{ "cells": [ { "cell_type": "markdown", "id": "6e9a4f41", "metadata": {}, "source": [ "
" ] }, { "cell_type": "markdown", "id": "fd709f5c", "metadata": {}, "source": [ "This code integrates LangChain library functionalities to process and query PDF documents using OpenAI's language model. It loads a PDF file, splits it into pages, and stores these pages in a vector database (ChromaDB). It then creates a toolkit to interact with the vector store and uses an agent executor to query the database based on user input. This is useful for extracting and querying information from structured documents like financial reports." ] }, { "cell_type": "code", "execution_count": 1, "id": "58bade97", "metadata": {}, "outputs": [], "source": [ "import os" ] }, { "cell_type": "code", "execution_count": 2, "id": "ce47c00a", "metadata": {}, "outputs": [], "source": [ "from langchain.llms import OpenAI\n", "from langchain.document_loaders import PyPDFLoader\n", "from langchain.vectorstores import Chroma\n", "from langchain.agents.agent_toolkits import (\n", " create_vectorstore_agent,\n", " VectorStoreToolkit,\n", " VectorStoreInfo,\n", ")" ] }, { "cell_type": "markdown", "id": "18b8f141", "metadata": {}, "source": [ "Set the OpenAI API key for authentication" ] }, { "cell_type": "code", "execution_count": 3, "id": "7a0ddde1", "metadata": {}, "outputs": [], "source": [ "os.environ[\"OPENAI_API_KEY\"] = \"\"\"" ] }, { "cell_type": "markdown", "id": "9cb3ca7c", "metadata": {}, "source": [ "Create an instance of the OpenAI language model with specified parameters" ] }, { "cell_type": "code", "execution_count": 20, "id": "396ba311", "metadata": {}, "outputs": [ { "ename": "AuthenticationError", "evalue": "Error code: 401 - {'error': {'message': 'Incorrect API key provided: sk-nzJ5u***************************************N1s3. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAuthenticationError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[20], line 9\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mopenai\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m OpenAI\n\u001b[1;32m 4\u001b[0m client \u001b[38;5;241m=\u001b[39m OpenAI(\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# This is the default and can be omitted\u001b[39;00m\n\u001b[1;32m 6\u001b[0m api_key\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msk-nzJ5uA1io2NoFJNj6Z67T3BlbkFJr0ictKLQNDqKkEsCN1s3\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 7\u001b[0m )\n\u001b[0;32m----> 9\u001b[0m chat_completion \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrole\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 13\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mSay this is a test\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 14\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 16\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-3.5-turbo\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 17\u001b[0m \u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/openai/_utils/_utils.py:274\u001b[0m, in \u001b[0;36mrequired_args..inner..wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 272\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 273\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 274\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/openai/resources/chat/completions.py:815\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, audio, frequency_penalty, function_call, functions, logit_bias, logprobs, max_completion_tokens, max_tokens, metadata, modalities, n, parallel_tool_calls, presence_penalty, response_format, seed, service_tier, stop, store, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m 775\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 776\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 777\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 812\u001b[0m timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m 813\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[1;32m 814\u001b[0m validate_response_format(response_format)\n\u001b[0;32m--> 815\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 816\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 817\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 818\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 819\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 820\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 821\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43maudio\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43maudio\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 822\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 823\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 824\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 825\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 826\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 827\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_completion_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_completion_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 828\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 829\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 830\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodalities\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodalities\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 831\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 832\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mparallel_tool_calls\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 833\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 834\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 835\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 836\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mservice_tier\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 837\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 838\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstore\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 839\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 840\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 