Custom metrics in VectorBT PRO, which is a powerful feature for extending portfolio analysis beyond the built-in metrics.Now let me provide a comprehensive elaboration on custom metrics in VectorBT PRO: # Custom Metrics in VectorBT PRO Custom metrics in VectorBT PRO provide a powerful way to extend portfolio analysis beyond the built-in metrics. They allow you to calculate domain-specific metrics, implement proprietary performance measures, or create metrics tailored to your specific trading strategies. ## 1. Understanding the Metrics System ### Built-in Metrics Structure VectorBT PRO uses a configuration-based approach where metrics are stored in `Portfolio.metrics` as a `HybridConfig`: ```python # View all available metrics print(vbt.Portfolio.metrics) # Get specific metric configuration print(vbt.Portfolio.metrics['sharpe_ratio']) ``` ### Metric Configuration Structure Each metric is defined as a dictionary with specific keys: ```python metric_config = { 'title': 'My Custom Metric', # Display name 'calc_func': calculation_function, # Function to calculate the metric 'tags': ['custom', 'risk'], # Tags for filtering 'apply_to_timedelta': False, # Whether to convert to timedelta 'agg_func': None, # Aggregation function 'resolve_calc_func': True, # Whether to resolve attributes # ... other configuration options } ``` ## 2. Creating Custom Metrics ### Method 1: Simple Function-Based Metrics ```python # Add a simple custom metric vbt.Portfolio.metrics['total_bars'] = dict( title='Total Bars', calc_func=lambda self: len(self.wrapper.index) ) # Add skewness and kurtosis vbt.Portfolio.metrics['skew'] = dict( title='Skew', calc_func='returns.skew' ) vbt.Portfolio.metrics['kurtosis'] = dict( title='Kurtosis', calc_func='returns.kurtosis' ) ``` ### Method 2: Complex Custom Calculations ```python # Custom metric with multiple parameters def total_return_no_fees(self, orders): """Calculate total return without fees""" return (self.total_profit + orders.fees.sum()) / self.get_init_cash() * 100 vbt.Portfolio.metrics['total_return_no_fees'] = dict( title='Total Return (No Fees) [%]', calc_func=total_return_no_fees, resolve_orders=True # Automatically resolve orders parameter ) ``` ### Method 3: Using Lambda Functions with Settings ```python # PnL in dollar terms (for futures trading) vbt.Portfolio.metrics['pnl_dollars'] = dict( title='PnL ($)', calc_func=lambda self, settings: (self.value.iloc[-1] - self.value.iloc[0]) * 50, resolve_calc_func=False # Don't resolve attributes automatically ) ``` ## 3. Advanced Custom Metrics ### Quantile-Based Metrics ```python def value_at_risk_custom(returns, confidence_level=0.05): """Custom VaR calculation""" return returns.quantile(confidence_level) vbt.Portfolio.metrics['custom_var'] = dict( title='Custom VaR (5%)', calc_func=value_at_risk_custom, resolve_returns=True, confidence_level=0.05 ) ``` ### Multi-Component Metrics ```python def comprehensive_trade_stats(trades): """Return multiple trade statistics""" return { 'long_trades': trades.direction_long.count(), 'short_trades': trades.direction_short.count(), 'long_pnl': trades.direction_long.pnl.sum(), 'short_pnl': trades.direction_short.pnl.sum(), 'avg_trade_duration': trades.duration.mean() } vbt.Portfolio.metrics['trade_breakdown'] = dict( title='Trade Breakdown', calc_func=comprehensive_trade_stats, resolve_trades=True ) ``` ### Time-Based Metrics ```python def monthly_returns_volatility(returns): """Calculate monthly returns volatility""" monthly_returns = returns.resample('M').sum() return monthly_returns.std() * np.sqrt(12) vbt.Portfolio.metrics['monthly_vol'] = dict( title='Monthly Volatility', calc_func=monthly_returns_volatility, resolve_returns=True ) ``` ## 4. Metric Resolution and Parameters ### Automatic Parameter Resolution VectorBT PRO can automatically resolve portfolio attributes as