prvni draft LSTM
This commit is contained in:
331
v2realbot/LSTMtrain.py
Normal file
331
v2realbot/LSTMtrain.py
Normal file
@ -0,0 +1,331 @@
|
||||
import numpy as np
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
from keras.models import Sequential, load_model
|
||||
from keras.layers import LSTM, Dense
|
||||
import matplotlib.pyplot as plt
|
||||
from v2realbot.controller.services import get_archived_runner_details_byID
|
||||
from v2realbot.common.model import RunArchiveDetail
|
||||
from v2realbot.config import DATA_DIR
|
||||
from v2realbot.utils.utils import slice_dict_lists
|
||||
from collections import defaultdict
|
||||
from operator import itemgetter
|
||||
from joblib import dump, load
|
||||
|
||||
|
||||
#ZAKLAD PRO TRAINING SCRIPT na vytvareni model
|
||||
# TODO
|
||||
# podpora pro BINARY TARGET
|
||||
# podpora hyperpamaetru (activ.funkce sigmoid atp.)
|
||||
# udelat vsechny config vars do cfg objektu
|
||||
# dopracovat identifikatory typu lastday close, todays open atp.
|
||||
# random SEARCG a grid search
|
||||
# udelat nejaka model metadata (napr, trenovano na (runners+obdobi), nastaveni treningovych dat, počet epoch, hyperparametry, config atribu atp.) - mozna persistovat v db
|
||||
# udelat nejake verzovani
|
||||
# predelat do GUI a modulu
|
||||
# prepare data do importovane funkce, aby bylo mozno pouzit v predict casti ve strategii a nemuselo se porad udrzovat
|
||||
#s nastavenim modelu. To stejne i s nastavenim upravy features
|
||||
|
||||
|
||||
#TODO NAPADY Na modely
|
||||
#binary identifikace trendu napr. pokud nasledujici 3 bary rostou (0-1)
|
||||
#soustredit se na modely s vystupem 0-1 nebo -1 až 1
|
||||
|
||||
|
||||
# Sample data (replace this with your actual OHLCV data)
|
||||
bars = {
|
||||
'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
||||
'high': [10, 11, 12, 13, 14,10, 11, 12, 13, 14,10, 11, 12, 13, 14],
|
||||
'low': [8, 9, 7, 6, 8,8, 9, 7, 6, 8,8, 9, 7, 6, 8],
|
||||
'volume': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300],
|
||||
'close': [9, 10, 11, 12, 13,9, 10, 11, 12, 13,9, 10, 11, 12, 13],
|
||||
'open': [9, 10, 8, 8, 8,9, 10, 8, 8, 8,9, 10, 8, 8, 8],
|
||||
'resolution': [1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1, 1, 1, 1]
|
||||
}
|
||||
|
||||
indicators = {
|
||||
'time': [1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15],
|
||||
'fastslope': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
'fsdelta': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
'fastslope2': [90, 95, 100, 110, 115,90, 95, 100, 110, 115,90, 95, 100, 110, 115],
|
||||
'ema': [1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300,1000, 1200, 900, 1100, 1300]
|
||||
}
|
||||
|
||||
|
||||
# Zakladni nastaveni
|
||||
testlist_id = ""
|
||||
runner_ids = ["838e918e-9be0-4251-a968-c13c83f3f173","c11c5cae-05f8-4b0a-aa4d-525ddac81684"]
|
||||
features = ["time","high","low","volume","open","close", "trades", "vwap","samebarslope", "fastslope","fsdelta", "fastslope2", "fsdelta2"]
|
||||
#TODO toto je linearni prediction mod, dodelat podporu BINARY
|
||||
#u binary bude target bud hotovy indikator a nebo jej vytvorit on the fly
|
||||
|
||||
#model muze byt take bez barů, tzn. jen indikatory
|
||||
use_bars = True
|
||||
target = 'fastslope2'
|
||||
#predict how many bars in the future
|
||||
target_steps = 5
|
||||
name = "model1"
|
||||
seq = 10
|
||||
epochs = 200
|
||||
|
||||
|
||||