841\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 842\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 843\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 844\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 845\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 846\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 847\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 848\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 849\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 850\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 851\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 852\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 853\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 854\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 855\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 856\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/openai/_base_client.py:1277\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1263\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1264\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1265\u001b[0m path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1272\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1273\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m 1274\u001b[0m opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m 1275\u001b[0m method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m 1276\u001b[0m )\n\u001b[0;32m-> 1277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/openai/_base_client.py:954\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 951\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 952\u001b[0m retries_taken \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m--> 954\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 955\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 956\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 957\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 958\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 959\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries_taken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mretries_taken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 960\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/openai/_base_client.py:1058\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, retries_taken, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1055\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 1057\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1058\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1060\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m 1061\u001b[0m cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m 1062\u001b[0m options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1066\u001b[0m retries_taken\u001b[38;5;241m=\u001b[39mretries_taken,\n\u001b[1;32m 1067\u001b[0m )\n", "\u001b[0;31mAuthenticationError\u001b[0m: Error code: 401 - {'error': {'message': 'Incorrect API key provided: sk-nzJ5u***************************************N1s3. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}" ] } ], "source": [ "import os\n", "from openai import OpenAI\n", "\n", "client = OpenAI(\n", " # This is the default and can be omitted\n", " api_key=\"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\",\n", ")\n", "\n", "chat_completion = client.chat.completions.create(\n", " messages=[\n", " {\n", " \"role\": \"user\",\n", " \"content\": \"Say this is a test\",\n", " }\n", " ],\n", " model=\"gpt-3.5-turbo\",\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "id": "6ebf63b0", "metadata": {}, "outputs": [], "source": [ "llm = OpenAI(temperature=0.1, verbose=True)" ] }, { "cell_type": "markdown", "id": "e5e50726", "metadata": {}, "source": [ "Initialize a PDF loader for the specified file" ] }, { "cell_type": "code", "execution_count": 8, "id": "681ccbf2", "metadata": {}, "outputs": [], "source": [ "loader = PyPDFLoader(\"apple.pdf\")" ] }, { "cell_type": "markdown", "id": "41e538eb", "metadata": {}, "source": [ "Split the PDF into individual pages for processing" ] }, { "cell_type": "code", "execution_count": 9, "id": "adf3f45c", "metadata": {}, "outputs": [], "source": [ "pages = loader.load_and_split()" ] }, { "cell_type": "markdown", "id": "fbbc170b", "metadata": {}, "source": [ "Load the split pages into a Chroma vector database for efficient querying" ] }, { "cell_type": "code", "execution_count": 14, "id": "964eaa4a", "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "You must provide an embedding function to compute embeddings.https://docs.trychroma.com/guides/embeddings", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[14], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m store \u001b[38;5;241m=\u001b[39m \u001b[43mChroma\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_documents\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcollection_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mannualreport\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:878\u001b[0m, in \u001b[0;36mChroma.from_documents\u001b[0;34m(cls, documents, embedding, ids, collection_name, persist_directory, client_settings, client, collection_metadata, **kwargs)\u001b[0m\n\u001b[1;32m 876\u001b[0m texts \u001b[38;5;241m=\u001b[39m [doc\u001b[38;5;241m.\u001b[39mpage_content \u001b[38;5;28;01mfor\u001b[39;00m doc \u001b[38;5;129;01min\u001b[39;00m documents]\n\u001b[1;32m 877\u001b[0m metadatas \u001b[38;5;241m=\u001b[39m [doc\u001b[38;5;241m.