Add files via upload
This commit is contained in:
874
to_explore/markov_variance_switching.ipynb
Normal file
874
to_explore/markov_variance_switching.ipynb
Normal file
@ -0,0 +1,874 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Markov Variance Switching\n",
|
||||||
|
"\n",
|
||||||
|
"Kim, C., Nelson, C., and Startz, R. (1998). Testing for mean reversion in heteroskedastic data based on Gibbs-sampling-augmented randomization. Journal of Empirical Finance, (5)2, pp.131-154.\n",
|
||||||
|
"\n",
|
||||||
|
"**Author:** shittles\n",
|
||||||
|
"\n",
|
||||||
|
"**Created:** 2024-09-18\n",
|
||||||
|
"\n",
|
||||||
|
"**Modified:** 2024-09-19\n",
|
||||||
|
"\n",
|
||||||
|
"## Changelog\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import ray\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"import plotly.express as px\n",
|
||||||
|
"import plotly.graph_objects as go\n",
|
||||||
|
"import statsmodels.api as sm\n",
|
||||||
|
"\n",
|
||||||
|
"from sklearn.compose import make_column_transformer\n",
|
||||||
|
"from sklearn.preprocessing import RobustScaler\n",
|
||||||
|
"\n",
|
||||||
|
"from vectorbtpro import *"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"ray.init()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"vbt.settings.set_theme(\"dark\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Ingestion\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"symbol = \"^GSPC\" # the S&P 500 ticker"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data = vbt.YFData.pull(\n",
|
||||||
|
" symbol, start=\"50 years ago\", end=\"today\", timeframe=\"daily\", tz=\"UTC\"\n",
|
||||||
|
") # 50 years of data\n",
|
||||||
|
"\n",
|
||||||
|
"data.stats()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data.data[symbol]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data.data[symbol].index"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# The opens are corrupt...\n",
|
||||||
|
"data.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# but the closes are fine.\n",
|
||||||
|
"data.data[\"^GSPC\"][\"Close\"].vbt.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Cleaning\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data.data[symbol][\"Dividends\"].any()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data.data[symbol][\"Stock Splits\"].any()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"data = data.remove_features([\"Dividends\", \"Stock Splits\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# data = data.transform(lambda df: df.loc[\"April 19th 1982\" < df.index])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# data.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# len(data.index) / 365.25 # 30 years of data remaining"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Modelling\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# sr_open = data.get(\"Open\")\n",
|
||||||
|
"# sr_high = data.get(\"High\")\n",
|
||||||
|
"# sr_low = data.get(\"Low\")\n",
|
||||||
|
"sr_close = data.get(\"Close\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# sr_log_open = np.log(sr_open)\n",
|
||||||
|
"# sr_log_high = np.log(sr_high)\n",
|
||||||
|
"# sr_log_low = np.log(sr_low)\n",
|
||||||
|
"sr_log_close = np.log(sr_close)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_log_returns = data.log_returns"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_log_returns.vbt.plot().show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"column_transformer = make_column_transformer(\n",
|
||||||
|
" (RobustScaler(), [symbol]),\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"sr_log_returns_scaled = pd.Series(\n",
|
||||||
|
" data=column_transformer.fit_transform(pd.DataFrame(sr_log_returns)).ravel(),\n",
|
||||||
|
