daily update

This commit is contained in:
David Brazda
2024-10-21 20:57:56 +02:00
parent 132172855a
commit e3da60c647
196 changed files with 1722489 additions and 1134 deletions

View File

@ -0,0 +1,208 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "63831470",
"metadata": {},
"source": [
"<div style=\"background-color:#000;\"><img src=\"pqn.png\"></img></div>"
]
},
{
"cell_type": "markdown",
"id": "535538d4",
"metadata": {},
"source": [
"This code utilizes the Black-Litterman model to incorporate subjective views into the portfolio optimization process. It fetches price data for selected assets, constructs a covariance matrix, and sets up absolute views on asset returns. The Black-Litterman model is then used to compute new expected returns, followed by the construction of an efficient frontier. This approach helps in creating a more informed and optimized portfolio by blending market equilibrium with investor views."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30dc6f4f",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6c1d4af5",
"metadata": {},
"outputs": [],
"source": [
"from pypfopt.black_litterman import BlackLittermanModel\n",
"from pypfopt.efficient_frontier import EfficientFrontier\n",
"from pypfopt import risk_models, plotting"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "293a45be",
"metadata": {},
"outputs": [],
"source": [
"from openbb_terminal.sdk import openbb\n",
"import seaborn as sns\n",
"sns.set_theme()"
]
},
{
"cell_type": "markdown",
"id": "60664575",
"metadata": {},
"source": [
"Fetch price data for selected assets from the OpenBB terminal"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02c6c09c",
"metadata": {},
"outputs": [],
"source": [
"prices = openbb.economy.index([\"AAPL\", \"BBY\", \"BAC\", \"SBUX\", \"T\"])"
]
},
{
"cell_type": "markdown",
"id": "9081783b",
"metadata": {},
"source": [
"Define absolute views on the expected returns for specific assets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d9cb1ca",
"metadata": {},
"outputs": [],
"source": [
"viewdict = {\n",
" \"AAPL\": 0.20, \n",
" \"BBY\": 0.30,\n",
" \"BAC\": 0.10,\n",
" \"SBUX\": 0.2,\n",
" \"T\": 0.15\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "a3a6f94a",
"metadata": {},
"source": [
"Construct the sample covariance matrix using historical price data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d0e2e01",
"metadata": {},
"outputs": [],
"source": [
"cov_matrix = risk_models.sample_cov(prices)"
]
},
{
"cell_type": "markdown",
"id": "500bebeb",
"metadata": {},
"source": [
"Initialize the Black-Litterman model with equal weight priors and absolute views"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6db6f3b2",
"metadata": {},
"outputs": [],
"source": [
"bl = BlackLittermanModel(\n",
" cov_matrix, \n",
" absolute_views=viewdict,\n",
" pi=\"equal\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b3ac9e80",
"metadata": {},
"source": [
"Compute the implied expected returns using the Black-Litterman model and initialize Efficient Frontier"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "024947c8",
"metadata": {},
"outputs": [],
"source": [
"rets = bl.bl_returns()\n",
"ef = EfficientFrontier(rets, cov_matrix)"
]
},
{
"cell_type": "markdown",
"id": "644d3dec",
"metadata": {},
"source": [
"Plot the efficient frontier showing the possible portfolios"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86ea1335",
"metadata": {},
"outputs": [],
"source": [
"plotting.plot_efficient_frontier(ef, show_tickers=True)"
]
},
{
"cell_type": "markdown",
"id": "aba68864",
"metadata": {},
"source": [
"Calculate and display the optimal weights for the portfolio"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ef1c2d68",
"metadata": {},
"outputs": [],
"source": [
"bl.bl_weights()"
]
},
{
"cell_type": "markdown",
"id": "8bbae896",
"metadata": {},
"source": [
"<a href=\"https://pyquantnews.com/\">PyQuant News</a> is where finance practitioners level up with Python for quant finance, algorithmic trading, and market data analysis. Looking to get started? Check out the fastest growing, top-selling course to <a href=\"https://gettingstartedwithpythonforquantfinance.com/\">get started with Python for quant finance</a>. For educational purposes. Not investment advise. Use at your own risk."
]
}
],
"metadata": {
"jupytext": {
"cell_metadata_filter": "-all",
"main_language": "python",
"notebook_metadata_filter": "-all"
}
},
"nbformat": 4,
"nbformat_minor": 5
}