\u001b[39mmetadata \u001b[38;5;28;01mfor\u001b[39;00m doc \u001b[38;5;129;01min\u001b[39;00m documents]\n\u001b[0;32m--> 878\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_texts\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 879\u001b[0m \u001b[43m \u001b[49m\u001b[43mtexts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtexts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 880\u001b[0m \u001b[43m \u001b[49m\u001b[43membedding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43membedding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 881\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadatas\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadatas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 882\u001b[0m \u001b[43m \u001b[49m\u001b[43mids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mids\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 883\u001b[0m \u001b[43m \u001b[49m\u001b[43mcollection_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcollection_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 884\u001b[0m \u001b[43m \u001b[49m\u001b[43mpersist_directory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpersist_directory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 885\u001b[0m \u001b[43m \u001b[49m\u001b[43mclient_settings\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclient_settings\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 886\u001b[0m \u001b[43m \u001b[49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 887\u001b[0m \u001b[43m \u001b[49m\u001b[43mcollection_metadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcollection_metadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 888\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 889\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:842\u001b[0m, in \u001b[0;36mChroma.from_texts\u001b[0;34m(cls, texts, embedding, metadatas, ids, collection_name, persist_directory, client_settings, client, collection_metadata, **kwargs)\u001b[0m\n\u001b[1;32m 836\u001b[0m chroma_collection\u001b[38;5;241m.\u001b[39madd_texts(\n\u001b[1;32m 837\u001b[0m texts\u001b[38;5;241m=\u001b[39mbatch[\u001b[38;5;241m3\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m batch[\u001b[38;5;241m3\u001b[39m] \u001b[38;5;28;01melse\u001b[39;00m [],\n\u001b[1;32m 838\u001b[0m metadatas\u001b[38;5;241m=\u001b[39mbatch[\u001b[38;5;241m2\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m batch[\u001b[38;5;241m2\u001b[39m] \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 839\u001b[0m ids\u001b[38;5;241m=\u001b[39mbatch[\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m 840\u001b[0m )\n\u001b[1;32m 841\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 842\u001b[0m \u001b[43mchroma_collection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43madd_texts\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtexts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtexts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadatas\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadatas\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mids\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 843\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m chroma_collection\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:313\u001b[0m, in \u001b[0;36mChroma.add_texts\u001b[0;34m(self, texts, metadatas, ids, **kwargs)\u001b[0m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(e\u001b[38;5;241m.\u001b[39margs[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m msg)\n\u001b[1;32m 312\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 313\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 314\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m empty_ids:\n\u001b[1;32m 315\u001b[0m texts_without_metadatas \u001b[38;5;241m=\u001b[39m [texts[j] \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m empty_ids]\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/langchain_community/vectorstores/chroma.py:299\u001b[0m, in \u001b[0;36mChroma.add_texts\u001b[0;34m(self, texts, metadatas, ids, **kwargs)\u001b[0m\n\u001b[1;32m 297\u001b[0m ids_with_metadata \u001b[38;5;241m=\u001b[39m [ids[idx] \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m non_empty_ids]\n\u001b[1;32m 298\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 299\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_collection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupsert\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 300\u001b[0m \u001b[43m \u001b[49m\u001b[43mmetadatas\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmetadatas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 301\u001b[0m \u001b[43m \u001b[49m\u001b[43membeddings\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43membeddings_with_metadatas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 302\u001b[0m \u001b[43m \u001b[49m\u001b[43mdocuments\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtexts_with_metadatas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 303\u001b[0m \u001b[43m \u001b[49m\u001b[43mids\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mids_with_metadata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 304\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 305\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 306\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected metadata value to be\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mstr\u001b[39m(e):\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/chromadb/api/models/Collection.py:298\u001b[0m, in \u001b[0;36mCollection.upsert\u001b[0;34m(self, ids, embeddings, metadatas, documents, images, uris)\u001b[0m\n\u001b[1;32m 267\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mupsert\u001b[39m(\n\u001b[1;32m 268\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 269\u001b[0m ids: OneOrMany[ID],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 279\u001b[0m uris: Optional[OneOrMany[URI]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 280\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 281\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Update the embeddings, metadatas or documents for provided ids, or create them if they don't exist.