" index=sr_log_returns.index,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_log_returns_scaled.vbt.plot().show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"k_regimes_kns = 3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"kns = sm.tsa.MarkovRegression(\n",
|
||||||
|
" sr_log_returns_scaled, k_regimes=k_regimes_kns, trend=\"n\", switching_variance=True\n",
|
||||||
|
")\n",
|
||||||
|
"results_kns = kns.fit()\n",
|
||||||
|
"\n",
|
||||||
|
"results_kns.summary()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"results_kns.filtered_marginal_probabilities # using data until time t (excluding time t+1, ..., T)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"results_kns.smoothed_marginal_probabilities # using data until time T"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fig = vbt.make_subplots(\n",
|
||||||
|
" rows=k_regimes_kns,\n",
|
||||||
|
" cols=1,\n",
|
||||||
|
" y_title=\"Smoothed Marginal Variance Regime Probabilities\",\n",
|
||||||
|
" shared_xaxes=True,\n",
|
||||||
|
" subplot_titles=[\n",
|
||||||
|
" \"Medium-variance\",\n",
|
||||||
|
" \"Low-variance\",\n",
|
||||||
|
" \"High-variance\",\n",
|
||||||
|
" ], # order changes dependent on fit\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"for i in range(k_regimes_kns):\n",
|
||||||
|
" fig = results_kns.smoothed_marginal_probabilities[i].vbt.plot(\n",
|
||||||
|
" add_trace_kwargs=dict(row=i + 1, col=1), fig=fig\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"fig.update_layout(showlegend=False)\n",
|
||||||
|
"fig.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 27,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def plot_annotated_line(\n",
|
||||||
|
" fig: go.Figure,\n",
|
||||||
|
" x: pd.Series,\n",
|
||||||
|
" y: pd.Series,\n",
|
||||||
|
" classes: pd.Series,\n",
|
||||||
|
" dict_class_colours: dict,\n",
|
||||||
|
" dict_class_labels: dict,\n",
|
||||||
|
") -> go.Figure:\n",
|
||||||
|
" \"\"\"Plot a line chart where each trace is coloured based on its class.\n",
|
||||||
|
"\n",
|
||||||
|
" Yes, plotly really doesn't support this out of the box.\n",
|
||||||
|
"\n",
|
||||||
|
" Args:\n",
|
||||||
|
" fig: Figure.\n",
|
||||||
|
" x: Indices.\n",
|
||||||
|
" y: Close prices.\n",
|
||||||
|
" classes: Regimes.\n",
|
||||||
|
" dict_class_colours: In the format {class: colour}\n",
|
||||||
|
" dict_class_labels: In the format {class: label}\n",
|
||||||
|
"\n",
|
||||||
|
" Returns:\n",
|
||||||
|
" fig: The figure.\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" # Plot each segment in its corresponding color.\n",
|
||||||
|
" for i in range(len(x) - 1):\n",
|
||||||
|
" fig.add_trace(\n",
|
||||||
|
" go.Scatter(\n",
|
||||||
|
" x=x[i : i + 2],\n",
|
||||||
|
" y=y[i : i + 2],\n",
|
||||||
|
" mode=\"lines\",\n",
|
||||||
|
" line=dict(color=dict_class_colours[classes[i]], width=2),\n",
|
||||||
|
" showlegend=False, # added manually\n",
|
||||||
|
" )\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
" # Label each regime.\n",
|
||||||
|
" for regime, colour in dict_class_colours.items():\n",
|
||||||
|
" fig.add_trace(\n",
|
||||||
|
" go.Scatter(\n",
|
||||||
|
" x=[None],\n",
|
||||||
|
" y=[None],\n",
|
||||||
|
" mode=\"lines\",\n",
|
||||||
|
" line=dict(color=colour, width=2),\n",
|
||||||
|
" name=dict_class_labels[regime],\n",
|
||||||
|
" )\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
" return fig"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 28,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_variance_regime_forecasts = results_kns.filtered_marginal_probabilities.idxmax(\n",
|
||||||
|
" axis=1\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"sr_variance_regime_predictions = results_kns.smoothed_marginal_probabilities.idxmax(\n",
|
||||||
|
" axis=1\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# sr_variance_regime_forecasts.vbt.plot().show()\n",
