static site pwd protected, load dotenv moved to config, aggregator vecotrized chng (#203)
This commit is contained in:
410
research/get_trades_at_once.ipynb
Normal file
410
research/get_trades_at_once.ipynb
Normal file
@ -0,0 +1,410 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Loading trades and vectorized aggregation\n",
|
||||
"Describes how to fetch trades (remote/cached) and use new vectorized aggregation to aggregate bars of given type (time, volume, dollar) and resolution\n",
|
||||
"\n",
|
||||
"`fetch_trades_parallel` enables to fetch trades of given symbol and interval, also can filter conditions and minimum size. return `trades_df`\n",
|
||||
"`aggregate_trades` acceptss `trades_df` and ressolution and type of bars (VOLUME, TIME, DOLLAR) and return aggregated ohlcv dataframe `ohlcv_df`"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Activating profile profile1\n",
|
||||
"</pre>\n"
|
||||
],
|
||||
"text/plain": [
|
||||
"Activating profile profile1\n"
|
||||
]
|
||||
},
|
||||
"metadata": {},
|
||||
"output_type": "display_data"
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"trades_df-BAC-2024-01-11T09:30:00-2024-01-12T16:00:00.parquet\n",
|
||||
"trades_df-SPY-2024-01-01T09:30:00-2024-05-14T16:00:00.parquet\n",
|
||||
"ohlcv_df-BAC-2024-01-11T09:30:00-2024-01-12T16:00:00.parquet\n",
|
||||
"ohlcv_df-SPY-2024-01-01T09:30:00-2024-05-14T16:00:00.parquet\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from numba import jit\n",
|
||||
"from alpaca.data.historical import StockHistoricalDataClient\n",
|
||||
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
|
||||
"from alpaca.data.requests import StockTradesRequest\n",
|
||||
"from v2realbot.enums.enums import BarType\n",
|
||||
"import time\n",
|
||||
"from datetime import datetime\n",
|
||||
"from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data\n",
|
||||
"import pyarrow\n",
|
||||
"from v2realbot.loader.aggregator_vectorized import fetch_daily_stock_trades, fetch_trades_parallel, generate_time_bars_nb, aggregate_trades\n",
|
||||
"import vectorbtpro as vbt\n",
|
||||
"import v2realbot.utils.config_handler as cfh\n",
|
||||
"\n",
|
||||
"vbt.settings.set_theme(\"dark\")\n",
|
||||
"vbt.settings['plotting']['layout']['width'] = 1280\n",
|
||||
"vbt.settings.plotting.auto_rangebreaks = True\n",
|
||||
"# Set the option to display with pagination\n",
|
||||
"pd.set_option('display.notebook_repr_html', True)\n",
|
||||
"pd.set_option('display.max_rows', 20) # Number of rows per page\n",
|
||||
"# pd.set_option('display.float_format', '{:.9f}'.format)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"#trade filtering\n",
|
||||
"exclude_conditions = cfh.config_handler.get_val('AGG_EXCLUDED_TRADES') #standard ['C','O','4','B','7','V','P','W','U','Z','F']\n",
|
||||
"minsize = 100\n",
|
||||
"\n",
|
||||
"symbol = \"SPY\"\n",
|
||||
"#datetime in zoneNY \n",
|
||||
"day_start = datetime(2024, 1, 1, 9, 30, 0)\n",
|
||||
"day_stop = datetime(2024, 1, 14, 16, 00, 0)\n",
|
||||
"day_start = zoneNY.localize(day_start)\n",
|
||||
"day_stop = zoneNY.localize(day_stop)\n",
|
||||
"#filename of trades_df parquet, date are in isoformat but without time zone part\n",
|
||||
"dir = DATA_DIR + \"/notebooks/\"\n",
|
||||
"#parquet interval cache contains exclude conditions and minsize filtering\n",
|
||||
"file_trades = dir + f\"trades_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}-{exclude_conditions}-{minsize}.parquet\"\n",
|
||||
"#file_trades = dir + f\"trades_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}.parquet\"\n",
|
||||
"file_ohlcv = dir + f\"ohlcv_df-{symbol}-{day_start.strftime('%Y-%m-%dT%H:%M:%S')}-{day_stop.strftime('%Y-%m-%dT%H:%M:%S')}-{exclude_conditions}-{minsize}.parquet\"\n",
|
||||
"\n",
|
||||
"#PRINT all parquet in directory\n",
|
||||
"import os\n",
|
||||
"files = [f for f in os.listdir(dir) if f.endswith(\".parquet\")]\n",
|
||||
"for f in files:\n",
|
||||
" print(f)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"NOT FOUND. Fetching from remote\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "KeyboardInterrupt",
|
||||
"evalue": "",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
|
||||
"Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m trades_df \u001b[38;5;241m=\u001b[39m \u001b[43mfetch_daily_stock_trades\u001b[49m\u001b[43m(\u001b[49m\u001b[43msymbol\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mday_start\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mday_stop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexclude_conditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexclude_conditions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mminsize\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mminsize\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mforce_remote\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbackoff_factor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m trades_df\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/v2realbot/loader/aggregator_vectorized.py:200\u001b[0m, in \u001b[0;36mfetch_daily_stock_trades\u001b[0;34m(symbol, start, end, exclude_conditions, minsize, force_remote, max_retries, backoff_factor)\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m attempt \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(max_retries):\n\u001b[1;32m 199\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 200\u001b[0m tradesResponse \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_stock_trades\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstockTradeRequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m is_empty \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m tradesResponse[symbol]\n\u001b[1;32m 202\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRemote fetched: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mis_empty\u001b[38;5;132;01m=}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, start, end)\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/data/historical/stock.py:144\u001b[0m, in \u001b[0;36mStockHistoricalDataClient.get_stock_trades\u001b[0;34m(self, request_params)\u001b[0m\n\u001b[1;32m 141\u001b[0m params \u001b[38;5;241m=\u001b[39m request_params\u001b[38;5;241m.\u001b[39mto_request_fields()\n\u001b[1;32m 143\u001b[0m \u001b[38;5;66;03m# paginated get request for market data api\u001b[39;00m\n\u001b[0;32m--> 144\u001b[0m raw_trades \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_data_get\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 145\u001b[0m \u001b[43m \u001b[49m\u001b[43mendpoint_data_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtrades\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 146\u001b[0m \u001b[43m \u001b[49m\u001b[43mendpoint_asset_class\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstocks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 147\u001b[0m \u001b[43m \u001b[49m\u001b[43mapi_version\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mv2\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 148\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 149\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_use_raw_data:\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m raw_trades\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/data/historical/stock.py:338\u001b[0m, in \u001b[0;36mStockHistoricalDataClient._data_get\u001b[0;34m(self, endpoint_asset_class, endpoint_data_type, api_version, symbol_or_symbols, limit, page_limit, extension, **kwargs)\u001b[0m\n\u001b[1;32m 335\u001b[0m params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlimit\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m actual_limit\n\u001b[1;32m 336\u001b[0m params[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpage_token\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m page_token\n\u001b[0;32m--> 338\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mapi_version\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mapi_version\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 340\u001b[0m \u001b[38;5;66;03m# TODO: Merge parsing if possible\u001b[39;00m\n\u001b[1;32m 341\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m extension \u001b[38;5;241m==\u001b[39m DataExtensionType\u001b[38;5;241m.