- [DEBUGGING](#debugging) - [Fetching Data](#fetching-data) - [REINDEX to main session](#reindex-to-main-session) - [Smart indexing](#smart-indexing) - [Data manipulation](#data-manipulation) - [DISCOVERY](#discovery) - [DATA/WRAPPER](#datawrapper) - [create WRAPPER manually](#create-wrapper-manually) - [RESAMPLING](#resampling) - [config](#config) - [REALIGN](#realign) - [REALIGN\_CLOSING accessors](#realignclosing-accessors) - [SIGNALS](#signals) - [Comparing](#comparing) - [GENERATE SIGNALS IRERATIVELY (numba)](#generate-signals-ireratively-numba) - [or as indicators](#or-as-indicators) - [ENTRIES/EXITS time based](#entriesexits-time-based) - [STOPS](#stops) - [OHLCSTX Module](#ohlcstx-module) - [Entry Window and Forced Exit Window](#entry-window-and-forced-exit-window) - [END OF DAY EXITS](#end-of-day-exits) - [REGULAR EXITS](#regular-exits) - [DF/SR ACCESSORS](#dfsr-accessors) - [Generic](#generic) - [SIGNAL ACCESSORS](#signal-accessors) - [RANKING - partitioning](#ranking---partitioning) - [Base Accessors](#base-accessors) - [Stoploss/Takeprofit](#stoplosstakeprofit) - [SL - ATR based](#sl---atr-based) - [EXIT after time](#exit-after-time) - [CALLBACKS -](#callbacks) - [MEMORY](#memory) - [Portfolio](#portfolio) - [from signals](#from-signals) - [CALLBACKS](#callbacks-1) - [Access running total return from sim](#access-running-total-return-from-sim) - [Staticization](#staticization) - [Grouping](#grouping) - [Portfolio analysis](#portfolio-analysis) - [pf.trades analysis](#pftrades-analysis) - [PnL by hour of the day (BOXPLOT)](#pnl-by-hour-of-the-day-boxplot) - [PF resampling](#pf-resampling) - [PF Plotting](#pf-plotting) - [Key Portfolio Analysis Methods \& Properties](#key-portfolio-analysis-methods--properties) - [1. **Basic Portfolio Metrics**](#1-basic-portfolio-metrics) - [2. **Comprehensive Stats Method**](#2-comprehensive-stats-method) - [3. **Trade Analysis**](#3-trade-analysis) - [4. **Drawdown Analysis**](#4-drawdown-analysis) - [5. **Order Analysis**](#5-order-analysis) - [6. **Custom Metrics**](#6-custom-metrics) - [7. **Visualization Methods**](#7-visualization-methods) - [8. **Advanced Analysis Examples**](#8-advanced-analysis-examples) - [Entries/exits visual analysis](#entriesexits-visual-analysis) - [Configuration](#configuration) - [Optimalization](#optimalization) - [Param configuration](#param-configuration) - [Pipeline](#pipeline) - [INDICATORS DEV](#indicators-dev) - [Custom ind](#custom-ind) - [register custom ind](#register-custom-ind) - [VWAP anchored example](#vwap-anchored-example) - [Use ttols indicators](#use-ttols-indicators) - [FAV INDICATORS](#fav-indicators) - [GROUPING](#grouping-1) - [SPLITTING](#splitting) - [CHARTING](#charting) - [standard vbt plot](#standard-vbt-plot) - [MULTIACCOUNT](#multiaccount) - [CUSTOM SIMULATION](#custom-simulation) - [ANALYSIS](#analysis) - [ROBUSTNESS](#robustness) - [UTILS](#utils) - [Market calendar](#market-calendar) ```python import vectorbtpro as vbt from lightweight_charts import Panel, chart, PlotDFAccessor, PlotSRAccessor t15data = None if not hasattr(pd.Series, 'lw'): pd.api.extensions.register_series_accessor("lw")(PlotSRAccessor) if not hasattr(pd.DataFrame, 'lw'): pd.api.extensions.register_dataframe_accessor("lw")(PlotDFAccessor) ``` # DEBUGGING ```python vbt.pprint(pf.entry_trades) #pretty print of instance vbt.pdir(pf.entry_trades) #available methods/properties vbt.phelp(ollcov.run) #input/output attribnuttes of the method ``` prints which arguments are being passed to apply_func. ```python def apply_func(*args, **kwargs): for i, arg in enumerate(args): print("arg {}: {}".format(i, type(arg))) for k, v in kwargs.items(): print("kwarg {}: {}".format(k, type(v))) raise NotImplementedError RollCov = vbt.IF( class_name='RollCov', input_names=['ts1', 'ts2'], param_names=['w'], output_names=['rollcov'], ).with_apply_func(apply_func, select_params=False) ollCov.run(ts1, ts2, [2, 3], some_arg="some_value") ``` # Fetching Data ```python #fetching from remote db from lib.db import Connection SYMBOL = "BAC" SCHEMA = "ohlcv_1s" #time based 1s other options ohlcv_vol_200 (volume based ohlcv with resolution of 200), ohlcv_renko_20 (renko with 20 bricks size) ... DB = "market_data" con = Connection(db_name=DB, default_schema=SCHEMA, create_db=True) basic_data = con.pull(symbols=[SYMBOL], schema=SCHEMA,start="2024-08-01", end="2024-08-08", tz_convert='America/New_York') #Fetching from YAHOO symbols = ["AAPL", "MSFT", "AMZN", "TSLA", "AMD", "NVDA", "SPY", "QQQ", "META", "GOOG"] data = vbt.YFData.pull(symbols, start="2024-09-28", end="now", timeframe="1H", missing_columns="nan") #Fetching from local cache dir = DATA_DIR + "/notebooks/" import os files = [f for f in os.listdir(dir) if f.endswith(".parquet")] print('\n'.join(map(str, files))) file_name = "ohlcv_df-BAC-2024-10-03T09:30:00-2024-10-16T16:00:00-['4', '7', 'B', 'C', 'F', 'O', 'P', 'U', 'V', 'W', 'Z']-100.parquet" ohlcv_df = pd.read_parquet(dir+file_name,engine='pyarrow') basic_data = vbt.Data.from_data(vbt.symbol_dict({"BAC": ohlcv_df}), tz_convert=zoneNY) basic_data.wrapper.index.normalize().nunique() #numdays #Fetching Trades and Aggregating custom OHLCV from ttools import load_data #This is how to call LOAD function symbol = ["SPY", "BAC"] #datetime in zoneNY