|
||||||
|
"sr_variance_regime_predictions.vbt.plot().show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# order changes dependent on fit\n",
|
||||||
|
"dict_variance_regime_labels = {\n",
|
||||||
|
" 0: \"Medium\",\n",
|
||||||
|
" 1: \"Low\",\n",
|
||||||
|
" 2: \"High\",\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"dict_variance_regime_colours = {\n",
|
||||||
|
" 0: \"orange\",\n",
|
||||||
|
" 1: \"green\",\n",
|
||||||
|
" 2: \"red\",\n",
|
||||||
|
"}"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fig = vbt.make_figure()\n",
|
||||||
|
"\n",
|
||||||
|
"fig = plot_annotated_line(\n",
|
||||||
|
" fig,\n",
|
||||||
|
" data.index,\n",
|
||||||
|
" sr_log_close,\n",
|
||||||
|
" # sr_variance_regime_forecasts.rolling(5).mean().fillna(0).round(0),\n",
|
||||||
|
" sr_variance_regime_forecasts,\n",
|
||||||
|
" # sr_variance_regime_predictions,\n",
|
||||||
|
" dict_variance_regime_colours,\n",
|
||||||
|
" dict_variance_regime_labels,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"fig.update_layout(\n",
|
||||||
|
" title=\"Filtered Variance Regime Labels\",\n",
|
||||||
|
" # title=\"Smoothed Variance Regime Labels\",\n",
|
||||||
|
" xaxis_title=\"Date\",\n",
|
||||||
|
" yaxis_title=\"Log Close\",\n",
|
||||||
|
" showlegend=True,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"fig.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Backtest\n",
|
||||||
|
"### Filtered marginal probabilities\n",
|
||||||
|
"A backtest using filtered marginal probabilities.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 32,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# TODO - Double check me!\n",
|
||||||
|
"# Assuming that you sell today if yesterday was in the high-variance regime.\n",
|
||||||
|
"# entries = (sr_variance_regime_forecasts != 2).vbt.signals.fshift()\n",
|
||||||
|
"# exits = (sr_variance_regime_forecasts == 2).vbt.signals.fshift()\n",
|
||||||
|
"\n",
|
||||||
|
"# Assuming that you sell today (at the close) if today was in the high-variance regime.\n",
|
||||||
|
"entries = (sr_variance_regime_forecasts != 2)\n",
|
||||||
|
"exits = (sr_variance_regime_forecasts == 2)\n",
|
||||||
|
"\n",
|
||||||
|
"# I haven't tested any additional logic.\n",
|
||||||
|
"# entries = (sr_variance_regime_forecasts.rolling(5).mean().fillna(0).round(0) != 2)\n",
|
||||||
|
"\n",
|
||||||
|
"clean_entries, clean_exits = entries.vbt.signals.clean(exits)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fig = sr_variance_regime_forecasts.vbt.plot()\n",
|
||||||
|
"\n",
|
||||||
|
"clean_entries.vbt.signals.plot_as_entries(sr_variance_regime_forecasts, fig=fig)\n",
|
||||||
|
"clean_exits.vbt.signals.plot_as_exits(sr_variance_regime_forecasts, fig=fig)\n",
|
||||||
|
"\n",
|
||||||
|
"fig.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf = vbt.Portfolio.from_signals(\n",
|
||||||
|
" close=sr_close,\n",
|
||||||
|
" entries=clean_entries,\n",
|
||||||
|
" exits=clean_exits,\n",
|
||||||
|
" direction=\"both\",\n",
|
||||||
|
" fees=0.001,\n",
|
||||||
|
" size=1.0,\n",
|
||||||
|
" size_type=vbt.pf_enums.SizeType.ValuePercent,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"pf.stats()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.drawdowns.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.plot_underwater(pct_scale=True).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Re-fitting Every Day\n",
|
||||||
|
"A backtest with a single training and validation set, that's refit every day"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 38,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"n_days_validation = int(365.25 * 2) # 2 years of data held back for the validation set"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 39,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# slices_sr = vbt.Splitter.split_range(slice(None), new_split=-n_days_validation, index=data.index)\n",