\u001b[39mSNAPSHOT:\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:221\u001b[0m, in \u001b[0;36mRESTClient.get\u001b[0;34m(self, path, data, **kwargs)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget\u001b[39m(\u001b[38;5;28mself\u001b[39m, path: \u001b[38;5;28mstr\u001b[39m, data: Union[\u001b[38;5;28mdict\u001b[39m, \u001b[38;5;28mstr\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m HTTPResult:\n\u001b[1;32m 211\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Performs a single GET request\u001b[39;00m\n\u001b[1;32m 212\u001b[0m \n\u001b[1;32m 213\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 219\u001b[0m \u001b[38;5;124;03m dict: The response\u001b[39;00m\n\u001b[1;32m 220\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 221\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mGET\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:129\u001b[0m, in \u001b[0;36mRESTClient._request\u001b[0;34m(self, method, path, data, base_url, api_version)\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m retry \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 128\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 129\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_one_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mretry\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RetryException:\n\u001b[1;32m 131\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_retry_wait)\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/alpaca/common/rest.py:193\u001b[0m, in \u001b[0;36mRESTClient._one_request\u001b[0;34m(self, method, url, opts, retry)\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_one_request\u001b[39m(\u001b[38;5;28mself\u001b[39m, method: \u001b[38;5;28mstr\u001b[39m, url: \u001b[38;5;28mstr\u001b[39m, opts: \u001b[38;5;28mdict\u001b[39m, retry: \u001b[38;5;28mint\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mdict\u001b[39m:\n\u001b[1;32m 175\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Perform one request, possibly raising RetryException in the case\u001b[39;00m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;124;03m the response is 429. Otherwise, if error text contain \"code\" string,\u001b[39;00m\n\u001b[1;32m 177\u001b[0m \u001b[38;5;124;03m then it decodes to json object and returns APIError.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[38;5;124;03m dict: The response data\u001b[39;00m\n\u001b[1;32m 192\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 193\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mopts\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 196\u001b[0m response\u001b[38;5;241m.\u001b[39mraise_for_status()\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/sessions.py:589\u001b[0m, in \u001b[0;36mSession.request\u001b[0;34m(self, method, url, params, data, headers, cookies, files, auth, timeout, allow_redirects, proxies, hooks, stream, verify, cert, json)\u001b[0m\n\u001b[1;32m 584\u001b[0m send_kwargs \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtimeout\u001b[39m\u001b[38;5;124m\"\u001b[39m: timeout,\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mallow_redirects\u001b[39m\u001b[38;5;124m\"\u001b[39m: allow_redirects,\n\u001b[1;32m 587\u001b[0m }\n\u001b[1;32m 588\u001b[0m send_kwargs\u001b[38;5;241m.\u001b[39mupdate(settings)\n\u001b[0;32m--> 589\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprep\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43msend_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m resp\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/sessions.py:703\u001b[0m, in \u001b[0;36mSession.send\u001b[0;34m(self, request, **kwargs)\u001b[0m\n\u001b[1;32m 700\u001b[0m start \u001b[38;5;241m=\u001b[39m preferred_clock()\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Send the request\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m r \u001b[38;5;241m=\u001b[39m \u001b[43madapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[38;5;66;03m# Total elapsed time of the request (approximately)\u001b[39;00m\n\u001b[1;32m 706\u001b[0m elapsed \u001b[38;5;241m=\u001b[39m preferred_clock() \u001b[38;5;241m-\u001b[39m start\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/requests/adapters.py:486\u001b[0m, in \u001b[0;36mHTTPAdapter.send\u001b[0;34m(self, request, stream, timeout, verify, cert, proxies)\u001b[0m\n\u001b[1;32m 483\u001b[0m timeout \u001b[38;5;241m=\u001b[39m TimeoutSauce(connect\u001b[38;5;241m=\u001b[39mtimeout, read\u001b[38;5;241m=\u001b[39mtimeout)\n\u001b[1;32m 485\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 486\u001b[0m resp \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43murlopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 487\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 488\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 489\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 490\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 491\u001b[0m \u001b[43m \u001b[49m\u001b[43mredirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 492\u001b[0m \u001b[43m \u001b[49m\u001b[43massert_same_host\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 493\u001b[0m \u001b[43m \u001b[49m\u001b[43mpreload_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 494\u001b[0m \u001b[43m \u001b[49m\u001b[43mdecode_content\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 495\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 496\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 497\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 498\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 500\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (ProtocolError, \u001b[38;5;167;01mOSError\u001b[39;00m) \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[1;32m 501\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m(err, request\u001b[38;5;241m=\u001b[39mrequest)\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:703\u001b[0m, in \u001b[0;36mHTTPConnectionPool.urlopen\u001b[0;34m(self, method, url, body, headers, retries, redirect, assert_same_host, timeout, pool_timeout, release_conn, chunked, body_pos, **response_kw)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_proxy(conn)\n\u001b[1;32m 702\u001b[0m \u001b[38;5;66;03m# Make the request on the httplib connection object.\u001b[39;00m\n\u001b[0;32m--> 703\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 704\u001b[0m \u001b[43m \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 705\u001b[0m \u001b[43m \u001b[49m\u001b[43mmethod\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 706\u001b[0m \u001b[43m \u001b[49m\u001b[43murl\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 707\u001b[0m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 708\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbody\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 709\u001b[0m \u001b[43m \u001b[49m\u001b[43mheaders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 710\u001b[0m \u001b[43m \u001b[49m\u001b[43mchunked\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchunked\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 711\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 713\u001b[0m \u001b[38;5;66;03m# If we're going to release the connection in ``finally:``, then\u001b[39;00m\n\u001b[1;32m 714\u001b[0m \u001b[38;5;66;03m# the response doesn't need to know about the connection. Otherwise\u001b[39;00m\n\u001b[1;32m 715\u001b[0m \u001b[38;5;66;03m# it will also try to release it and we'll have a double-release\u001b[39;00m\n\u001b[1;32m 716\u001b[0m \u001b[38;5;66;03m# mess.\u001b[39;00m\n\u001b[1;32m 717\u001b[0m response_conn \u001b[38;5;241m=\u001b[39m conn \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m release_conn \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:449\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m 444\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m conn\u001b[38;5;241m.\u001b[39mgetresponse()\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# Remove the TypeError from the exception chain in\u001b[39;00m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# Python 3 (including for exceptions like SystemExit).\u001b[39;00m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;66;03m# Otherwise it looks like a bug in the code.\u001b[39;00m\n\u001b[0;32m--> 449\u001b[0m \u001b[43msix\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_from\u001b[49m\u001b[43m(\u001b[49m\u001b[43me\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 450\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (SocketTimeout, BaseSSLError, SocketError) \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 451\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raise_timeout(err\u001b[38;5;241m=\u001b[39me, url\u001b[38;5;241m=\u001b[39murl, timeout_value\u001b[38;5;241m=\u001b[39mread_timeout)\n",
|
||||
"File \u001b[0;32m<string>:3\u001b[0m, in \u001b[0;36mraise_from\u001b[0;34m(value, from_value)\u001b[0m\n",
|
||||
