{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "TTOOLS: Loaded env variables from file /Users/davidbrazda/Documents/Development/python/.env\n" ] } ], "source": [ "from ttools.external_loaders import load_history_bars\n", "from ttools.config import zoneNY\n", "from datetime import datetime, time\n", "from alpaca.data.timeframe import TimeFrame, TimeFrameUnit\n", "\n", "symbol = \"AAPL\"\n", "start_date = zoneNY.localize(datetime(2023, 2, 27, 18, 51, 38))\n", "end_date = zoneNY.localize(datetime(2023, 4, 27, 21, 51, 39))\n", "timeframe = TimeFrame(amount=1,unit=TimeFrameUnit.Minute)\n", "\n", "df = load_history_bars(symbol, start_date, end_date, timeframe, True)\n", "df.loc[('AAPL',)]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
openhighlowclosevolumetrade_countvwap
timestamp
2023-02-28 09:30:00-05:00147.050147.380146.830147.27001554100.06447.0146.914560
2023-02-28 09:31:00-05:00147.250147.320147.180147.2942159387.06855.0147.252171
2023-02-28 09:32:00-05:00147.305147.330147.090147.1600214536.07435.0147.210128
2023-02-28 09:33:00-05:00147.140147.230147.090147.1500171487.07235.0147.154832
2023-02-28 09:34:00-05:00147.160147.160146.880146.9850235915.04965.0147.001762
........................
2023-04-27 15:26:00-04:00168.400168.415168.340168.3601163973.01398.0168.368809
2023-04-27 15:27:00-04:00168.360168.400168.330168.3800130968.01420.0168.364799
2023-04-27 15:28:00-04:00168.380168.430168.320168.3285152193.01361.0168.372671
2023-04-27 15:29:00-04:00168.325168.330168.260168.2850208426.01736.0168.297379
2023-04-27 15:30:00-04:00168.280168.350168.255168.3450218077.01694.0168.308873
\n", "

15162 rows × 7 columns

\n", "
" ], "text/plain": [ " open high low close volume \\\n", "timestamp \n", "2023-02-28 09:30:00-05:00 147.050 147.380 146.830 147.2700 1554100.0 \n", "2023-02-28 09:31:00-05:00 147.250 147.320 147.180 147.2942 159387.0 \n", "2023-02-28 09:32:00-05:00 147.305 147.330 147.090 147.1600 214536.0 \n", "2023-02-28 09:33:00-05:00 147.140 147.230 147.090 147.1500 171487.0 \n", "2023-02-28 09:34:00-05:00 147.160 147.160 146.880 146.9850 235915.0 \n", "... ... ... ... ... ... \n", "2023-04-27 15:26:00-04:00 168.400 168.415 168.340 168.3601 163973.0 \n", "2023-04-27 15:27:00-04:00 168.360 168.400 168.330 168.3800 130968.0 \n", "2023-04-27 15:28:00-04:00 168.380 168.430 168.320 168.3285 152193.0 \n", "2023-04-27 15:29:00-04:00 168.325 168.330 168.260 168.2850 208426.0 \n", "2023-04-27 15:30:00-04:00 168.280 168.350 168.255 168.3450 218077.0 \n", "\n", " trade_count vwap \n", "timestamp \n", "2023-02-28 09:30:00-05:00 6447.0 146.914560 \n", "2023-02-28 09:31:00-05:00 6855.0 147.252171 \n", "2023-02-28 09:32:00-05:00 7435.0 147.210128 \n", "2023-02-28 09:33:00-05:00 7235.0 147.154832 \n", "2023-02-28 09:34:00-05:00 4965.0 147.001762 \n", "... ... ... \n", "2023-04-27 15:26:00-04:00 1398.0 168.368809 \n", "2023-04-27 15:27:00-04:00 1420.0 168.364799 \n", "2023-04-27 15:28:00-04:00 1361.0 168.372671 \n", "2023-04-27 15:29:00-04:00 1736.0 168.297379 \n", "2023-04-27 15:30:00-04:00 1694.0 168.308873 \n", "\n", "[15162 rows x 7 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[('AAPL',)]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
openhighlowclosevolumetrade_countvwap
symboltimestamp
AAPL2023-02-27 18:52:00-05:00148.0200148.02148.0200148.02112.07.0148.020000
2023-02-27 18:56:00-05:00148.0200148.02148.0200148.02175.010.0148.020000
2023-02-27 19:00:00-05:00148.0299148.03148.0299148.031957.010.0148.029993
2023-02-27 19:06:00-05:00148.0600148.06148.0600148.06122.07.0148.060000
2023-02-27 19:09:00-05:00148.0500148.10148.0500148.101604.033.0148.075109
........................
2023-04-27 19:54:00-04:00167.8000167.80167.8000167.80534.015.0167.800000
2023-04-27 19:56:00-04:00167.8800167.88167.8800167.881386.028.0167.880000
2023-04-27 19:57:00-04:00167.8000167.80167.8000167.80912.060.0167.800000
2023-04-27 19:58:00-04:00167.8000167.88167.8000167.883311.022.0167.877333
2023-04-27 19:59:00-04:00167.9000167.94167.9000167.941969.064.0167.918150
\n", "

31217 rows × 7 columns

\n", "
" ], "text/plain": [ " open high low close volume \\\n", "symbol timestamp \n", "AAPL 2023-02-27 18:52:00-05:00 148.0200 148.02 148.0200 148.02 112.0 \n", " 2023-02-27 18:56:00-05:00 148.0200 148.02 148.0200 148.02 175.0 \n", " 2023-02-27 19:00:00-05:00 148.0299 148.03 148.0299 148.03 1957.0 \n", " 2023-02-27 19:06:00-05:00 148.0600 148.06 148.0600 148.06 122.0 \n", " 2023-02-27 19:09:00-05:00 148.0500 148.10 148.0500 148.10 1604.0 \n", "... ... ... ... ... ... \n", " 2023-04-27 19:54:00-04:00 167.8000 167.80 167.8000 167.80 534.0 \n", " 2023-04-27 19:56:00-04:00 167.8800 167.88 167.8800 167.88 1386.0 \n", " 2023-04-27 19:57:00-04:00 167.8000 167.80 167.8000 167.80 912.0 \n", " 2023-04-27 19:58:00-04:00 167.8000 167.88 167.8000 167.88 3311.0 \n", " 2023-04-27 19:59:00-04:00 167.9000 167.94 167.9000 167.94 1969.0 \n", "\n", " trade_count vwap \n", "symbol timestamp \n", "AAPL 2023-02-27 18:52:00-05:00 7.0 148.020000 \n", " 2023-02-27 18:56:00-05:00 10.0 148.020000 \n", " 2023-02-27 19:00:00-05:00 10.0 148.029993 \n", " 2023-02-27 19:06:00-05:00 7.0 148.060000 \n", " 2023-02-27 19:09:00-05:00 33.0 148.075109 \n", "... ... ... \n", " 2023-04-27 19:54:00-04:00 15.0 167.800000 \n", " 2023-04-27 19:56:00-04:00 28.0 167.880000 \n", " 2023-04-27 19:57:00-04:00 60.0 167.800000 \n", " 2023-04-27 19:58:00-04:00 22.0 167.877333 \n", " 2023-04-27 19:59:00-04:00 64.0 167.918150 \n", "\n", "[31217 rows x 7 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 2 }