|
||||||
|
"splitter_fr = vbt.Splitter.from_rolling(\n",
|
||||||
|
" data.index, length=len(data.index), split=len(data.index) - n_days_validation\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"splitter_fr.plot().show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 41,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Define a Ray remote function for parallelization.\n",
|
||||||
|
"@ray.remote\n",
|
||||||
|
"def compute_smoothed_marginal_probabilities(sr):\n",
|
||||||
|
" kns = sm.tsa.MarkovRegression(\n",
|
||||||
|
" sr,\n",
|
||||||
|
" k_regimes=k_regimes_kns,\n",
|
||||||
|
" trend=\"n\",\n",
|
||||||
|
" switching_variance=True,\n",
|
||||||
|
" )\n",
|
||||||
|
" results_kns = kns.fit()\n",
|
||||||
|
"\n",
|
||||||
|
" # the smoothing might not work properly out of sample\n",
|
||||||
|
" return results_kns.smoothed_marginal_probabilities.iloc[-1]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 42,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# The predict method doesn't support out of sample forecasts...\n",
|
||||||
|
"# kns = sm.tsa.MarkovRegression(\n",
|
||||||
|
"# sr_log_returns[splitter_fr.get_mask()[\"set_0\"]],\n",
|
||||||
|
"# k_regimes=k_regimes_kns,\n",
|
||||||
|
"# trend=\"n\",\n",
|
||||||
|
"# switching_variance=True,\n",
|
||||||
|
"# )\n",
|
||||||
|
"# results_kns = kns.fit()\n",
|
||||||
|
"\n",
|
||||||
|
"# results_kns.summary()\n",
|
||||||
|
"\n",
|
||||||
|
"# results_kns.predict(sr_log_returns[splitter_fr.get_mask()[\"set_1\"]])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"https://github.com/statsmodels/statsmodels/issues/7982"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 43,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_train = sr_log_returns[splitter_fr.get_mask()[\"set_0\"]]\n",
|
||||||
|
"sr_validate = sr_log_returns[splitter_fr.get_mask()[\"set_1\"]]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# ...so re-fit the model every timestep.\n",
|
||||||
|
"futures = []\n",
|
||||||
|
"\n",
|
||||||
|
"sr_log_returns_to_date = sr_train.copy()\n",
|
||||||
|
"\n",
|
||||||
|
"# launch parallel tasks\n",
|
||||||
|
"for i in range(len(sr_validate)):\n",
|
||||||
|
" sr_log_returns_to_date = pd.concat(\n",
|
||||||
|
" [\n",
|
||||||
|
" sr_log_returns_to_date,\n",
|
||||||
|
" pd.Series(sr_validate.iloc[i], index=[sr_validate.index[i]]),\n",
|
||||||
|
" ]\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
" futures.append(\n",
|
||||||
|
" compute_smoothed_marginal_probabilities.remote(sr_log_returns_to_date)\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"# collect results\n",
|
||||||
|
"smoothed_marginal_probabilities = ray.get(futures)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"smoothed_marginal_probabilities = pd.concat(smoothed_marginal_probabilities, axis=1).T\n",
|
||||||
|
"\n",
|
||||||
|
"smoothed_marginal_probabilities.index.name = \"Date\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 38,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_variance_regime_predictions = smoothed_marginal_probabilities.idxmax(\n",
|
||||||
|
" axis=1\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"sr_close_validate = sr_close[splitter_fr.get_mask()[\"set_1\"]]\n",
|
||||||
|
"\n",
|
||||||
|
"sr_log_close_validate = sr_log_close[splitter_fr.get_mask()[\"set_1\"]]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fig = vbt.make_figure()\n",
|
||||||
|
"\n",
|
||||||
|
"fig = plot_annotated_line(\n",
|
||||||
|
" fig,\n",
|
||||||
|
" data.index[splitter_fr.get_mask()[\"set_1\"]],\n",
|
||||||
|
" sr_log_close_validate,\n",
|
||||||
|
" sr_variance_regime_predictions,\n",