"File \u001b[0;32m~/Documents/Development/python/v2trading/.venv/lib/python3.10/site-packages/urllib3/connectionpool.py:444\u001b[0m, in \u001b[0;36mHTTPConnectionPool._make_request\u001b[0;34m(self, conn, method, url, timeout, chunked, **httplib_request_kw)\u001b[0m\n\u001b[1;32m 441\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 442\u001b[0m \u001b[38;5;66;03m# Python 3\u001b[39;00m\n\u001b[1;32m 443\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 444\u001b[0m httplib_response \u001b[38;5;241m=\u001b[39m \u001b[43mconn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgetresponse\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 445\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# Remove the TypeError from the exception chain in\u001b[39;00m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;66;03m# Python 3 (including for exceptions like SystemExit).\u001b[39;00m\n\u001b[1;32m 448\u001b[0m \u001b[38;5;66;03m# Otherwise it looks like a bug in the code.\u001b[39;00m\n\u001b[1;32m 449\u001b[0m six\u001b[38;5;241m.\u001b[39mraise_from(e, \u001b[38;5;28;01mNone\u001b[39;00m)\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:1375\u001b[0m, in \u001b[0;36mHTTPConnection.getresponse\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1373\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1374\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 1375\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbegin\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1376\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mConnectionError\u001b[39;00m:\n\u001b[1;32m 1377\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclose()\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:318\u001b[0m, in \u001b[0;36mHTTPResponse.begin\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[38;5;66;03m# read until we get a non-100 response\u001b[39;00m\n\u001b[1;32m 317\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 318\u001b[0m version, status, reason \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 319\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m status \u001b[38;5;241m!=\u001b[39m CONTINUE:\n\u001b[1;32m 320\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/http/client.py:279\u001b[0m, in \u001b[0;36mHTTPResponse._read_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 278\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_read_status\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 279\u001b[0m line \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreadline\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_MAXLINE\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124miso-8859-1\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(line) \u001b[38;5;241m>\u001b[39m _MAXLINE:\n\u001b[1;32m 281\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m LineTooLong(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstatus line\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/socket.py:705\u001b[0m, in \u001b[0;36mSocketIO.readinto\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 703\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 704\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 705\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv_into\u001b[49m\u001b[43m(\u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 706\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m timeout:\n\u001b[1;32m 707\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_timeout_occurred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/ssl.py:1274\u001b[0m, in \u001b[0;36mSSLSocket.recv_into\u001b[0;34m(self, buffer, nbytes, flags)\u001b[0m\n\u001b[1;32m 1270\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 1271\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 1272\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv_into() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 1273\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1274\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnbytes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1275\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1276\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv_into(buffer, nbytes, flags)\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/ssl.py:1130\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m 1128\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1129\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m buffer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1130\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbuffer\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1131\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m)\n",
|
||||
