{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import statsmodels.api as sm\n", "\n", "# Example time series data\n", "np.random.seed(0)\n", "dates = pd.date_range('2023-01-01', periods=100)\n", "data = pd.Series(np.random.randn(100).cumsum(), index=dates)\n", "\n", "# Parameters\n", "window_size = 20\n", "\n", "# Function to calculate rolling window linear regression\n", "def rolling_linreg(series, window):\n", " intercepts = []\n", " slopes = []\n", " for i in range(len(series) - window + 1):\n", " y = series[i:i + window]\n", " x = np.arange(window)\n", " x = sm.add_constant(x)\n", " model = sm.OLS(y, x).fit()\n", " intercepts.append(model.params[0])\n", " slopes.append(model.params[1])\n", " return intercepts, slopes\n", "\n", "# Calculate rolling linear regression parameters\n", "intercepts, slopes = rolling_linreg(data, window_size)\n", "\n", "# Create a DataFrame for plotting\n", "rolling_dates = dates[window_size - 1:]\n", "rolling_intercepts = pd.Series(intercepts, index=rolling_dates)\n", "rolling_slopes = pd.Series(slopes, index=rolling_dates)\n", "\n", "# Plot the original data and the rolling linear regression\n", "plt.figure(figsize=(14, 7))\n", "plt.plot(data, label='Original Data')\n", "for i in range(len(rolling_intercepts)):\n", " start_date = rolling_dates[i] - pd.DateOffset(days=window_size-1)\n", " end_date = rolling_dates[i]\n", " plt.plot([start_date, end_date],\n", " [rolling_intercepts[i], rolling_intercepts[i] + rolling_slopes[i] * (window_size - 1)],\n", " color='red', alpha=0.5)\n", "\n", "plt.legend()\n", "plt.title('Rolling Window Linear Regression')\n", "plt.xlabel('Date')\n", "plt.ylabel('Value')\n", "plt.show()\n" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 2 }