#crossday identifier je time (hodnota resolution je pouzita ne odstraneni sekvenci skrz dny)
|
||||
#predpoklad pouziti je crossday_sequence je time ve features
|
||||
resolution = 1
|
||||
crossday_sequence = False
|
||||
#zda se model uci i crosseday (skrz runner/day data). Pokud ne, pak se crossday sekvence odstrani
|
||||
#realizovano pomoci pomocneho identifikatoru (runner)
|
||||
|
||||
#zajistime poradi
|
||||
features.sort()
|
||||
#cas na prvnim miste
|
||||
if "time" in features:
|
||||
features.remove("time")
|
||||
features.insert(0, "time")
|
||||
|
||||
def merge_dicts(dict_list):
|
||||
# Initialize an empty merged dictionary
|
||||
merged_dict = {}
|
||||
|
||||
# Iterate through the dictionaries in the list
|
||||
for i,d in enumerate(dict_list):
|
||||
for key, value in d.items():
|
||||
if key in merged_dict:
|
||||
merged_dict[key] += value
|
||||
else:
|
||||
merged_dict[key] = value
|
||||
#vlozime element s idenitfikaci runnera
|
||||
|
||||
return merged_dict
|
||||
|
||||
# # Initialize the merged dictionary with the first dictionary in the list
|
||||
# merged_dict = dict_list[0].copy()
|
||||
# merged_dict["index"] = []
|
||||
|
||||
# # Iterate through the remaining dictionaries and concatenate their lists
|
||||
# for i, d in enumerate(dict_list[1:]):
|
||||
# merged_dict["index"] =
|
||||
# for key, value in d.items():
|
||||
# if key in merged_dict:
|
||||
# merged_dict[key] += value
|
||||
# else:
|
||||
# merged_dict[key] = value
|
||||
|
||||
# return merged_dict
|
||||
|
||||
def load_runner(runner_id):
|
||||
res, sada = get_archived_runner_details_byID(runner_id)
|
||||
if res == 0:
|
||||
print("ok")
|
||||
else:
|
||||
print("error",res,sada)
|
||||
|
||||
bars = sada["bars"]
|
||||
indicators = sada["indicators"][0]
|
||||
return bars, indicators
|
||||
|
||||
def prepare_data(bars, indicators, features, target) -> tuple[np.array, np.array]:
|
||||
#create SOURCE DATA with features
|
||||
# bars and indicators dictionary and features as input
|
||||
indicator_data = np.column_stack([indicators[feature] for feature in features if feature in indicators])
|
||||
if len(bars)>0:
|
||||
bar_data = np.column_stack([bars[feature] for feature in features if feature in bars])
|
||||
combined_day_data = np.column_stack([bar_data,indicator_data])
|
||||
else:
|
||||
combined_day_data = indicator_data
|
||||
|
||||
#create TARGET DATA
|
||||
try:
|
||||
target_base = bars[target]
|
||||
except KeyError:
|
||||
target_base = indicators[target]
|
||||
target_day_data = np.column_stack([target_base])
|
||||
return combined_day_data, target_day_data
|
||||
|
||||
def load_runners_as_list(runner_ids: list, use_bars: bool):
|
||||
"""Loads all runners data (bars, indicators) for runner_ids into list of dicts-
|
||||
|
||||
Args:
|
||||
runner_ids: list of runner_ids.
|
||||
use_bars: Whether to use also bars or just indicators
|
||||
|
||||
Returns:
|
||||
tuple (barslist, indicatorslist) - lists with dictionaries for each runner
|
||||
"""
|
||||
barslist = []
|
||||
indicatorslist = []
|
||||
for runner_id in runner_ids:
|
||||
bars, indicators = load_runner(runner_id)
|
||||
if use_bars:
|
||||
barslist.append(bars)
|
||||
indicatorslist.append(indicators)
|
||||
|
||||
return barslist, indicatorslist
|
||||
|
||||
def create_sequences(combined_data, target_data, seq, target_steps, crossday_sequence = True):
|
||||
"""Creates sequences of given length seq and target N steps in the future.