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"trades_df = fetch_daily_stock_trades(symbol, day_start, day_stop, exclude_conditions=exclude_conditions, minsize=minsize, force_remote=False, max_retries=5, backoff_factor=1)\n",
|
||||
"trades_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Either load trades or ohlcv from parquet if exists\n",
|
||||
"\n",
|
||||
"#trades_df = fetch_trades_parallel(symbol, day_start, day_stop, exclude_conditions=exclude_conditions, minsize=50, max_workers=20) #exclude_conditions=['C','O','4','B','7','V','P','W','U','Z','F'])\n",
|
||||
"# trades_df.to_parquet(file_trades, engine='pyarrow', compression='gzip')\n",
|
||||
"\n",
|
||||
"trades_df = pd.read_parquet(file_trades,engine='pyarrow')\n",
|
||||
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=trades_df, resolution=1, type=BarType.TIME)\n",
|
||||
"ohlcv_df.to_parquet(file_ohlcv, engine='pyarrow', compression='gzip')\n",
|
||||
"\n",
|
||||
"# ohlcv_df = pd.read_parquet(file_ohlcv,engine='pyarrow')\n",
|
||||
"# trades_df = pd.read_parquet(file_trades,engine='pyarrow')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#list all files is dir directory with parquet extension\n",
|
||||
"dir = DATA_DIR + \"/notebooks/\"\n",
|
||||
"import os\n",
|
||||
"files = [f for f in os.listdir(dir) if f.endswith(\".parquet\")]\n",
|
||||
"file_name = \"\"\n",
|
||||
"ohlcv_df = pd.read_parquet(file_ohlcv,engine='pyarrow')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import seaborn as sns\n",
|
||||
"# Calculate daily returns\n",
|
||||
"ohlcv_df['returns'] = ohlcv_df['close'].pct_change().dropna()\n",
|
||||
"#same as above but pct_change is from 3 datapoints back, but only if it is the same date, else na\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Plot the probability distribution curve\n",
|
||||
"plt.figure(figsize=(10, 6))\n",
|
||||
"sns.histplot(df['returns'].dropna(), kde=True, stat='probability', bins=30)\n",
|
||||
"plt.title('Probability Distribution of Daily Returns')\n",
|
||||
"plt.xlabel('Daily Returns')\n",
|
||||
"plt.ylabel('Probability')\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from sklearn.linear_model import LogisticRegression\n",
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"\n",
|
||||
"# Define the intervals from 5 to 20 s, returns for each interval\n",
|
||||
"#maybe use rolling window?\n",
|
||||
"intervals = range(5, 21, 5)\n",
|
||||
"\n",
|
||||
"# Create columns for percentage returns\n",
|
||||
"rolling_window = 50\n",
|
||||
"\n",
|
||||
"# Normalize the returns using rolling mean and std\n",
|
||||
"for N in intervals:\n",
|
||||
" column_name = f'returns_{N}'\n",
|
||||
" rolling_mean = ohlcv_df[column_name].rolling(window=rolling_window).mean()\n",
|
||||
" rolling_std = ohlcv_df[column_name].rolling(window=rolling_window).std()\n",
|
||||
" ohlcv_df[f'norm_{column_name}'] = (ohlcv_df[column_name] - rolling_mean) / rolling_std\n",
|
||||
"\n",
|
||||
"# Display the dataframe with normalized return columns\n",
|
||||
"ohlcv_df\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Calculate the sum of the normalized return columns for each row\n",
|
||||
"ohlcv_df['sum_norm_returns'] = ohlcv_df[[f'norm_returns_{N}' for N in intervals]].sum(axis=1)\n",
|
||||
"\n",
|
||||
"# Sort the DataFrame based on the sum of normalized returns in descending order\n",
|
||||
"df_sorted = ohlcv_df.sort_values(by='sum_norm_returns', ascending=False)\n",
|
||||
"\n",
|
||||
"# Display the top rows with the highest sum of normalized returns\n",
|
||||
"df_sorted\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Drop initial rows with NaN values due to pct_change\n",
|
||||
"ohlcv_df.dropna(inplace=True)\n",
|
||||
"\n",
|
||||
"# Plotting the probability distribution curves\n",
|
||||
"plt.figure(figsize=(14, 8))\n",
|
||||
"for N in intervals:\n",
|
||||
" sns.kdeplot(ohlcv_df[f'returns_{N}'].dropna(), label=f'Returns {N}', fill=True)\n",
|
||||
"\n",
|
||||
"plt.title('Probability Distribution of Percentage Returns')\n",
|
||||
"plt.xlabel('Percentage Return')\n",
|
||||
"plt.ylabel('Density')\n",
|
||||
"plt.legend()\n",
|
||||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"import seaborn as sns\n",
|
||||
"# Plot the probability distribution curve\n",
|
||||
"plt.figure(figsize=(10, 6))\n",
|
||||
"sns.histplot(ohlcv_df['returns'].dropna(), kde=True, stat='probability', bins=30)\n",
|
||||
"plt.title('Probability Distribution of Daily Returns')\n",
|
||||