parameters: ```python # These parameters will be automatically resolved: vbt.Portfolio.metrics['custom_metric'] = dict( title='Custom Metric', calc_func=lambda returns, trades, orders: calculation_logic(returns, trades, orders), resolve_returns=True, # Passes self.returns resolve_trades=True, # Passes self.trades resolve_orders=True # Passes self.orders ) ``` ### Common Resolvable Parameters - `self` - The portfolio instance - `returns` - Portfolio returns - `trades` - Trade records - `orders` - Order records - `drawdowns` - Drawdown records - `value` - Portfolio value - `close` - Close prices - `init_cash` - Initial cash - `total_profit` - Total profit - `wrapper` - Array wrapper (for index/column info) ## 5. Global vs Instance-Level Metrics ### Global Metrics (Class-Level) ```python # Add to all future Portfolio instances vbt.Portfolio.metrics['my_metric'] = metric_config # Or modify settings globally vbt.settings.portfolio['stats']['metrics'] = list(vbt.Portfolio.metrics.items()) + [ ('my_metric', metric_config) ] ``` ### Instance-Level Metrics ```python # Add to specific portfolio instance pf._metrics['my_metric'] = metric_config # Then use it pf.stats(['my_metric']) ``` ## 6. Using Custom Metrics ### Basic Usage ```python # Calculate specific custom metrics pf.stats(['total_bars', 'skew', 'kurtosis']) # Calculate all metrics including custom ones pf.stats('all') # Filter by tags pf.stats(tags=['custom']) ``` ### Advanced Usage with Settings ```python # Use custom metrics in optimization results = [] for param in parameter_combinations: pf = vbt.Portfolio.from_signals(close, entries, exits, **param) stats = pf.stats(['total_return', 'sharpe_ratio', 'my_custom_metric']) results.append(stats) # Create comparison DataFrame comparison_df = pd.DataFrame(results) ``` ## 7. Real-World Examples ### Futures Trading Metrics ```python # Point-based P&L for futures vbt.Portfolio.metrics['pnl_points'] = dict( title='P&L (Points)', calc_func=lambda self: (self.value.iloc[-1] - self.value.iloc[0]) / self.close.iloc[0] * 10000 ) # Risk-adjusted return for futures vbt.Portfolio.metrics['risk_adjusted_return'] = dict( title='Risk Adjusted Return', calc_func=lambda self, returns: self.total_return / returns.std() * np.sqrt(252), resolve_returns=True ) ``` ### Intraday Strategy Metrics ```python # Time-of-day analysis def intraday_performance(orders): """Analyze performance by hour of day""" order_df = orders.records_readable order_df['hour'] = order_df.index.hour return order_df.groupby('hour')['PnL'].mean() vbt.Portfolio.metrics['hourly_performance'] = dict( title='Hourly Performance', calc_func=intraday_performance, resolve_orders=True ) ``` ### Market Regime Metrics ```python def regime_performance(returns, benchmark_returns): """Performance in different market regimes""" bull_mask = benchmark_returns > benchmark_returns.quantile(0.6) bear_mask = benchmark_returns < benchmark_returns.quantile(0.4) return { 'bull_return': returns[bull_mask].mean(), 'bear_return': returns[bear_mask].mean(), 'bull_sharpe': returns[bull_mask].mean() / returns[bull_mask].std() * np.sqrt(252), 'bear_sharpe': returns[bear_mask].mean() / returns[bear_mask].std() * np.sqrt(252) } vbt.Portfolio.metrics['regime_analysis'] = dict( title='Market Regime Analysis', calc_func=regime_performance, resolve_returns=True, resolve_bm_returns=True ) ``` ## 8. Best Practices ### 1. Naming Conventions - Use descriptive names: `monthly_volatility` instead of `mv` - Include units in title: `'Max Drawdown [%]'` - Use consistent naming patterns ### 2. Error Handling ```python def robust_metric(returns): """Metric with error handling""" try: if len(returns) < 2: return np.nan return returns.std() * np.sqrt(252) except Exception as e: print(f"Error calculating metric: {e}") return np.nan ``` ### 3. Performance Optimization ```python # Use