|
||||
|
||||
Args:
|
||||
combined_data: A list of combined data.
|
||||
target_data: A list of target data.
|
||||
seq: The sequence length.
|
||||
target_steps: The number of steps in the future to target.
|
||||
crossday_sequence: Zda vytvaret sekvenci i skrz dny (runnery)
|
||||
|
||||
Returns:
|
||||
A list of X sequences and a list of y sequences.
|
||||
"""
|
||||
X_train = []
|
||||
y_train = []
|
||||
last_delta = None
|
||||
for i in range(len(combined_data) - seq - target_steps):
|
||||
if last_delta is None:
|
||||
last_delta = 2*(combined_data[i + seq + target_steps, 0] - combined_data[i, 0])
|
||||
|
||||
curr_delta = combined_data[i + seq + target_steps, 0] - combined_data[i, 0]
|
||||
#pokud je cas konce sequence vyrazne vetsi (2x) nez predchozi
|
||||
#print(f"standardní zacatek {combined_data[i, 0]} konec {combined_data[i + seq + target_steps, 0]} delta: {curr_delta}")
|
||||
if crossday_sequence is False and curr_delta > last_delta:
|
||||
print(f"sekvence vyrazena. Zacatek {combined_data[i, 0]} konec {combined_data[i + seq + target_steps, 0]}")
|
||||
continue
|
||||
X_train.append(combined_data[i:i + seq])
|
||||
y_train.append(target_data[i + seq + target_steps])
|
||||
last_delta = 2*(combined_data[i + seq + target_steps, 0] - combined_data[i, 0])
|
||||
return np.array(X_train), np.array(y_train)
|
||||
|
||||
barslist, indicatorslist = load_runners_as_list(runner_ids, use_bars)
|
||||
|
||||
#zmergujeme vsechny data dohromady
|
||||
bars = merge_dicts(barslist)
|
||||
indicators = merge_dicts(indicatorslist)
|
||||
print(f"{len(indicators)}")
|
||||
print(f"{len(bars)}")
|
||||
source_data, target_data = prepare_data(bars, indicators, features, target)
|
||||
|
||||
# Set the printing threshold to print only the first and last 10 rows of the array
|
||||
np.set_printoptions(threshold=10)
|
||||
print("source_data", source_data, "shape", np.shape(source_data))
|
||||
|
||||
# Standardize the data
|
||||
scalerX = StandardScaler()
|
||||
scalerY = StandardScaler()
|
||||
#FIT SCALER také fixuje počet FEATURES !!
|
||||
source_data = scalerX.fit_transform(source_data)
|
||||
target_data = scalerY.fit_transform(target_data)
|
||||
|
||||
#print("source_data shape",np.shape(source_data))
|
||||
|
||||
# Create a sequence of seq elements and define target prediction horizona
|
||||
X_train, y_train = create_sequences(source_data, target_data, seq=seq, target_steps=target_steps, crossday_sequence=crossday_sequence)
|
||||
|
||||
#X_train (6205, 10, 14)
|
||||
print("X_train", np.shape(X_train))
|
||||
|
||||
X_complete = np.array(X_train.copy())
|
||||
Y_complete = np.array(y_train.copy())
|
||||
X_train = np.array(X_train)
|
||||
y_train = np.array(y_train)
|
||||
|
||||
# Split the data into training and test sets
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.20, shuffle=False) #random_state=42)
|
||||
|
||||
#print(np.shape(X_train))
|
||||
# Define the input shape of the LSTM layer dynamically based on the reshaped X_train value
|
||||
input_shape = (X_train.shape[1], X_train.shape[2])
|
||||
|
||||
# Build the LSTM model
|
||||
model = Sequential()
|
||||
model.add(LSTM(128, input_shape=input_shape))
|
||||
model.add(Dense(1))
|
||||
|
||||
# Compile the model
|
||||
model.compile(loss='mse', optimizer='adam')
|
||||
|
||||
# Train the model
|
||||
model.fit(X_train, y_train, epochs=epochs)
|
||||
|
||||
#save the model
|
||||
#model.save(DATA_DIR+'/my_model.keras')