day_start = datetime(2024, 1, 15, 9, 30, 0) day_stop = datetime(2024, 10, 20, 16, 0, 0) day_start = zoneNY.localize(day_start) day_stop = zoneNY.localize(day_stop) #requested AGG resolution = 1 #12s bars agg_type = AggType.OHLCV #other types AggType.OHLCV_VOL, AggType.OHLCV_DOL, AggType.OHLCV_RENKO exclude_conditions = ['C','O','4','B','7','V','P','W','U','Z','F','9','M','6'] #None to defaults minsize = 100 #min trade size to include main_session_only = False force_remote = False data = load_data(symbol = symbol, agg_type = agg_type, resolution = resolution, start_date = day_start, end_date = day_stop, #exclude_conditions = None, minsize = minsize, main_session_only = main_session_only, force_remote = force_remote, return_vbt = True, #returns vbt object verbose = True ) ``` ## REINDEX to main session Get trading days main sessions from `pandas_market_calendars` and reindex fetched data to main session only. ```python import vectorbtpro as vbt # Start and end dates to use across both the calendar and data fetch start=data.index[0].to_pydatetime() end=tata.index[-1].to_pydatetime() timeframe="1m" import pandas_market_calendars as mcal # Get the NYSE calendar nyse = mcal.get_calendar("NYSE") # Get the market hours data market_hours = nyse.schedule(start_date=start, end_date=end, tz=nyse.tz) #market_hours = market_hours.tz_localize(nyse.tz) # Create a DatetimeIndex at our desired frequency for that schedule. Because the calendar hands back the end of # the window, you need to subtract that size timeframe to get back to the start market_klines = mcal.date_range(market_hours, frequency=timeframe) - pd.Timedelta(timeframe) testData = vbt.YFData.fetch(['MSFT'], start=start, end=end, timeframe=timeframe, tz_convert="US/Eastern") # Finally, take our DatetimeIndex and use that to pull just the data we're interested in (and ensuring we have rows # for any empty klines in there, which helps for some time based algorithms that need to have time not exist outside # of market hours) testData = testData.transform(lambda x: x.reindex(market_klines)) ``` ## Smart indexing ```python signal.vbt.xloc["04-26-2024":"04-29-2024"].get() #pdseries or df timeindex signal.vbt.xloc[("BAC", "04-26-2024"):("BAC","04-29-2024")].get() #multiindex entries.vbt.xloc["04-16-2024"].get() #one day entries.vbt.xloc[slice("2024-08-01","2024-08-03")].obj.info() data.xloc[slice("9:30","10:00")] #targeting only morning rush ``` ## Data manipulation ```python #add/rename/delete symbols s12_data = s12_data.rename_symbols("BAC", "BAC-LONG") s12_data = s12_data.add_symbol("BAC-SHORT", s12_data.data["BAC-LONG"]) s12_adata.symbols s12_data = s12_data.remove_symbols(["BAC-SHORT"]) ``` # DISCOVERY ```python #get parameters of method vbt.IF.list_locations() #lists categories vbt.IF.list_indicators(pattern="vbt") #all in category vbt vbt.IF.list_indicators("*sma") vbt.phelp(vbt.indicator("talib:MOM").run) ``` # DATA/WRAPPER Available [methods for data](http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.Data) **Main data container** (servees as a wrapper for symbol oriented or feature oriented data) ```python data.transform() data.dropna() data.feature_oriented vs data.symbol_oriented #returns True/False if cols are features or symbols data.data #dictionary either feature oriented or data.ohlcv #OHLCV mixin filters only ohlcv feature and offers methods http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.OHLCDataMixin data.base #base mixin - implicit offers functions wrapper methods http://5.161.179.223:8000/vbt-doc/api/data/base/index.html#vectorbtpro.data.base.BaseDataMixin - data.symbol_wrapper - data.feature_wrapper - data.features show(t1data.data["BAC"]) #display returns on top of ohlcv t1data.ohlcv.data["BAC"].lw.plot(left=[(t1data.returns, "returns")], precision=4) ``` ## create WRAPPER manually [wrapper methods](http://5.161.179.223:8000/vbt-doc/api/base/wrapping/index.html#vectorbtpro.base.wrapping.ArrayWrapper) ```python #create wrapper from existing objects wrapper = data.symbol_wrapper # one column for each symbol wrapper = data.get_symbol_wrapper() # symbol - level, one column for each symbol (BAC a pod tim series) wrapper = data.get_feature_wrapper() #feature level, one column for each feature (open,high...) wrapper = df.vbt.wrapper #Create an empty array with the same shape, index, and columns as in another array new_float_df = wrapper.fill(np.nan) new_bool_df = wrapper.fill(False) new_int_df = wrapper.fill(-1) #display df/series from itables import show show(t1data.close) ``` # RESAMPLING ## config ```python from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig from vectorbtpro import _typing as tp from vectorbtpro.generic import nb as generic_nb _feature_config: tp.ClassVar[Config] = HybridConfig( { "buyvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ), "sellvolume": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ), "trades": dict( resample_func=lambda self, obj, resampler: obj.vbt.resample_apply( resampler, generic_nb.sum_reduce_nb, ) ) } ) basic_data._feature_config = _feature_config ``` ```python #1s to 1T t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']].resample("1T") t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna()) #using resampler (with more control over target index) resampler_s = vbt.Resampler(target_data.index, source_data.index, source_freq="1T", target_freq="1s") basic_data.resample(resampler_s) ``` # REALIGN `REALIGN` method - runs on data object (OHLCV) - (open feature realigns leftbound, rest of features rightboud) .resample("1T").first().ffill() ```python ffill=True = same frequency as t1data.index ffill=False = keeps original frequency but moved to where data are available ie. instead of 15:30 to 15:44 for 15T bar t15data_realigned = t15data.realign(t1data.index, ffill=True, freq="1T") #freq - target frequency ``` ## REALIGN_CLOSING accessors ```python t15data_realigned_close = t15data.close.vbt.realign_closing(t1data.index, ffill=True, freq="1T") t15data_realigned_open = t15data.open.vbt.realign_open(t1data.index, ffill=True, freq="1T") ``` #realign_closing accessor just calls #return self.realign(*args, source_rbound=False, target_rbound=False, **kwargs) #realign opening #return self.realign(*args, source_rbound=True, target_rbound=True, **kwargs) #using RESAMPLER #or resampler_s = vbt.Resampler(t15data.index, t1data.index, source_freq="1T", target_freq="1s") t15close_realigned_with_resampler = t1data.data["BAC"].realign_closing(resampler_s) # SIGNALS ## Comparing ```python dvla = np.round(div_vwap_lin_angle.real,4) #ROUNDING to 4 decimals long_entries = tts.isrisingc(dvla,3).vbt & div_vwap_cum.div_below(0) #strictly rising for 3 bars short_entries = tts.isfalling(dvla,3).vbt & div_vwap_cum.div_above(0) #strictly falling for 3 bars long_entries = tts.isrising(dvla,3)#rising for 3 bars including equal values short_entries = tts.isfalling(dvla,3)#falling for 3 bars including equal values cond1 = data.get("Low") < bb.lowerband #comparing with previous value cond2 = bandwidth > bandwidth.shift(1) #comparing with value week ago cond2 = bandwidth > bandwidth.vbt.ago("7d") mask = cond1 & cond2 mask.sum() #creating bandwidth = (bb.upperband - bb.lowerband) / bb.middleband mask = bandwidth.vbt > vbt.Param([0.15, 0.3], name="threshold") #broadcasts and create combinations (for scalar params only) #same but for arrays mask = bandwidth.vbt.combine( [0.15, 0.3], #values elements (scalars or array) combine_func=np.greater, keys=pd.Index([0.15, 0.3], name="threshold") #keys for the multiindex ) mask.sum() ``` ## GENERATE SIGNALS IRERATIVELY (numba) Used for 1D. For multiple symbol create own indicator instead. ```python @njit def generate_mask_1d_nb( #required arrays as inputs high, low, uband, mband, lband, cond2_th, cond4_th ): out = np.full(high.shape, False) for i in range(high.shape[0]): bandwidth = (uband[i] - lband[i]) / mband[i] cond1 = low[i] < lband[i] cond2 = bandwidth > cond2_th cond3 = high[i] > uband[i] cond4 = bandwidth < cond4_th signal = (cond1 and cond2) or (cond3 and cond4) out[i] = signal return out mask = generate_mask_1d_nb( data.get("High")["BTCUSDT"].values, data.get("Low")["BTCUSDT"].values, bb.upperband["BTCUSDT"].values, bb.middleband["BTCUSDT"].values, bb.lowerband["BTCUSDT"].values, 0.30, 0.15 ) symbol_wrapper = data.get_symbol_wrapper() mask = symbol_wrapper["BTCUSDT"].wrap(mask) mask.sum() ``` or create extra numba function to iterate over columns ```python @njit def generate_mask_nb( high, low, uband, mband, lband, cond2_th, cond4_th ): out = np.empty(high.shape, dtype=np.bool_) for col in range(high.shape[1]): out[:, col] = generate_mask_1d_nb( high[:, col], low[:, col], uband[:, col], mband[:, col], lband[:, col], cond2_th, cond4_th ) return out mask = generate_mask_nb( vbt.to_2d_array(data.get("High")), vbt.to_2d_array(data.get("Low")), vbt.to_2d_array(bb.upperband), vbt.to_2d_array(bb.middleband), vbt.to_2d_array(bb.lowerband), 0.30, 0.15 ) mask = symbol_wrapper.wrap(mask) mask.sum() ``` ## or as indicators Works on columns. ```python MaskGenerator = vbt.IF( input_names=["high", "low", "uband", "mband", "lband"], param_names=["cond2_th", "cond4_th"], output_names=["mask"] ).with_apply_func(generate_mask_1d_nb, takes_1d=True) mask_generator = MaskGenerator.run( data.get("High"), data.get("Low"), bb.upperband, bb.middleband, bb.lowerband, [0.3, 0.4], [0.1, 0.2], param_product=True ) mask_generator.mask.sum() ``` ## ENTRIES/EXITS time based ```python #create entries/exits based on open of first symbol entries = pd.DataFrame.vbt.signals.empty_like(data.open.iloc[:,0]) exits = pd.DataFrame.vbt.signals.empty_like(entries) #OR create entries/exits based on symbol level if needed (for each columns) symbol_wrapper = data.get_symbol_wrapper() entries = symbol_wrapper.fill(False) exits = symbol_wrapper.fill(False) entries.vbt.set( True, every="W-MON", at_time="00:00:00", indexer_method="bfill", # this time or after inplace=True ) exits.vbt.set( True, every="W-MON", at_time="23:59:59", indexer_method="ffill", # this time or before inplace=True ) ``` ## STOPS [doc from_signal](http://5.161.179.223:8000/vbt-doc/api/portfolio/base/#vectorbtpro.portfolio.base.Portfolio.from_signals) - StopExitPrice (Which price to use when exiting a position upon a stop signal?) - StopEntryPrice (Which price to use as an initial stop price?) price = close.vbt.wrapper.fill() price[entries] = entry_price price[exits] = exit_price ## OHLCSTX Module - exit signal generator based on price and stop values [doc](ttp://5.161.179.223:8000/vbt-doc/api/signals/generators/ohlcstx/index.html) ## Entry