other changes

This commit is contained in:
David Brazda
2023-11-15 09:02:15 +01:00
parent aead08a2c9
commit dc4c10a4a3
15 changed files with 380 additions and 29 deletions

62
testy/domfreq.py Normal file
View File

@ -0,0 +1,62 @@
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft
# Define the sampling frequency and time vector
fs = 500 # Sampling frequency
t = np.arange(0, 1, 1/fs) # Time vector
# Define the frequencies
f1 = 5 # Frequency that occurs most often but with lower amplitude
f2 = 20 # Frequency with the highest amplitude
# Creating the individual signals
signal_f1 = 0.5 * np.sin(2 * np.pi * f1 * t) # Signal with frequency f1
signal_f2 = 2 * np.sin(2 * np.pi * f2 * t) # Signal with frequency f2
# Composite signal
signal = signal_f1 + signal_f2
# Performing a Fourier Transform
freq = np.fft.fftfreq(len(t), 1/fs)
fft_values = fft(signal)
# Plotting all the signals and the frequency spectrum
plt.figure(figsize=(14, 10))
# Plot 1: Composite Signal
plt.subplot(4, 1, 1)
plt.plot(t, signal)
plt.title('Composite Signal (f1 + f2)')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
# Plot 2: Frequency f1 Signal
plt.subplot(4, 1, 2)
plt.plot(t, signal_f1)
plt.title('Individual Frequency f1 Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
# Plot 3: Frequency f2 Signal
plt.subplot(4, 1, 3)
plt.plot(t, signal_f2)
plt.title('Individual Frequency f2 Signal')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
# Plot 4: Frequency Spectrum
plt.subplot(4, 1, 4)
plt.plot(freq, np.abs(fft_values))
plt.title('Frequency Spectrum of Composite Signal')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude')
plt.xlim([0, 30])
# Highlighting the dominant frequencies in the spectrum
plt.axvline(x=f1, color='green', linestyle='--', label='Frequency f1')
plt.axvline(x=f2, color='red', linestyle='--', label='Frequency f2')
plt.legend()
plt.tight_layout()
plt.show()

View File

@ -0,0 +1,28 @@
from alpaca.data.historical import CryptoHistoricalDataClient, StockHistoricalDataClient
from alpaca.data.requests import CryptoLatestTradeRequest, StockLatestTradeRequest, StockLatestBarRequest, StockTradesRequest, StockBarsRequest
from alpaca.data.enums import DataFeed
from config import API_KEY, SECRET_KEY, MAX_BATCH_SIZE
import datetime
import time
from alpaca.data import Quote, Trade, Snapshot, Bar
from alpaca.data.models import BarSet, QuoteSet, TradeSet
from alpaca.data.timeframe import TimeFrame
# import mplfinance as mpf
import pandas as pd
from rich import print
from v2realbot.utils.utils import zoneNY
from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY
from alpaca.trading.requests import GetCalendarRequest
from alpaca.trading.client import TradingClient
parametry = {}
clientTrading = TradingClient(ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, raw_data=False)
#get previous days bar
datetime_object_from = datetime.datetime(2023, 10, 11, 4, 0, 00, tzinfo=datetime.timezone.utc)
datetime_object_to = datetime.datetime(2023, 10, 16, 16, 1, 00, tzinfo=datetime.timezone.utc)
calendar_request = GetCalendarRequest(start=datetime_object_from,end=today)
cal_dates = clientTrading.get_calendar(calendar_request)
print(cal_dates)

34
testy/histogramnumpy.py Normal file
View File

@ -0,0 +1,34 @@
import numpy as np
data = np.array([1,2,3,4,3,2,4,7,8,4,3,0,0,0,0,9,9,9,11,23,2,3,4,29,23])
counts, bin_edges = np.histogram(data, bins=4)
# returns a tuple containing two arrays:
# counts: An array containing the number of data points in each bin.
# bin_edges: An array containing the edges of each bin.
#(array([10, 6, 0, 1]), array([ 1. , 6.5, 12. , 17.5, 23. ]))
print(counts, bin_edges)
edge_from = bin_edges[3]
edge_to = bin_edges[4]
print(edge_from)
print(edge_to)
print("test where", data[np.where((edge_from<data) & (data<edge_to))])
ctvrty_bin = [datum for datum in data if edge_from <= datum <= edge_to]
print(np.mean(ctvrty_bin))
#print(histo[0][-2])
bins = 4
mean_of_4th_bin = np.mean(data[np.where(np.histogram(data, bins)[1][3] <= data)[0]])
# print(mean_of_4th_bin)
# print(mean_of_fourth_bucket)
# Print the data from the 3rd bin using a list comprehension
#print([datum for datum in data if bin_edges[2] <= datum < bin_edges[3]])

View File

@ -0,0 +1,14 @@
import numpy as np
from array import array
# Original list
puvodni = array('i', [1, 2, 3, 4])
# Create a NumPy array using the original list
numpied = np.array(puvodni)
# Now, if puvodni changes, numpied will be updated as well
puvodni.append(5)
# Check the updated numpied array
print(numpied)

25
testy/picklequeue.py Normal file
View File

@ -0,0 +1,25 @@
import queue
import msgpack
# Creating the original queue
original_queue = queue.Queue()
new_queue = queue.Queue()
# Adding elements to the original queue
original_queue.put(5)
original_queue.put(10)
original_queue.put(15)
# Pickling the queue
pickled_queue = msgpack.packb(original_queue)
# Unpickling the queue
unpickled_queue = msgpack.unpackb(pickled_queue)
# Pickling the queue
new_queue.queue = unpickled_queue.queue
print(new_queue)
# Checking the contents of the new queue
while not new_queue.empty():
print(new_queue.get())