_id must be present", 0
if batch_id is not None:
res, runner_ids =cs.get_archived_runnerslist_byBatchID(batch_id)
if res != 0:
print(f"no batch {batch_id} found")
return -1, f"no batch {batch_id} found", 0
#DATA PREPARATION
trades = []
cnt_max = len(runner_ids)
cnt = 0
#zatim zjistujeme start a end z min a max dni - jelikoz muze byt i seznam runner_ids a nejenom batch
end_date = None
start_date = None
for id in runner_ids:
cnt += 1
#get runner
res, sada =cs.get_archived_runner_header_byID(id)
if res != 0:
print(f"no runner {id} found")
return -1, f"no runner {id} found", 0
#print("archrunner")
#print(sada)
if cnt == 1:
start_date = sada.bt_from if sada.mode in [Mode.BT,Mode.PREP] else sada.started
if cnt == cnt_max:
end_date = sada.bt_to if sada.mode in [Mode.BT or Mode.PREP] else sada.stopped
# Parse trades
trades_dicts = sada.metrics["prescr_trades"]
for trade_dict in trades_dicts:
trade_dict['last_update'] = datetime.fromtimestamp(trade_dict.get('last_update')).astimezone(zoneNY) if trade_dict['last_update'] is not None else None
trade_dict['entry_time'] = datetime.fromtimestamp(trade_dict.get('entry_time')).astimezone(zoneNY) if trade_dict['entry_time'] is not None else None
trade_dict['exit_time'] = datetime.fromtimestamp(trade_dict.get('exit_time')).astimezone(zoneNY) if trade_dict['exit_time'] is not None else None
trades.append(Trade(**trade_dict))
return 0, trades, cnt_max

View File

@ -1,4 +1,3 @@
import json
import numpy as np
import matplotlib
matplotlib.use('Agg') # Set the Matplotlib backend to 'Agg'

Some files were not shown because too many files have changed in this diff Show More