Window and Forced Exit Window Applying `entry window `range (denoted by minutes from the session start) to `entries` and applying `forced exit window` to `exits`. `create_mask_from_window` with param `use_cal=True` (default) uses market calendar data for each day to denote session start and end. When disabled it uses just fixed 9:30-16:00 for each day. ```python from ttools import create_mask_from_window entry_window_opens = 3 #in minutes from start of the market entry_window_closes = 388 forced_exit_start = 387 forced_exit_end = 390 #create mask based on main session that day entry_window_opened = create_mask_from_window(entries, entry_window_opens, entry_window_closes, use_cal=True) #limit entries to the window entries = entries & entry_window_opened #create forced exits mask forced_exits_window = create_mask_from_window(exits, forced_exit_start, forced_exit_end, use_cal=True) #add forced_exits to exits exits = exits | forced_exits_window ``` ## END OF DAY EXITS Another way of eod exits according to number of bars at the end of the session. Assuming the last rows each day represents end of the market. ```python sr = t1data.data["BAC"] last_n_daily_rows = sr.groupby(sr.index.date).tail(4) #or N last rows second_last_daily_row = sr.groupby(sr.index.date).nth(-2) #or Nth last row second_last_two_rows = sr.groupby(sr.index.date).apply(lambda x: x.iloc[-3:-1]).droplevel(0) #or any slice of rows #create exit array exits = t1data.get_symbol_wrapper().fill(False) exits.loc[last_n_daily_rows.index] = True #visualize t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close",exits)], size="s") #which is ALTERNATIVE to exits = create_mask_from_window(t1data.close, 387, 390, use_cal=False) t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close",exits)], size="s") ``` ## REGULAR EXITS Time based. ```python #REGULAR EXITS -EVERY HOUR/D/WEEK exits exits.vbt.set( True, every="H" # "min" "2min" "2H" "W-MON"+at time "D"+time #at_time="23:59:59", indexer_method="ffill", # this time or before inplace=True ) ``` # DF/SR ACCESSORS ## Generic For common taks ([docs](http://5.161.179.223:8000/vbt-doc/api/generic/accessors/index.html#vectorbtpro.generic.accessors.GenericAccessor)) * `rolling_apply` - runs custom function over a rolling window of a fixed size (number of bars or frequency) * `expanding_apply` - runs custome function over expanding the window from the start of the data to the current poin ```python from numba import njit mean_nb = njit(lambda a: np.nanmean(a)) hourly_anchored_expanding_mean = t1data.close.vbt.rolling_apply("1H", mean_nb) #ROLLING to FREQENCY or with fixed windows rolling_apply(10,mean_nb) t1data.ohlcv.data["BAC"].lw.plot(right=[(t1data.close,"close"),(hourly_anchored_expanding_mean, "hourly_anchored_expanding_mean")], size="s") #NOTE for anchored "1D" frequency - it measures timedelta that means requires 1 day between reseting (16:00 end of market, 9:30 start - not a full day, so it is enOugh to set 7H) #HEATMAP OVERLAY df['a'].vbt.overlay_with_heatmap(df['b']).show() ``` ## SIGNAL ACCESSORS - http://5.161.179.223:8000/vbt-doc/api/signals/accessors/#vectorbtpro.signals.accessors.SignalsAccessor ## RANKING - partitioning ```python #pos_rank -1 when False, 0, 1 ... for consecutive Trues, allow_gaps defautlne False # sample_mask = pd.Series([True, True, False, True, True]) ranked = sample_mask.vbt.signals.pos_rank() ranked == 1 #select each second signal in each partition ranked = sample_mask.vbt.signals.pos_rank(allow_gaps=True) (ranked > -1) & (ranked % 2 == 1) #Select each second signal globally entries.vbt.signals.first() #selects only first entries in each group entries.vbt.signals.from_nth(n) # pos_rank >= n in each group, all from Nth #AFTER - with variants _after which resets partition each reset array #maximum number of exit signals after each entry signal exits.vbt.signals.pos_rank_after(entries, reset_wait=0).max() + 1 #Count is the maximum rank plus one since ranks start with zero. We also assume that an entry signal comes before an exit signal if both are at the same timestamp by passing reset_wait=0. entries.vbt.signals.total_partitions #partition_pos_rank - all members of each partition have the same rank ranked = sample_mask.vbt.signals.partition_pos_rank(allow_gaps=True) #0,0,-1,1,1 ranked == 1 # the whole second partition ``` ## Base Accessors * low level accessors - http://5.161.179.223:8000/vbt-doc/api/base/accessors/index.html#vectorbtpro.base.accessors.BaseAccessor ```python exits.vbt.set( True, every="W-MON", at_time="23:59:59", indexer_method="ffill", # this time or before inplace=True ) ``` # Stoploss/Takeprofit [doc StopOrders](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/index.html#stop-orders) ## SL - ATR based ``` atr = data.run("atr").atr pf = vbt.Portfolio.from_signals( data, entries=entries, sl_stop=atr / sub_data.close ) ``` ## EXIT after time using [from signals](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#from-signals) ```python f = vbt.PF.from_signals(..., td_stop="7 days") pf = vbt.PF.from_signals(..., td_stop=pd.Timedelta(days=7)) pf = vbt.PF.from_signals(..., td_stop=td_arr) #EXIT at time pf = vbt.PF.from_signals(..., dt_stop="16:00") #exit at 16 and later pf = vbt.PF.from_signals(..., dt_stop=datetime.time(16, 