|
||||||
|
" dict_variance_regime_colours,\n",
|
||||||
|
" dict_variance_regime_labels,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"fig.update_layout(\n",
|
||||||
|
" title=\"Variance Regime Forecasts\",\n",
|
||||||
|
" xaxis_title=\"Date\",\n",
|
||||||
|
" yaxis_title=\"Log Close\",\n",
|
||||||
|
" showlegend=True,\n",
|
||||||
|
")\n",
|
||||||
|
"\n",
|
||||||
|
"fig.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 49,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# TODO - Double check me!\n",
|
||||||
|
"# Assuming that you sell today if yesterday was in the high-variance regime.\n",
|
||||||
|
"# entries = (sr_variance_regime_forecasts != 2).vbt.signals.fshift()\n",
|
||||||
|
"# exits = (sr_variance_regime_forecasts == 2).vbt.signals.fshift()\n",
|
||||||
|
"\n",
|
||||||
|
"# Assuming that you sell today (at the close) if today was in the high-variance regime.\n",
|
||||||
|
"entries = (sr_variance_regime_forecasts != 2)\n",
|
||||||
|
"exits = (sr_variance_regime_forecasts == 2)\n",
|
||||||
|
"\n",
|
||||||
|
"# I haven't tested any additional logic.\n",
|
||||||
|
"# entries = (sr_variance_regime_forecasts.rolling(5).mean().fillna(0).round(0) != 2)\n",
|
||||||
|
"\n",
|
||||||
|
"clean_entries, clean_exits = entries.vbt.signals.clean(exits)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"fig = sr_variance_regime_forecasts.vbt.plot()\n",
|
||||||
|
"\n",
|
||||||
|
"clean_entries.vbt.signals.plot_as_entries(sr_variance_regime_forecasts, fig=fig)\n",
|
||||||
|
"clean_exits.vbt.signals.plot_as_exits(sr_variance_regime_forecasts, fig=fig)\n",
|
||||||
|
"\n",
|
||||||
|
"fig.show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 51,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf = vbt.Portfolio.from_signals(\n",
|
||||||
|
" close=sr_close_validate,\n",
|
||||||
|
" entries=clean_entries,\n",
|
||||||
|
" exits=clean_exits,\n",
|
||||||
|
" direction=\"both\",\n",
|
||||||
|
" fees=0.001,\n",
|
||||||
|
" size=1.0,\n",
|
||||||
|
" size_type=vbt.pf_enums.SizeType.ValuePercent,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.stats()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.drawdowns.plot(yaxis=dict(type=\"log\")).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"pf.plot_underwater(pct_scale=True).show()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Observations\n",
|
||||||
|
"- For this implementation you have to use the filtered probabilities to not introduce look-ahead bias.\n",
|
||||||
|
"- If you backtest the smoothed probilities (which smoothes using all of the data) it only performs well after the great financial crisis. Why? No clue.\n",
|
||||||
|
"- It looks like its better for labelling than it is as a strategy in its current state.\n",
|
||||||
|
"- After slow recessions like the dot-com bubble, there can be a medium-variance decline which this simple strategy doesn't capture.\n",
|
||||||
|
"- After fast recessions like covid-19, there can be a high-variance rebound which this simple strategy doesn't capture.\n",
|
||||||
|
"- **It looks like you can safely leverage up during low-variance regimes.**\n",
|
||||||
|
"- Maybe you could combine this strategy with other recession-leading indicators (e.g. manufacturing/services pmi, federal funds rate, 10y-2y yield curve, 1y-3mo yield curve) to help time the tops?\n",
|
||||||
|
"- Maybe you could combine this strategy with another trend-following strategy (e.g. VWAP, EMA, BBANDS, ADX) to help time the bottoms?\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 46,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"ray.shutdown()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": ".venv",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.12.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user