\u001b[39;00m\n\u001b[1;32m 282\u001b[0m \n\u001b[1;32m 283\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[38;5;124;03m None\u001b[39;00m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 292\u001b[0m (\n\u001b[1;32m 293\u001b[0m ids,\n\u001b[1;32m 294\u001b[0m embeddings,\n\u001b[1;32m 295\u001b[0m metadatas,\n\u001b[1;32m 296\u001b[0m documents,\n\u001b[1;32m 297\u001b[0m uris,\n\u001b[0;32m--> 298\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_validate_and_prepare_upsert_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 299\u001b[0m \u001b[43m \u001b[49m\u001b[43mids\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43membeddings\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmetadatas\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdocuments\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mimages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muris\u001b[49m\n\u001b[1;32m 300\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 302\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_client\u001b[38;5;241m.\u001b[39m_upsert(\n\u001b[1;32m 303\u001b[0m collection_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mid,\n\u001b[1;32m 304\u001b[0m ids\u001b[38;5;241m=\u001b[39mids,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 308\u001b[0m uris\u001b[38;5;241m=\u001b[39muris,\n\u001b[1;32m 309\u001b[0m )\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/chromadb/api/models/CollectionCommon.py:546\u001b[0m, in \u001b[0;36mCollectionCommon._validate_and_prepare_upsert_request\u001b[0;34m(self, ids, embeddings, metadatas, documents, images, uris)\u001b[0m\n\u001b[1;32m 544\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m embeddings \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 545\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m documents \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 546\u001b[0m embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_embed\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdocuments\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 547\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 548\u001b[0m embeddings \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_embed(\u001b[38;5;28minput\u001b[39m\u001b[38;5;241m=\u001b[39mimages)\n", "File \u001b[0;32m~/Documents/Development/python/strategy-lab1/.venv/lib/python3.10/site-packages/chromadb/api/models/CollectionCommon.py:577\u001b[0m, in \u001b[0;36mCollectionCommon._embed\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 575\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_embed\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Embeddings:\n\u001b[1;32m 576\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_embedding_function \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 577\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 578\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou must provide an embedding function to compute embeddings.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 579\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://docs.trychroma.com/guides/embeddings\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 580\u001b[0m )\n\u001b[1;32m 581\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_embedding_function(\u001b[38;5;28minput\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28minput\u001b[39m)\n", "\u001b[0;31mValueError\u001b[0m: You must provide an embedding function to compute embeddings.https://docs.trychroma.com/guides/embeddings" ] } ], "source": [ "store = Chroma.from_documents(pages, collection_name=\"annualreport\")" ] }, { "cell_type": "markdown", "id": "dbd9b7f5", "metadata": {}, "source": [ "Create a VectorStoreInfo object to hold metadata about the vector store" ] }, { "cell_type": "code", "execution_count": null, "id": "4fd45821", "metadata": {}, "outputs": [], "source": [ "vectorstore_info = VectorStoreInfo(\n", " name=\"apple\",\n", " description=\"Apple quarterly consolidated financials\",\n", " vectorstore=store,\n", ")" ] }, { "cell_type": "markdown", "id": "9db55c3d", "metadata": {}, "source": [ "Convert the vector store information into a toolkit for LangChain" ] }, { "cell_type": "code", "execution_count": null, "id": "40f81c28", "metadata": {}, "outputs": [], "source": [ "toolkit = VectorStoreToolkit(vectorstore_info=vectorstore_info)" ] }, { "cell_type": "markdown", "id": "288a7fd0", "metadata": {}, "source": [ "Create an agent executor that uses the language model and toolkit for querying" ] }, { "cell_type": "code", "execution_count": null, "id": "2bee8094", "metadata": {}, "outputs": [], "source": [ "agent_executor = create_vectorstore_agent(llm=llm, toolkit=toolkit, verbose=True)" ] }, { "cell_type": "markdown", "id": "961d1da5", "metadata": {}, "source": [ "Prompt the user to enter a search term for querying the document" ] }, { "cell_type": "code", "execution_count": 12, "id": "445ea906", "metadata": {}, "outputs": [], "source": [ "prompt = input(\"Enter your search term: \")" ] }, { "cell_type": "code", "execution_count": 13, "id": "c6b36ac3", "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'agent_executor' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[13], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m prompt:\n\u001b[1;32m 2\u001b[0m \n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Pass the user input to the agent executor for processing\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43magent_executor\u001b[49m\u001b[38;5;241m.\u001b[39mrun(prompt)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Print the response from the language model to the screen\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28mprint\u001b[39m(response)\n", "\u001b[0;31mNameError\u001b[0m: name 'agent_executor' is not defined" ] } ], "source": [ "if prompt:\n", "\n", " # Pass the user input to the agent executor for processing\n", "\n", " response = agent_executor.run(prompt)\n", "\n", " # Print the response from the language model to the screen\n", "\n", " print(response)" ] }, { "cell_type": "markdown", "id": "8a4cac29", "metadata": {}, "source": [ "PyQuant News is where finance practitioners level up with Python for quant finance, algorithmic trading, and market data analysis. Looking to get started? Check out the fastest growing, top-selling course to get started with Python for quant finance. For educational purposes. Not investment advise. Use at your own risk." ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.11" } }, "nbformat": 4, "nbformat_minor": 5 }