0)) pf = vbt.PF.from_signals( #exit last bar before ..., dt_stop="16:00", arg_config=dict(dt_stop=dict(last_before=True)) ) ``` ## CALLBACKS - - a signal function (`signal_func_nb`) - can dynamically generate signals (True, True, False,False) - runs at beginning of bar - an adjustment function (`adjust_func_nb`) - [doc](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/#adjustment) - runs only if signal function above was not provided, but entry,exit arrays - runs before default signal function [ls_signal_func_nb](http://5.161.179.223:8000/vbt-doc/api/portfolio/nb/from_signals/index.html#vectorbtpro.portfolio.nb.from_signals.ls_signal_func_nb) - can change pending limit orders etc. - a post-signal function (`post_signal_func_nb`) - post-segment function (`post_segment_func_nb`) all of them are accessing [SignalContext](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/index.html#vectorbtpro.portfolio.enums.SignalContext) `(c)` as named tuple SignalContaxt (contains various metrics) such as: * last_limit_info - 1D with latest limit order per column * order_counts * last_return ... """ ### MEMORY save an information piece at one timestamp and re-use at a later timestamp when using [callbacks memory](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks) Usecases: * [MULTIPLE simultaneuos LIMIT ORDERS at TIME](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks) * [IGNORE ENTRIES number of DAYS after losing trade](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks) - signal function # Portfolio group_by=True to put all columns to the same group and cash_sharing=True to share capital among them ## from signals ```python pf = vbt.Portfolio.from_signals( close=s12_data.close, entries=long_entries_cln, exits=long_exits, short_entries=short_entries_cln, short_exits=short_exits, size=1, size_type=vbt.pf_enums.SizeType.Amount # Value, Percent, TargetAmount price="nextopen" #where the fill is happening. Default is "close" of current bar, can be also multiparameter vbt.Param(["close", "nextopen"]) sl_stop=0.3, tp_stop = 0.4, delta_format = vbt.pf_enums.DeltaFormat.Percent100, #(Absolute, Percent, Percent100, Target) fees=0.0167/100, freq="12s") #sl_stop=sl_stop, tp_stop = sl_stop,, tsl_stop ``` [SizeType enums](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/index.html#vectorbtpro.portfolio.enums.SizeType) [DeltaFormat enums](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/index.html#vectorbtpro.portfolio.enums.DeltaFormat) [Other PF enums](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/index.html) ## CALLBACKS Callbacks functions can be used to place/alter entries/exits and various other things dynamically based on simulation status. All of them contain [SignalContext](http://5.161.179.223:8000/vbt-doc/api/portfolio/enums/#vectorbtpro.portfolio.enums.SignalContext) and also can include custom Memory. Importan SignalContact attributes: * `c.i` - current index * `c.index` - time index numpy * `c.last_pos_info[c.col] ` - named tuple of last position info `{'names': ['id', 'col', 'size', 'entry_order_id', 'entry_idx', 'entry_price', 'entry_fees', 'exit_order_id', 'exit_idx', 'exit_price', 'exit_fees', 'pnl', 'return', 'direction', 'status', 'parent_id']` Callback functions: - signal_func_nb - place/alter entries/exits - adjust_sl_func_nb - adjust SL at each time stamp - adjust_func_nb - adjust size - post_segment_func_nb More on callbacks in [cookbook](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks). For exit dependent entries, the entries can be preprocessed in `signal_func_nb` see [callbacks](http://5.161.179.223:8000/vbt-doc/cookbook/portfolio/index.html#callbacks) in cookbok or [signal function](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/index.html#signal-function)in doc ```python @njit def signal_func_nb(c, entries, exits, short_entries, short_exits, cooldown_time, cooldown_bars): entry = vbt.pf_nb.select_nb(c, entries) #get current value exit = vbt.pf_nb.select_nb(c, exits) short_entry = vbt.pf_nb.select_nb(c, short_entries) short_exit = vbt.pf_nb.select_nb(c, short_exits) if not vbt.pf_nb.in_position_nb(c): # short for c.last_position == 0 if vbt.pf_nb.has_orders_nb(c): if c.last_pos_info[c.col]["pnl"] < 0: #current index is c.i last_exit_idx = c.last_pos_info[c.col]["exit_idx"] # exit index from last_pos_info named tuple if cooldown_time is not None and c.index[c.i] - c.index[last_exit_idx] < cooldown_time: return False, exit, False, short_exit #disable entry elif cooldown_bars is not None and last_exit_idx + cooldown_bars > c.i: return False, exit, False, short_exit #disable entry return entry, exit, short_entry, short_exit cooldown_time = vbt.dt.to_ns(vbt.timedelta("1m")) cooldown_bars = 3 pf = vbt.Portfolio.from_signals( close=s12_data.close, bm_close=data.data["SPY"].close, #explicit benchmark used in pf, ie. pf.plot_cum_returns().show() entries=long_entries_cln, exits=long_exits, short_entries=short_entries_cln, short_exits=short_exits, signal_func_nb="signal_func_nb.py", signal_args=( vbt.Rep("entries"), vbt.Rep("exits"), vbt.Rep("short_entries"), vbt.Rep("short_exits"), cooldown_time, # cooldown in timedelta in ns after exit cooldown_bars #cooldown in number of bars after exit ), sl_stop=0.3, tp_stop = 0.4, delta_format = vbt.pf_enums.DeltaFormat.Percent100, #(Absolute, Percent, Percent100, Target) fees=0.0167/100, freq="12s", #staticized=True #jitted=False ) #sl_stop=sl_stop, tp_stop = sl_stop,, tsl_stop ``` Tips: - To avoid waiting for the compilation, remove the `@njit` decorator from `signal_func_nb` and pass `jitted=False` to from_signals in order to disable Numba ### Access running total return from sim create an empty array for cumulative returns and populate it inside the post_segment_func_nb callback. The same array accessed by other callbacks can be used to get the total return at any time step. ```python @njit def adjust_func_nb(c, cum_return): if c.cash_sharing: total_return = cum_return[c.group] - 1 else: total_return = cum_return[c.col] - 1 ... @njit def post_segment_func_nb(c, cum_return): if c.cash_sharing: cum_return[c.group] *= 1 + c.last_return[c.group] else: for col in range(c.from_col, c.to_col): cum_return[col] *= 1 + c.last_return[col] cum_return = None def init_cum_return(wrapper): global cum_return if cum_return is None: cum_return = np.full(wrapper.shape_2d[1], 1.0) return cum_return pf = vbt.PF.from_signals( ..., adjust_func_nb=adjust_func_nb, adjust_args=(vbt.RepFunc(init_cum_return),), post_segment_func_nb=post_segment_func_nb, post_segment_args=(vbt.RepFunc(init_cum_return),), ) ``` ### Staticization Callbacks make function uncacheable, to overcome that - define the callback in external file `signal_func_nb.py` ```python @njit def signal_func_nb(c, fast_sma, slow_sma): long = vbt.pf_nb.iter_crossed_above_nb(c, fast_sma, slow_sma) short = vbt.pf_nb.iter_crossed_below_nb(c, fast_sma, slow_sma) return long, False, short, False ``` and then use use `staticized=True` ```python data = vbt.YFData.pull("BTC-USD") pf = vbt.PF.from_signals( data, signal_func_nb="signal_func_nb.py", signal_args=(vbt.Rep("fast_sma"), vbt.Rep("slow_sma")), broadcast_named_args=dict( fast_sma=data.run("sma", 20, hide_params=True, unpack=True), slow_sma=data.run("sma", 50, hide_params=True, unpack=True) ), staticized=True ) ``` ## Grouping Grouping in [signal function](http://5.161.179.223:8000/vbt-doc/documentation/portfolio/from-signals/index.html#signal-function). # Portfolio analysis [Portfolio base doc](http://5.161.179.223:8000/vbt-doc/api/portfolio/base/) ```python pf.orders.readable pf.entry_trades.readable pf.exit_trades.readable pf.trades.readable pf.positions.readable pf.trade_history #human readable df expanding trades with metrics dd = pf.get_drawdowns().records_readable dd[dd["Status"] == "Active"] #Recovered pf.metrics #get available metrics and its short names&function #trades vbt.pdir(pf.trades) # available methods/properties #orders pf.orders.side_buy.count() # pf.order.attribute_value.COUNT() pf.orders.stats(group_by=True) #daily returns pf.daily_returns.sort_values([(2, 'BAC')], ascending=True) #sorting values in levels pf.daily_returns.sort_values(pf.daily_returns.columns[0], ascending=True) #same with first level pf.daily_returns.cumsum() ``` ## pf.trades analysis [pf.trades.plot()](http://5.161.179.223:8000/vbt-doc/api/portfolio/trades/#vectorbtpro.portfolio.trades.Trades.plot) doc - various options. ```python fig = pf.trades.plot() fig.auto_rangebreaks() fig.show() df = pf.trades.readable ``` ```python df["Direction"].value_counts() #count of trades for each Direction df.groupby("Direction")["PnL"].sum() #sum of pnl for each Direction (Short vs Long) .vbt.barplot() -to plot #daily PnL df.groupby(df['Exit Index'].dt.date)['PnL'].sum().sort_index(ascending=False) #daily PnL #daily PnL for each Direction df.groupby([df['Exit Index'].dt.date, 'Direction'])['PnL'].sum().sort_index(ascending=False) #daily PnL for each Direction #same but unstack, wehere long/short values become columns - for better charting df = df.groupby([df['Exit Index'].dt.date, 'Direction'])['PnL'].sum().sort_index(ascending=False).unstack() #df.vbt.barplot() or df.plot(kind="bar", stacked=True) #hourly PnL for each Direction, by Exit df = df.groupby([df['Exit Index'].dt.hour, 'Direction'])['PnL'].sum().sort_index(ascending=False).unstack() #df.vbt.barplot() df.plot(kind="bar", stacked=True) ``` ```python #PnL by Day of the Week and Direction # Group by day of the week and direction, then sum PnL pnl_by_day_and_direction_week = df.groupby([df['Exit Index'].dt.day_name(), 'Direction'])['PnL'].sum().unstack() fig = pnl_by_day_and_direction_week.vbt.barplot() fig.update_layout( barmode='stack', # Stack/group/overlay/relative the bars title='Profit by Day of the Week and Direction', xaxis_title='Day of the Week', yaxis_title='Cumulative Profit' ) ``` ### PnL by hour of the day (BOXPLOT) ![alt text](image.png) ```python a = df.groupby([df['Exit Index'].dt.day_name(), df['Exit Index'].dt.hour])['PnL'].sum().unstack() fig = a.vbt.boxplot() fig.update_layout( #barmode='stack', # Stack/group/overlay/relative the bars title='Profit by hour of the day', xaxis_title='Hour of the day', yaxis_title='Cumulative Profit' ) ``` ```python ##Profit/Loss (PnL) vs. Trade Duration # Calculate trade duration in minutes df['Trade Duration'] = (df['Exit Index'] - df['Entry Index']).dt.total_seconds() / 60 # Scatter plot of PnL vs Trade Duration plt.style.use('dark_background') colors = {'Short': 'lightcyan', 'Long': 'yellow'} plt.scatter(df['Trade