vectorized operations def efficient_metric(returns): """Efficient vectorized calculation""" return returns.rolling(30).std().mean() # Avoid loops when possible def inefficient_metric(returns): """Avoid this approach""" results = [] for i in range(len(returns)): results.append(some_calculation(returns.iloc[i])) return np.mean(results) ``` ### 4. Documentation ```python vbt.Portfolio.metrics['documented_metric'] = dict( title='Well Documented Metric', calc_func=lambda returns: returns.std() * np.sqrt(252), resolve_returns=True, tags=['custom', 'risk', 'volatility'], # Add description in comments or docstrings ) ``` ## 9. Common Pitfalls and Solutions ### Pitfall 1: Metric Not Available After Creation ```python # ❌ Wrong: Metric added after portfolio creation pf = vbt.Portfolio.from_signals(...) vbt.Portfolio.metrics['my_metric'] = metric_config pf.stats(['my_metric']) # KeyError! # ✅ Correct: Add metric before portfolio creation vbt.Portfolio.metrics['my_metric'] = metric_config pf = vbt.Portfolio.from_signals(...) pf.stats(['my_metric']) # Works! ``` ### Pitfall 2: Incorrect Parameter Resolution ```python # ❌ Wrong: Using external variables portfolio_instance = some_portfolio vbt.Portfolio.metrics['bad_metric'] = dict( calc_func=lambda self: portfolio_instance.total_return # External reference ) # ✅ Correct: Using self parameter vbt.Portfolio.metrics['good_metric'] = dict( calc_func=lambda self: self.total_return # Self reference ) ``` ### Pitfall 3: Missing Error Handling ```python # ❌ Wrong: No error handling def risky_metric(trades): return trades.pnl.sum() / trades.duration.mean() # Division by zero possible # ✅ Correct: With error handling def safe_metric(trades): if len(trades) == 0 or trades.duration.mean() == 0: return np.nan return trades.pnl.sum() / trades.duration.mean() ``` Custom metrics in VectorBT PRO provide unlimited flexibility to analyze your trading strategies exactly how you need. They integrate seamlessly with the existing stats system and can be used in optimization, comparison, and reporting workflows. I'll provide a comprehensive analysis of VectorBT PRO's `pf.trades` analysis capabilities, with a focus on the specific metrics you mentioned.# Comprehensive VectorBT PRO `pf.trades` Analysis The `pf.trades` object in VectorBT PRO provides extensive capabilities for analyzing trading performance. Here's a comprehensive guide focusing on directional analysis, temporal patterns, and advanced trade analytics. ## 1. Basic Trade Analysis ### Trade Counts by Direction ```python # Basic trade counts total_trades = pf.trades.count() long_trades = pf.trades.direction_long.count() short_trades = pf.trades.direction_short.count() print(f"Total trades: {total_trades}") print(f"Long trades: {long_trades}") print(f"Short trades: {short_trades}") # Alternative using records trade_records = pf.trades.records_readable direction_counts = trade_records['Direction'].value_counts() print(f"\nDirection breakdown:\n{direction_counts}") ``` ### P&L Analysis by Direction ```python # Total P&L by direction long_pnl = pf.trades.direction_long.pnl.sum() short_pnl = pf.trades.direction_short.pnl.sum() total_pnl = pf.trades.pnl.sum() print(f"Long P&L: {long_pnl:.2f}") print(f"Short P&L: {short_pnl:.2f}") print(f"Total P&L: {total_pnl:.2f}") # P&L statistics by direction long_stats = pf.trades.direction_long.pnl.describe() short_stats = pf.trades.direction_short.pnl.describe() ``` ## 2. Daily P&L Analysis ### Daily P&L Calculation ```python # Method 1: Using trade records with date grouping trade_records = pf.trades.records_readable trade_records['exit_date'] = trade_records.index.date # Daily P&L overall daily_pnl = trade_records.groupby('exit_date')['PnL'].sum() # Daily P&L by direction daily_pnl_by_direction = trade_records.groupby(['exit_date', 'Direction'])['PnL'].sum().unstack(fill_value=0) print("Daily