# ttools A Python library for tools, utilities, and helpers for my trading research workflow. ## Installation ```bash pip install git+https://github.com/drew2323/ttools.git ``` or ```bash pip install git+https://gitea.stratlab.dev/dwker/ttools.git ``` Modules: # loaders - remotely fetches daily trade data - manages trade cache (daily trade files per symbol) and aggregation cache (per symbola and requested period) - numba compiled aggregator for required output (time based, dollars, volume bars, renkos...). - additional columns calculated from tick data and included in bars - buyvolume, sellvolume - total amount of volume triggered by aggressive orders (estimated by Lee-Ready algorithm) - buytrades, selltrades - total amount of trades in each bar grouped by side of aggregsive orders Detailed examples in [tests/data_loader_tryme.ipynb](tests/data_loader_tryme.ipynb) ## load_data Returns vectorized aggregation of given type. If aggregated data are already in agg cache with same conditions for same or wider date span they are returned from cache. Otherwise trade data are aggregated on the fly, saved to cache and returned. If trades for given period are not cached ,they are remotely fetched from Alpaca first. Example: ```python from ttools import load_data #This is how to call LOAD function vbt_data = load_data(symbol = ["BAC"], agg_type = AggType.OHLCV, #aggregation types: AggType.OHLCV_VOL, AggType.OHLCV_DOL, AggType.OHLCV_RENKO, resolution = 12, #12s (for other types might be bricksize etc.) start_date = datetime(2024, 10, 14, 9, 45, 0), end_date = datetime(2024, 10, 16, 15, 1, 0), #exclude_conditions = ['C','O','4','B','7','V','P','W','U','Z','F','9','M','6'], minsize = 100, #minimum trade size included in aggregation main_session_only = True, #False for ext hours force_remote = False, #always refetches trades remotely return_vbt = True, #returns vbt object with symbols as columns, otherwise dict keyed by symbols with pd.DataFrame verbose = True # False = silent mode ) vbt_data.ohlcv.data[symbol[0]].lw.plot() vbt_data.data[symbol[0]] ``` ### cache There are 2 caches created - trade cache - daily files per symbol with all trades - agg cache - aggregated output keyed by aggtype, resolution, conditions and ranges ### keys Required Alpaca API keys in env variables or .env files. ```python ACCOUNT1_LIVE_API_KEY=api_key ACCOUNT1_LIVE_SECRET_KEY=secret_key ``` ## prepare trade cache To prepare daily trade cache files for given period. If they are not present in cache, they are fetched. `force_remote` refetches from remote, even when exists in cache. ```python from ttools.loaders import prepare_trade_cache symbols = ["BAC", "AAPL"] #datetime in zoneNY day_start = datetime(2024, 10, 1, 9, 45, 0) day_stop = datetime(2024, 10, 14, 15, 1, 0) day_start = zoneNY.localize(day_start) day_stop = zoneNY.localize(day_stop) force_remote = False prepare_trade_cache(symbols, day_start, day_stop, force_remote) ``` ### Prepare daily trade cache - cli script Daily trade cache data can be fetched for given period by CLI script, that can run in the background. Note: To fetch 1 day takes about 35s. It is stored in /tradescache/ directory as daily file keyed by symbol. To run this script in the background with specific arguments: ```bash # Running without forcing remote fetch python3 prepare_cache.py --symbols BAC AAPL --day_start 2024-10-14 --day_stop 2024-10-18 & # Running with force_remote set to True python3 prepare_cache.py --symbols BAC AAPL --day_start 2024-10-14 --day_stop 2024-10-18 --force_remote & ``` ## remote loaders Remote bars of given resolutions from Alpaca. Available resolutions Minute, Hours, Day. It s not possible to limit included trades. Use only when no precision required. ```python from ttools.external_loaders import load_history_bars from ttools.config import zoneNY from datetime import datetime, time from alpaca.data.timeframe import TimeFrame, TimeFrameUnit symbol = "AAPL" start_date = zoneNY.localize(datetime(2023, 2, 27, 18, 51, 38)) end_date = zoneNY.localize(datetime(2023, 4, 27, 21, 51, 39)) timeframe = TimeFrame(amount=1,unit=TimeFrameUnit.Minute) df = load_history_bars(symbol, start_date, end_date, timeframe, main_session_only=True) df.loc[('AAPL',)] ``` # vbtutils Contains helpers for vbtpro `AnchoredIndicator` - allows runing any vbt indicator in anchored mode (reset by Day, Hour etc.) Example usage: ```python from ttools import AnchoredIndicator mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True) #standard indicator mom_anch_d = AnchoredIndicator("talib:MOM", anchor='D').run(t1data.data["BAC"].close, timeperiod=10, skipna=True) #anchored to D ``` `create_mask_from_window` - creates mask of the same size AS INPUT, True values denotes that the window is open. Used to filter entry window or forced eod window. Range is denoted by pair (start, end) indicating minutes elapsed from the market start of that day. ```python from ttools import create_mask_from_window entry_window_opens = 3 #in minutes from start of the market entry_window_closes = 388 forced_exit_start = 387 forced_exit_end = 390 #create mask based on main session that day entry_window_opened = create_mask_from_window(entries, entry_window_opens, entry_window_closes) #limit entries to the window entries = entries & entry_window_opened #create forced exits mask forced_exits_window = create_mask_from_window(exits, forced_exit_start, forced_exit_end) #add forced_exits to exits exits = exits | forced_exits_window exits.tail(20) ``` ## display plotly figs in single ntb cells To display various standalone figures in the same cell. `figs2cell(figlist)` Example usage: ```python figs = [] fig1 = df.groupby([df['Exit Index'].dt.day_name(), 'Direction'])['PnL'].sum().unstack().vbt.barplot() fig2 = df.groupby([df['Exit Index'].dt.day_name(), 'Direction'])['PnL'].sum().unstack().vbt.barplot() figs.append(fig1) figs.append(fig2) display_figs_side_by_side(figs) ``` ## is rising/is falling `isrising(series,n)`,`isfalling(series, n)` - returns mask where the condition is satisfied of rising or falling elements including equal values `isrisingc(series,n)`,`isfallingc(series, n)` - same as above but scritly rising/fallinf (no equal values) # Indicators Custom indicators in the `indicators` folder. ## Importing ```python from ttools.vbtindicators import register_custom_inds register_custom_inds(None, "override") #All indicators from the folder are automatically imported and registered. register_custom_inds("CUVWAP", "override")#just one ``` After registration they can be listed and used ```python vbt.IF.list_indicators("ttools") vbt.phelp(vbt.indicator("ttools:CUVWAP").run) vwap_cum_d = vbt.indicator("ttools:CUVWAP").run(s12_data.high, s12_data.low, s12_data.close, s12_data.volume, anchor=vbt.Default(value="D"), drag=vbt.Default(value=50), hide_default=True) ``` ## Creating To create custom indicators CUSTOMNAME.py in `indicators` folder is created containing varibles IND_CUSTOMNAME containing the Indicator Factory class. ## Available - `CUVWAP` - Cumulative VWAP with anchor based on HLCC4 with optional rounding (hlcc4_round, def.3) and drag - warming period from previous anchor unit(def.0). - `DIVERGENCE` - Various divergences between two timeseries (abs, relative, relative normalized, pct, abs pct)