Duration'], df['PnL'], c=df['Direction'].map(colors)) # Adding labels and title plt.title('Trade Duration vs. Profit/Loss') plt.xlabel('Duration (Minutes)') plt.ylabel('Profit/Loss') # Create a legend handles = [plt.Line2D([0], [0], marker='o', color='w', label='Short', markerfacecolor='lightcyan', markersize=10), plt.Line2D([0], [0], marker='o', color='w', label='Long', markerfacecolor='yellow', markersize=10)] plt.legend(title='Type', handles=handles) plt.tight_layout() plt.show() ##Cumulative profits vs benchmark pf.plot_cum_returns().show() ``` ## PF resampling ```python monthly_returns = pf.returns_acc.resample("M").get() daily_returns = pf.resample("D").returns #alternative fig = monthly_returns.vbt.boxplot() #box plot of monthly returns fig = monthly_returns.vbt.heatmap() #heatmap of time vs monthly returns fig = monthly_returns.vbt.ts_heatmap() #heatmap of returns vs time ``` ## PF Plotting ```python pf.plot_trade_signals().show() #plot long short entries/exits pf.plot_cum_returns().show() #cum returns vs benchmark ##whether returns are distirbuted normally pf.returns.vbt.qqplot() #TRADES pf.trades.plot_mae_returns().show()#MAE/MFE - identify max loss/profit during the trade pf.trades.plot_expanding_mfe_returns().show() #expanding mea/mfe returns ``` [Plot Edge ratio](http://5.161.179.223:8000/static/js/vbt/features/analysis/index.html#edge-ratio) `pf.trades.plot_running_edge_ratio()` I'll research VectorBT PRO's portfolio analysis capabilities for you. Let me search for information about analyzing Portfolio objects, particularly those created by `Portfolio.from_signal`.Let me search for the correct Portfolio creation methods and analysis capabilities:Now let me search specifically for Portfolio analysis methods and attributes:Let me search for more specific information about Portfolio methods and examples:Let me search for specific Portfolio methods that provide analysis capabilities:Now let me find information about the Portfolio.from_signals method:Let me run some code to test the Portfolio analysis capabilities:Let me search for more specific Portfolio analysis examples and metrics:Based on my research of VectorBT PRO's Portfolio analysis capabilities, here's a comprehensive overview of how to analyze Portfolio objects (including those created by `Portfolio.from_signals`): ## Key Portfolio Analysis Methods & Properties ### 1. **Basic Portfolio Metrics** The Portfolio object provides numerous built-in properties for analysis: - **Returns & Performance:** - `pf.returns` - Portfolio returns time series - `pf.total_return` - Total return percentage - `pf.annualized_return` - Annualized return - `pf.cumulative_returns` - Cumulative returns time series - **Risk Metrics:** - `pf.sharpe_ratio` - Sharpe ratio - `pf.sortino_ratio` - Sortino ratio - `pf.max_drawdown` - Maximum drawdown - `pf.annualized_volatility` - Annualized volatility - `pf.value_at_risk` - Value at Risk - `pf.cond_value_at_risk` - Conditional Value at Risk - **Portfolio Value & Cash:** - `pf.value` - Portfolio value time series - `pf.final_value` - Final portfolio value - `pf.cash` - Cash holdings over time - `pf.asset_value` - Asset value over time ### 2. **Comprehensive Stats Method** The most powerful analysis tool is the `stats()` method: ```python # Get default statistics pf.stats() # Get specific metrics pf.stats(['total_return', 'sharpe_ratio', 'max_dd', 'total_trades']) # Get all available metrics pf.stats('all') ``` **Common metric names for `stats()`:** - `'total_return'` - Total return percentage - `'total_trades'` - Number of trades - `'win_rate'` - Winning trade percentage - `'sharpe_ratio'` - Sharpe ratio - `'sortino_ratio'` - Sortino ratio - `'max_dd'` - Maximum drawdown (note: `max_dd`, not `max_drawdown`) - `'calmar_ratio'` - Calmar ratio - `'omega_ratio'` - Omega ratio - `'expectancy'` - Expected value per trade - `'profit_factor'` - Profit factor - `'best_trade'` - Best trade return - `'worst_trade'` - Worst trade return - `'avg_winning_trade'` - Average winning trade - `'avg_losing_trade'` - Average losing trade ### 3. **Trade Analysis** Access detailed trade information through the `trades` property: ```python # Trade statistics pf.trades.stats() pf.trades.count() # Total number of trades pf.trades.win_rate # Win rate pf.trades.profit_factor # Profit factor # Direction-specific analysis pf.trades.direction_long.count() # Number of long trades pf.trades.direction_short.count() # Number of short trades pf.trades.direction_long.pnl.sum() # Total long P&L pf.trades.direction_short.pnl.sum() # Total short P&L # Trade records pf.trades.records_readable # Human-readable trade records pf.trade_history # Detailed trade history DataFrame ``` ### 4. **Drawdown Analysis** Analyze drawdowns using the `drawdowns` property: ```python pf.drawdowns.stats() # Drawdown statistics pf.drawdowns.max_duration # Maximum drawdown duration pf.drawdown # Drawdown time series ``` ### 5. **Order Analysis** Examine order execution details: ```python pf.orders.stats() # Order statistics pf.orders.records_readable # Human-readable order records ``` ### 6. **Custom Metrics** You can add custom metrics to the Portfolio class: ```python # Add custom metrics