"plt.xlabel('Daily Returns')\n",
|
||||
"plt.ylabel('Probability')\n",
|
||||
"plt.show()\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#show only rows from ohlcv_df where returns > 0.005\n",
|
||||
"ohlcv_df[ohlcv_df['returns'] > 0.0005]\n",
|
||||
"\n",
|
||||
"#ohlcv_df[ohlcv_df['returns'] < -0.005]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#ohlcv where index = date 2024-03-13 and between hour 12\n",
|
||||
"\n",
|
||||
"a = ohlcv_df.loc['2024-03-13 12:00:00':'2024-03-13 13:00:00']\n",
|
||||
"a"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"trades_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"trades_df.to_parquet(\"trades_df-spy-0111-0111.parquett\", engine='pyarrow', compression='gzip')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"trades_df.to_parquet(\"trades_df-spy-111-0516.parquett\", engine='pyarrow', compression='gzip', allow_truncated_timestamps=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.to_parquet(\"ohlcv_df-spy-111-0516.parquett\", engine='pyarrow', compression='gzip')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"basic_data = vbt.Data.from_data(vbt.symbol_dict({symbol: ohlcv_df}), tz_convert=zoneNY)\n",
|
||||
"vbt.settings['plotting']['auto_rangebreaks'] = True\n",
|
||||
"basic_data.ohlcv.plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#access just BCA\n",
|
||||
"#df_filtered = df.loc[\"BAC\"]"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
@ -1,316 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Loading trades and vectorized aggregation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"from numba import jit\n",
|
||||
"from alpaca.data.historical import StockHistoricalDataClient\n",
|
||||
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
|
||||
"from alpaca.data.requests import StockTradesRequest\n",
|
||||
"from v2realbot.enums.enums import BarType\n",
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from datetime import datetime\n",
|
||||
"from v2realbot.utils.utils import parse_alpaca_timestamp, ltp, zoneNY, send_to_telegram, fetch_calendar_data\n",
|
||||
"import pyarrow\n",
|
||||
"from v2realbot.loader.aggregator_vectorized import fetch_daily_stock_trades, fetch_trades_parallel, generate_time_bars_nb, aggregate_trades\n",
|
||||
"import vectorbtpro as vbt\n",
|
||||
"\n",
|
||||
"vbt.settings.set_theme(\"dark\")\n",
|
||||
"vbt.settings['plotting']['layout']['width'] = 1280\n",
|
||||
"vbt.settings.plotting.auto_rangebreaks = True\n",
|
||||
"# Set the option to display with pagination\n",
|
||||
"pd.set_option('display.notebook_repr_html', True)\n",
|
||||
"pd.set_option('display.max_rows', 10) # Number of rows per page"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"symbol = \"SPY\"\n",
|
||||
"#datetime in zoneNY \n",
|
||||
"day_start = datetime(2024, 5, 15, 9, 30, 0)\n",
|
||||
"day_stop = datetime(2024, 5, 16, 16, 00, 0)\n",
|
||||
"day_start = zoneNY.localize(day_start)\n",
|
||||
"day_stop = zoneNY.localize(day_stop)\n",
|
||||
"#neslo by zrychlit, kdyz se zobrazuje pomalu Searching cache - nejaky bottle neck?\n",
|
||||
"df = fetch_trades_parallel(symbol, day_start, day_stop, minsize=50) #exclude_conditions=['C','O','4','B','7','V','P','W','U','Z','F'])\n",
|
||||
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=df, resolution=1, type=BarType.TIME)\n",
|
||||
"#df.info()\n",
|
||||
"ohlcv_df\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"basic_data = vbt.Data.from_data(vbt.symbol_dict({symbol: ohlcv_df}), tz_convert=zoneNY)\n",
|
||||
"vbt.settings['plotting']['auto_rangebreaks'] = True\n",
|
||||
"basic_data.ohlcv.plot()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pickle\n",
|
||||
"from v2realbot.config import ACCOUNT1_PAPER_API_KEY, ACCOUNT1_PAPER_SECRET_KEY, DATA_DIR\n",
|
||||
"import gzip\n",
|
||||
"\n",
|
||||
"file_path = f\"{DATA_DIR}/tradecache/BAC-1709044200-1709067600.cache.gz\"\n",
|
||||
"\n",
|
||||
"with gzip.open(file_path, 'rb') as fp:\n",
|
||||
" tradesResponse = pickle.load(fp)\n",
|
||||
"\n",
|
||||
"tradesResponse"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def convert_dict_to_multiindex_df(tradesResponse):\n",
|
||||
" # Create a DataFrame for each key and add the key as part of the MultiIndex\n",
|
||||
" dfs = []\n",
|
||||
" for key, values in tradesResponse.items():\n",
|
||||
" df = pd.DataFrame(values)\n",
|
||||
" # Rename columns\n",
|
||||
" # Select and order columns explicitly\n",