P&L by Direction:") print(daily_pnl_by_direction.head()) ``` ### Daily P&L for Each Direction ```python # Separate long and short daily P&L long_trades_records = trade_records[trade_records['Direction'] == 'Long'] short_trades_records = trade_records[trade_records['Direction'] == 'Short'] daily_long_pnl = long_trades_records.groupby('exit_date')['PnL'].sum() daily_short_pnl = short_trades_records.groupby('exit_date')['PnL'].sum() # Combine into comprehensive daily analysis daily_analysis = pd.DataFrame({ 'Total_PnL': daily_pnl, 'Long_PnL': daily_long_pnl, 'Short_PnL': daily_short_pnl, 'Long_Trades': long_trades_records.groupby('exit_date').size(), 'Short_Trades': short_trades_records.groupby('exit_date').size() }).fillna(0) print("Daily Trade Analysis:") print(daily_analysis.head()) ``` ## 3. Hourly P&L Analysis by Exit Time ### Hourly P&L by Direction ```python # Extract hour from exit time trade_records = pf.trades.records_readable trade_records['exit_hour'] = trade_records.index.hour # Hourly P&L analysis hourly_pnl_analysis = trade_records.groupby(['exit_hour', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'], 'Return': ['mean', 'std'] }).round(4) print("Hourly P&L Analysis by Direction:") print(hourly_pnl_analysis) # Separate analysis for each direction hourly_long_pnl = trade_records[trade_records['Direction'] == 'Long'].groupby('exit_hour')['PnL'].agg(['sum', 'mean', 'count']) hourly_short_pnl = trade_records[trade_records['Direction'] == 'Short'].groupby('exit_hour')['PnL'].agg(['sum', 'mean', 'count']) print("\nHourly Long P&L:") print(hourly_long_pnl) print("\nHourly Short P&L:") print(hourly_short_pnl) ``` ### Advanced Hourly Analysis ```python # Create comprehensive hourly performance matrix def hourly_performance_analysis(trades_records): """Comprehensive hourly performance analysis""" # Add time components trades_records['exit_hour'] = trades_records.index.hour trades_records['entry_hour'] = pd.to_datetime(trades_records['Entry Index']).dt.hour # Hourly exit analysis hourly_stats = trades_records.groupby(['exit_hour', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count', 'std'], 'Return': ['mean', 'std'], 'Size': 'mean' }).round(4) return hourly_stats hourly_performance = hourly_performance_analysis(trade_records) ``` ## 4. Day of Week Analysis ### P&L by Day of Week and Direction ```python # Add day of week analysis trade_records['exit_day_of_week'] = trade_records.index.day_name() trade_records['exit_weekday'] = trade_records.index.weekday # 0=Monday, 6=Sunday # Day of week P&L analysis dow_analysis = trade_records.groupby(['exit_day_of_week', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'], 'Return': ['mean', 'std'], 'Size': 'mean' }).round(4) print("Day of Week Analysis:") print(dow_analysis) # Pivot for easier viewing dow_pivot = trade_records.pivot_table( index='exit_day_of_week', columns='Direction', values='PnL', aggfunc=['sum', 'mean', 'count'], fill_value=0 ) print("\nDay of Week Pivot Analysis:") print(dow_pivot) ``` ### Advanced Day of Week Patterns ```python # Create comprehensive day of week analysis def day_of_week_analysis(trades_records): """Comprehensive day of week performance analysis""" # Ensure we have day names in proper order day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] trades_records['exit_day_name'] = trades_records.index.day_name() # Group by day and direction dow_stats = trades_records.groupby(['exit_day_name', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count', 'std'], 'Return': ['mean', 'std'], 'Size': 'mean', 'Entry Fees': 'mean', 'Exit Fees': 'mean' }).round(4) # Reorder by day dow_stats = dow_stats.reindex(day_order, level=0) return dow_stats dow_comprehensive = day_of_week_analysis(trade_records) ``` ## 5. Advanced Temporal Analysis ### Combined Time Pattern Analysis ```python # Create comprehensive time pattern analysis def comprehensive_time_analysis(pf): """Complete temporal analysis of trades""" trades_records = pf.trades.records_readable # Add all time components trades_records['exit_hour'] = trades_records.index.hour trades_records['exit_day_name'] = trades_records.index.day_name() trades_records['exit_month'] = trades_records.index.month trades_records['exit_date'] = trades_records.index.date # 1. Hourly analysis hourly_stats = trades_records.groupby(['exit_hour', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'], 'Return': ['mean', 'std'] }).round(4) # 2. Daily analysis daily_stats = trades_records.groupby(['exit_day_name', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'], 'Return': ['mean', 'std'] }).round(4) # 3. Monthly analysis monthly_stats = trades_records.groupby(['exit_month', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'], 'Return': ['mean', 'std'] }).round(4) # 4. Combined hour-day analysis hour_day_stats = trades_records.groupby(['exit_day_name', 'exit_hour', 'Direction']).agg({ 'PnL': ['sum', 'mean', 'count'] }).round(4) return { 'hourly': hourly_stats, 'daily': daily_stats, 'monthly': monthly_stats, 'hour_day': hour_day_stats } # Execute comprehensive analysis time_analysis = comprehensive_time_analysis(pf) # Display results print("=== HOURLY ANALYSIS ===") print(time_analysis['hourly']) print("\n=== DAILY ANALYSIS ===") print(time_analysis['daily']) print("\n=== MONTHLY ANALYSIS ===") print(time_analysis['monthly']) ``` ## 6. Custom Metrics for Trade Analysis ### Custom Trade Metrics ```python # Add custom metrics to Portfolio for directional analysis vbt.Portfolio.metrics['long_trade_count'] = dict( title='Long Trade Count', calc_func=lambda trades: trades.direction_long.count(), resolve_trades=True ) vbt.Portfolio.metrics['short_trade_count'] = dict( title='Short Trade Count', calc_func=lambda trades: trades.direction_short.count(), resolve_trades=True ) vbt.Portfolio.metrics['long_pnl_total'] = dict( title='Long P&L Total', calc_func=lambda trades: trades.direction_long.pnl.sum(), resolve_trades=True ) vbt.Portfolio.metrics['short_pnl_total'] = dict( title='Short P&L Total', calc_func=lambda trades: trades.direction_short.pnl.sum(), resolve_trades=True ) # Temporal metrics vbt.Portfolio.metrics['best_hour_pnl'] = dict( title='Best Hour P&L', calc_func=lambda trades: trades.records_readable.groupby(trades.records_readable.index.hour)['PnL'].sum().max(), resolve_trades=True ) vbt.Portfolio.metrics['worst_hour_pnl'] = dict( title='Worst Hour P&L', calc_func=lambda trades: trades.records_readable.groupby(trades.records_readable.index.hour)['PnL'].sum().min(), resolve_trades=True ) ``` ## 7. Performance Analysis Functions ### Comprehensive Trade Performance Function ```python def analyze_trade_performance(pf): """Comprehensive trade performance analysis""" trades = pf.trades records = trades.records_readable # Basic directional statistics direction_stats = { 'Long': { 'count': trades.direction_long.count(), 'total_pnl': trades.direction_long.pnl.sum(), 'avg_pnl': trades.direction_long.pnl.mean(), 'win_rate': trades.direction_long.win_rate, 'profit_factor': trades.direction_long.profit_factor }, 'Short': { 'count': trades.direction_short.count(), 'total_pnl': trades.direction_short.pnl.sum(), 'avg_pnl': trades.direction_short.pnl.mean(), 'win_rate': trades.direction_short.win_rate, 'profit_factor': trades.direction_short.profit_factor } } # Temporal analysis records['exit_hour'] = records.index.hour records['exit_day'] = records.index.day_name() records['exit_date'] = records.index.date # Hourly P&L by direction hourly_pnl = records.groupby(['exit_hour', 'Direction'])['PnL'].agg(['sum', 'mean', 'count']) # Daily P&L by direction daily_pnl = records.groupby(['exit_day', 'Direction'])['PnL'].agg(['sum', 'mean', 