|
||||
#model = load_model(DATA_DIR+'/my_model.keras')
|
||||
dump(scalerX, DATA_DIR+'/'+name+'scalerX.pkl')
|
||||
dump(scalerY, DATA_DIR+'/'+name+'scalerY.pkl')
|
||||
dump(model, DATA_DIR+'/'+name+'.pkl')
|
||||
|
||||
model = load(DATA_DIR+'/'+ name +'.pkl')
|
||||
scalerX: StandardScaler = load(DATA_DIR+'/'+ name +'scalerX.pkl')
|
||||
scalerY: StandardScaler = load(DATA_DIR+'/'+ name +'scalerY.pkl')
|
||||
|
||||
#LIVE PREDICTION - IMAGINE THIS HAPPENS LIVE
|
||||
# Get the live data
|
||||
# Prepare the data for bars and indicators
|
||||
|
||||
#asume ohlc_features and indicator_features remain the same
|
||||
|
||||
|
||||
#get last 5 items of respective indicators
|
||||
|
||||
#mazeme runner indikator pokud tu je
|
||||
if "runner" in indicators:
|
||||
del indicators["runner"]
|
||||
print("runner key deleted from indicators")
|
||||
|
||||
if "runner" in features:
|
||||
features.remove("runner")
|
||||
print("runner removed from features")
|
||||
|
||||
lastNbars = slice_dict_lists(bars, seq)
|
||||
lastNindicators = slice_dict_lists(indicators, seq)
|
||||
print("last5bars", lastNbars)
|
||||
print("last5indicators",lastNindicators)
|
||||
|
||||
indicator_data = np.column_stack([lastNindicators[feature] for feature in features if feature in lastNindicators])
|
||||
if use_bars:
|
||||
bar_data = np.column_stack([lastNbars[feature] for feature in features if feature in lastNbars])
|
||||
combined_live_data = np.column_stack([bar_data, indicator_data])
|
||||
else:
|
||||
combined_live_data = indicator_data
|
||||
print("combined_live_data",combined_live_data)
|
||||
combined_live_data = scalerX.transform(combined_live_data)
|
||||
#scaler = StandardScaler()
|
||||
|
||||
combined_live_data = np.array(combined_live_data)
|
||||
|
||||
#converts to 3D array
|
||||
# 1 number of samples in the array.
|
||||
# 2 represents the sequence length.
|
||||
# 3 represents the number of features in the data.
|
||||
combined_live_data = combined_live_data.reshape((1, seq, combined_live_data.shape[1]))
|
||||
|
||||
|
||||
# Make a prediction
|
||||
prediction = model(combined_live_data, training=False)
|
||||
#prediction = prediction.reshape((1, 1))
|
||||
# Convert the prediction back to the original scale
|
||||
prediction = scalerY.inverse_transform(prediction)
|
||||
|
||||
print("prediction for last value", float(prediction))
|
||||
|
||||
#TEST PREDICATIONS
|
||||
# Evaluate the model on the test set
|
||||
#pozor testovaci sadu na produkc scalovat samostatne
|
||||
#X_test = scalerX.transform(X_test)
|
||||
#predikce nad testovacimi daty
|
||||
X_complete = model.predict(X_complete)
|
||||
X_complete = scalerY.inverse_transform(X_complete)
|
||||
|
||||
#target testovacim dat
|
||||
Y_complete = scalerY.inverse_transform(Y_complete)
|
||||
mse = mean_squared_error(Y_complete, X_complete)
|
||||
print('Test MSE:', mse)
|
||||
|
||||
# Plot the predicted vs. actual close prices
|
||||
plt.plot(Y_complete, label='Actual')
|
||||
plt.plot(X_complete, label='Predicted')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
# To make a prediction, we can simply feed the model a sequence of 5 elements and it will predict the next element. For example, to predict the close price for the 6th time period, we would feed the model the following sequence:
|
||||
|
||||
# sequence = combined_data[0:5]
|
||||
# prediction = model.predict(sequence)
|
||||
Reference in New Issue
Block a user