|
||||
" #print(df)\n",
|
||||
" df = df[['t', 'x', 'p', 's', 'i', 'c','z']]\n",
|
||||
" df.rename(columns={'t': 'timestamp', 'c': 'conditions', 'p': 'price', 's': 'size', 'x': 'exchange', 'z':'tape', 'i':'id'}, inplace=True)\n",
|
||||
" df['symbol'] = key # Add ticker as a column\n",
|
||||
" df['timestamp'] = pd.to_datetime(df['timestamp']) # Convert 't' from string to datetime before setting it as an index\n",
|
||||
" df.set_index(['symbol', 'timestamp'], inplace=True) # Set the multi-level index using both 'ticker' and 't'\n",
|
||||
" df = df.tz_convert(zoneNY, level='timestamp')\n",
|
||||
" dfs.append(df)\n",
|
||||
"\n",
|
||||
" # Concatenate all DataFrames into a single DataFrame with MultiIndex\n",
|
||||
" final_df = pd.concat(dfs)\n",
|
||||
"\n",
|
||||
" return final_df\n",
|
||||
"\n",
|
||||
"# Convert and print the DataFrame\n",
|
||||
"df = convert_dict_to_multiindex_df(tradesResponse)\n",
|
||||
"df\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df = aggregate_trades(symbol=symbol, trades_df=df, resolution=1000, type=\"dollar\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_df.index.strftime('%Y-%m-%d %H').unique()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#ohlcv_df.groupby(ohlcv_df.index.date).size()\n",
|
||||
"ohlcv_df.head(100)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#access just BCA\n",
|
||||
"df_filtered = df.loc[\"BAC\"]\n",
|
||||
"\n",
|
||||
"df_filtered.info()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_filtered= df_filtered.reset_index()\n",
|
||||
"ticks = df_filtered[['timestamp', 'price', 'size']].to_numpy()\n",
|
||||
"ticks\n",
|
||||
"timestamps = ticks[:, 0]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_filtered= df_filtered.reset_index()\n",
|
||||
"ticks = df_filtered[['timestamp', 'price', 'size']].to_numpy()\n",
|
||||
"\n",
|
||||
"#timestamp to integer\n",
|
||||
"# Extract the timestamps column (assuming it's the first column)\n",
|
||||
"timestamps = ticks[:, 0]\n",
|
||||
"\n",
|
||||
"# Convert the timestamps to Unix timestamps in seconds with microsecond precision\n",
|
||||
"unix_timestamps_s = np.array([ts.timestamp() for ts in timestamps], dtype='float64')\n",
|
||||
"\n",
|
||||
"# Replace the original timestamps in the NumPy array with the converted Unix timestamps\n",
|
||||
"ticks[:, 0] = unix_timestamps_s\n",
|
||||
"\n",
|
||||
"#ticks[:, 0] = pd.to_datetime(ticks[:, 0]).astype('int64') // 1_000_000_000 # Convert to Unix timestamp\n",
|
||||
"ticks\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ticks = ticks.astype(np.float64)\n",
|
||||
"ticks"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\n",
|
||||
"resolution = 1 # Example resolution of 60 seconds\n",
|
||||
"ohlcv_bars = generate_time_bars_nb(ticks, resolution)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ohlcv_bars"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Convert the resulting array back to a DataFrame\n",
|
||||
"columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'trades']\n",
|
||||
"ohlcv_df = pd.DataFrame(ohlcv_bars, columns=columns)\n",
|
||||
"ohlcv_df['time'] = pd.to_datetime(ohlcv_df['time'], unit='s')\n",
|
||||
"ohlcv_df.set_index('time', inplace=True)\n",
|
||||
"ohlcv_df.index = ohlcv_df.index.tz_localize('UTC').tz_convert(zoneNY)\n",
|
||||
"#ohlcv_df = ohlcv_df.loc[\"2024-03-1 15:50:00\":\"2024-03-28 13:40:00\"]\n",
|
||||
"#ohlcv_df.index.strftime('%Y-%m-%d %H').unique()\n",
|
||||
"\n",
|
||||
"ohlcv_df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.11"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
557
research/ohlc_persistance_test.ipynb
Normal file
557
research/ohlc_persistance_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
1602
research/prepare_aggregatied_data.ipynb
Normal file
1602
research/prepare_aggregatied_data.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
1553
research/strat_LINREG_MULTI/v1_MULTI.ipynb
Normal file
1553
research/strat_LINREG_MULTI/v1_MULTI.ipynb
Normal file
File diff suppressed because one or more lines are too long
44670
research/strat_LINREG_MULTI/v1_SINGLE.ipynb
Normal file
44670
research/strat_LINREG_MULTI/v1_SINGLE.ipynb
Normal file
File diff suppressed because one or more lines are too long
105
research/test1.ipynb
Normal file
105
research/test1.ipynb
Normal file
File diff suppressed because one or more lines are too long
Reference in New Issue
Block a user