'count']) # Date-based P&L date_pnl = records.groupby(['exit_date', 'Direction'])['PnL'].agg(['sum', 'mean', 'count']) # Best/worst performing times best_hours = records.groupby(['exit_hour', 'Direction'])['PnL'].sum().groupby('Direction').idxmax() worst_hours = records.groupby(['exit_hour', 'Direction'])['PnL'].sum().groupby('Direction').idxmin() return { 'direction_stats': direction_stats, 'hourly_pnl': hourly_pnl, 'daily_pnl': daily_pnl, 'date_pnl': date_pnl, 'best_hours': best_hours, 'worst_hours': worst_hours } # Execute analysis performance_analysis = analyze_trade_performance(pf) ``` ## 8. Visualization Functions ### Trade Performance Visualization ```python def plot_trade_performance(pf): """Create comprehensive trade performance plots""" import plotly.graph_objects as go from plotly.subplots import make_subplots records = pf.trades.records_readable records['exit_hour'] = records.index.hour records['exit_day'] = records.index.day_name() # Create subplots fig = make_subplots( rows=2, cols=2, subplot_titles=['Hourly P&L by Direction', 'Daily P&L by Direction', 'P&L Distribution', 'Cumulative P&L by Direction'], specs=[[{"secondary_y": True}, {"secondary_y": True}], [{"secondary_y": False}, {"secondary_y": False}]] ) # Hourly P&L hourly_long = records[records['Direction'] == 'Long'].groupby('exit_hour')['PnL'].sum() hourly_short = records[records['Direction'] == 'Short'].groupby('exit_hour')['PnL'].sum() fig.add_trace(go.Bar(x=hourly_long.index, y=hourly_long.values, name='Long Hourly', marker_color='green'), row=1, col=1) fig.add_trace(go.Bar(x=hourly_short.index, y=hourly_short.values, name='Short Hourly', marker_color='red'), row=1, col=1) # Daily P&L day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] daily_long = records[records['Direction'] == 'Long'].groupby('exit_day')['PnL'].sum().reindex(day_order, fill_value=0) daily_short = records[records['Direction'] == 'Short'].groupby('exit_day')['PnL'].sum().reindex(day_order, fill_value=0) fig.add_trace(go.Bar(x=daily_long.index, y=daily_long.values, name='Long Daily', marker_color='lightgreen'), row=1, col=2) fig.add_trace(go.Bar(x=daily_short.index, y=daily_short.values, name='Short Daily', marker_color='lightcoral'), row=1, col=2) # P&L Distribution fig.add_trace(go.Histogram(x=records[records['Direction'] == 'Long']['PnL'], name='Long Distribution', opacity=0.7), row=2, col=1) fig.add_trace(go.Histogram(x=records[records['Direction'] == 'Short']['PnL'], name='Short Distribution', opacity=0.7), row=2, col=1) # Cumulative P&L long_cumulative = records[records['Direction'] == 'Long']['PnL'].cumsum() short_cumulative = records[records['Direction'] == 'Short']['PnL'].cumsum() fig.add_trace(go.Scatter(y=long_cumulative.values, mode='lines', name='Long Cumulative', line=dict(color='green')), row=2, col=2) fig.add_trace(go.Scatter(y=short_cumulative.values, mode='lines', name='Short Cumulative', line=dict(color='red')), row=2, col=2) fig.update_layout(height=800, title_text="Comprehensive Trade Analysis") return fig # Create visualization # trade_plot = plot_trade_performance(pf) # trade_plot.show() ``` ## 9. Advanced Analytics ### Trade Streaks and Patterns ```python def analyze_trade_patterns(pf): """Analyze trade patterns and streaks""" trades = pf.trades records = trades.records_readable # Winning and losing streaks winning_streaks = trades.winning_streak.records_readable losing_streaks = trades.losing_streak.records_readable # Pattern analysis patterns = { 'longest_winning_streak': winning_streaks['Duration'].max() if len(winning_streaks) > 0 else 0, 'longest_losing_streak': losing_streaks['Duration'].max() if len(losing_streaks) > 0 else 0, 'avg_winning_streak': winning_streaks['Duration'].mean() if len(winning_streaks) > 0 else 0, 'avg_losing_streak': losing_streaks['Duration'].mean() if len(losing_streaks) > 0 else 