Initial commit
This commit is contained in:
@ -1,2 +1,7 @@
|
|||||||
# ttools
|
# ttools
|
||||||
A Python library for tools, utilities, and helpers for my trading research workflow.
|
A Python library for tools, utilities, and helpers for my trading research workflow.
|
||||||
|
|
||||||
|
# Modules
|
||||||
|
|
||||||
|
- `utils.vbtutils` - contains helpers for vbtpro
|
||||||
|
- `AnchoredIndicator` - allows runing any vbt indicator in anchored mode (reset by Day, Hour etc.)
|
||||||
|
|||||||
11
setup.py
Normal file
11
setup.py
Normal file
@ -0,0 +1,11 @@
|
|||||||
|
from setuptools import setup, find_packages
|
||||||
|
|
||||||
|
setup(
|
||||||
|
name='ttools',
|
||||||
|
version='0.1.0',
|
||||||
|
packages=find_packages(),
|
||||||
|
install_requires=[
|
||||||
|
'vectorbtpro',
|
||||||
|
# list your dependencies here
|
||||||
|
],
|
||||||
|
)
|
||||||
0
tests/vbt-anchored.py
Normal file
0
tests/vbt-anchored.py
Normal file
0
utils/__init__.py
Normal file
0
utils/__init__.py
Normal file
50
utils/vbtutils.py
Normal file
50
utils/vbtutils.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import vectorbtpro as vbt
|
||||||
|
|
||||||
|
class AnchoredIndicator:
|
||||||
|
"""
|
||||||
|
Allows to run any VBT indicator in anchored mode (reset per Day, Hour, or Minute).
|
||||||
|
"""
|
||||||
|
def __init__(self, indicator_name: str, split_by='D'):
|
||||||
|
"""
|
||||||
|
Initialize with the name of the indicator (e.g., "talib:MOM").
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- indicator_name: str, the name of the vectorbt indicator.
|
||||||
|
- split_by: str, 'D' for day, 'H' for hour, 'T' for minute (default is 'D').
|
||||||
|
"""
|
||||||
|
self.indicator_name = indicator_name
|
||||||
|
self.indicator = vbt.indicator(indicator_name)
|
||||||
|
self.split_by = split_by
|
||||||
|
|
||||||
|
def run(self, data, split_by=None, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Run the indicator on a Series or DataFrame by splitting it by day, hour, or minute,
|
||||||
|
applying the indicator to each group, and concatenating the results.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
- data: pd.Series or pd.DataFrame, the input data series or dataframe (e.g., close prices).
|
||||||
|
- split_by: str, 'D' for day, 'H' for hour, 'T' for minute (default is 'D').
|
||||||
|
- *args, **kwargs: Arguments and keyword arguments passed to the indicator.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if split_by is None:
|
||||||
|
split_by = self.split_by
|
||||||
|
|
||||||
|
# Group by the specified frequency
|
||||||
|
if split_by == 'D':
|
||||||
|
grouped_data = data.groupby(data.index.date)
|
||||||
|
elif split_by in ['H', 'T']:
|
||||||
|
grouped_data = data.groupby(pd.Grouper(freq=split_by))
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid split_by value. Use 'D' (day), 'H' (hour), or 'T' (minute).")
|
||||||
|
|
||||||
|
# Run the indicator function for each group and concatenate the results
|
||||||
|
results = []
|
||||||
|
for date, group in grouped_data:
|
||||||
|
# Run the indicator for each group's data
|
||||||
|
result = self.indicator.run(group, *args, **kwargs)
|
||||||
|
results.append(result)
|
||||||
|
|
||||||
|
# Concatenate the results and return
|
||||||
|
return vbt.base.merging.row_stack_merge(results)
|
||||||
Reference in New Issue
Block a user