0, } # Direction-specific patterns long_patterns = analyze_direction_patterns(trades.direction_long) short_patterns = analyze_direction_patterns(trades.direction_short) return { 'overall_patterns': patterns, 'long_patterns': long_patterns, 'short_patterns': short_patterns } def analyze_direction_patterns(direction_trades): """Analyze patterns for specific direction""" if direction_trades.count() == 0: return {} return { 'total_trades': direction_trades.count(), 'win_rate': direction_trades.win_rate, 'profit_factor': direction_trades.profit_factor, 'avg_winner': direction_trades.winning.pnl.mean() if direction_trades.winning.count() > 0 else 0, 'avg_loser': direction_trades.losing.pnl.mean() if direction_trades.losing.count() > 0 else 0, 'largest_winner': direction_trades.pnl.max(), 'largest_loser': direction_trades.pnl.min(), 'total_pnl': direction_trades.pnl.sum() } # Execute pattern analysis pattern_analysis = analyze_trade_patterns(pf) ``` ## 10. Summary Report Function ### Comprehensive Trade Report ```python def generate_trade_report(pf): """Generate comprehensive trade analysis report""" print("="*80) print("COMPREHENSIVE TRADE ANALYSIS REPORT") print("="*80) # Basic Statistics trades = pf.trades total_trades = trades.count() long_trades = trades.direction_long.count() short_trades = trades.direction_short.count() print(f"\n📊 BASIC STATISTICS") print(f"Total Trades: {total_trades}") print(f"Long Trades: {long_trades} ({long_trades/total_trades*100:.1f}%)") print(f"Short Trades: {short_trades} ({short_trades/total_trades*100:.1f}%)") # P&L Analysis print(f"\n💰 P&L ANALYSIS") print(f"Total P&L: ${trades.pnl.sum():.2f}") print(f"Long P&L: ${trades.direction_long.pnl.sum():.2f}") print(f"Short P&L: ${trades.direction_short.pnl.sum():.2f}") print(f"Average P&L per Trade: ${trades.pnl.mean():.2f}") # Temporal Analysis records = trades.records_readable records['exit_hour'] = records.index.hour records['exit_day'] = records.index.day_name() print(f"\n⏰ TEMPORAL ANALYSIS") # Best/Worst Hours hourly_pnl = records.groupby('exit_hour')['PnL'].sum() best_hour = hourly_pnl.idxmax() worst_hour = hourly_pnl.idxmin() print(f"Best Hour: {best_hour}:00 (${hourly_pnl[best_hour]:.2f})") print(f"Worst Hour: {worst_hour}:00 (${hourly_pnl[worst_hour]:.2f})") # Best/Worst Days daily_pnl = records.groupby('exit_day')['PnL'].sum() best_day = daily_pnl.idxmax() worst_day = daily_pnl.idxmin() print(f"Best Day: {best_day} (${daily_pnl[best_day]:.2f})") print(f"Worst Day: {worst_day} (${daily_pnl[worst_day]:.2f})") # Direction Performance print(f"\n📈 DIRECTION PERFORMANCE") if long_trades > 0: print(f"Long Win Rate: {trades.direction_long.win_rate:.2%}") print(f"Long Profit Factor: {trades.direction_long.profit_factor:.2f}") if short_trades > 0: print(f"Short Win Rate: {trades.direction_short.win_rate:.2%}") print(f"Short Profit Factor: {trades.direction_short.profit_factor:.2f}") print("="*80) # Generate report generate_trade_report(pf) ``` This comprehensive analysis framework provides all the tools needed to analyze `pf.trades` with particular focus on: 1. **Direction-specific analysis** - Separate analysis for long and short trades 2. **Daily P&L patterns** - Understanding daily performance patterns 3. **Hourly P&L by direction** - Identifying optimal trading hours for each direction 4. **Day of week analysis** - Finding the best/worst days for different directions 5. **Custom metrics** - Extending the analysis with domain-specific metrics 6. **Visualization tools** - Creating comprehensive performance visualizations 7. **Pattern recognition** - Identifying winning/losing streaks and patterns 8. **Comprehensive reporting** - Generating detailed performance reports The framework is designed to be modular, allowing you to pick and choose the specific analyses most relevant to your trading strategy evaluation needs.