vbt.Portfolio.metrics["skew"] = dict(title="Skew", calc_func="returns.skew") vbt.Portfolio.metrics["kurtosis"] = dict(title="Kurtosis", calc_func="returns.kurtosis") # Then use in stats pf.stats(['skew', 'kurtosis']) ``` ### 7. **Visualization Methods** Portfolio objects have built-in plotting capabilities: ```python pf.plot() # Default portfolio plot pf.plot_value() # Portfolio value over time pf.plot_cumulative_returns() # Cumulative returns pf.plot_drawdowns() # Drawdown plot pf.plot_underwater() # Underwater plot pf.trades.plot() # Trade analysis plots ``` ### 8. **Advanced Analysis Examples** **Multi-parameter analysis:** ```python # Combine multiple metrics into DataFrame metrics = [ pf.total_return, pf.trades.win_rate, pf.sharpe_ratio, pf.max_drawdown, pf.trades.count() ] keys = ['total_return', 'win_rate', 'sharpe_ratio', 'max_drawdown', 'trade_count'] combined_stats = pd.concat(metrics, axis=1, keys=keys) ``` **Performance optimization:** - Use `save_returns=True` in `Portfolio.from_signals()` to pre-calculate returns and speed up metric calculations - Enable caching for repeated analysis This comprehensive analysis framework allows you to thoroughly evaluate portfolio performance from multiple angles - returns, risk, trade efficiency, and drawdown characteristics. Would you like me to help you implement any specific analysis workflow, or do you have questions about particular metrics or methods? ## Entries/exits visual analysis ```python #display entry exits for visual analysis import ttools as tts trade_entries, trade_exits = tts.trades2entries_exits(pf) #helper to extract info from trades and orders with texts to markers (notext=True can be used) Panel( ohlcv=(s12_data.ohlcv.data["BAC"],), right=[(s12_data.close, "close", trade_entries, trade_exits)], middle1=[(pf.returns.cumsum(), "returns")], ).chart(precision=4) #or alternative display just markers with no text trade_entries = pd.Series(index=pf.trades.readable["Entry Index"], dtype=bool, data=True) trade_exits = pd.Series(index=pf.trades.readable["Exit Index"], dtype=bool, data=True) #then call Panel same as above ``` ## Configuration Changing year freq for stocks ```python vbt.settings.returns.year_freq = pd.Timedelta(hours=6.5) * 252 ``` # Optimalization ## Param configuration ```python tp_stop = vbt.Param(tp_stop, condition="tp_stop > sl_stop") #conditional hyper parameters ``` ```python tp_stop = vbt.Param(tp_stop, condition="tp_stop > sl_stop") #conditional hyper parameters ``` ## Pipeline ```python bt.parameterized(merge_func="concat") def sma_crossover_perf(data, fast_window, slow_window): fast_sma = data.run("sma", fast_window, short_name="fast_sma") slow_sma = data.run("sma", slow_window, short_name="slow_sma") entries = fast_sma.real_crossed_above(slow_sma) exits = fast_sma.real_crossed_below(slow_sma) pf = vbt.Portfolio.from_signals( data, entries, exits, direction="both") return pf.sharpe_ratio #Let's test a grid of fast_window and slow_window combinations on one year of that data: perf = sma_crossover_perf( data["2020":"2020"], vbt.Param(np.arange(5, 50), condition="x < slow_window"), vbt.Param(np.arange(5, 50)), _execute_kwargs=dict( show_progress=True, clear_cache=50, collect_garbage=50 ) ) perf ``` # INDICATORS DEV ```python #REGISTER CUSTOM INDICATOR vbt.IndicatorFactory.register_custom_indicator( SupportResistance, name="SUPPRES", location=None, if_exists='raise' ) #RUN INDICATOR on DATA WRAPPER cdlbreakaway = s1data.run(vbt.indicator("talib:CDLHAMMER"), skipna=True, timeframe=["12s"]) #FROM EXPRESSION http://5.161.179.223:8000/vbt-doc/api/indicators/factory/#vectorbtpro.indicators.factory.IndicatorFactory.from_expr WMA = vbt.IF( class_name='WMA', input_names=['close'], param_names=['window'], output_names=['wma'] ).from_expr("wm_mean_nb(close, window)") wma = WMA.run(t1data.close, window=10) wma.wma ``` ## Custom ind ```python #simple from numba import jit @jit def apply_func(high, low, close): return (high + low + close + close) / 4 HLCC4 = vbt.IF( class_name='hlcc4', input_names=['high', 'low', 'close'], output_names=['out'] ).with_apply_func( apply_func, timeperiod=10, #single default high=vbt.Ref('close')) #default from another input) ind = HLCC4.run(s12_data.high, s12_data.low, s12_data.close) #1D apply function import talib def apply_func_1d(close, timeperiod): return talib.SMA(close.astype(np.double), timeperiod) SMA = vbt.IF( input_names=['ts'], param_names=['timeperiod'], output_names=['sma'] ).with_apply_func(apply_func_1d, takes_1d=True) sma = SMA.run(ts, [3, 4]) sma.sma #with grouping and keep_pd (inputs are pd.series) def apply_func(ts, group_by): return ts.vbt.demean(group_by=group_by) Demeaner = vbt.IF( input_names=['ts'], param_names=['group_by'], output_names=['out'] ).with_apply_func(apply_func, keep_pd=True) #if takes_1D it sends pd.series, otherwise df with symbol as columns ts_wide = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [5, 4, 3, 2, 1], 'c': [3, 2, 1, 2, 3], 'd': [1, 2, 3, 2, 1] }, index=generate_index(5)) demeaner = Demeaner.run(ts_wide, group_by=[(0, 0, 1, 1), True]) demeaner.out ``` ### register custom ind [indicator registration](http://5.161.179.223:8000/vbt-doc/cookbook/indicators/#registration) ```python vbt.IF.register_custom_indicator(sma_indicator) #name=classname vbt.IF.register_custom_indicator(sma_indicator, "rolling:SMA") vbt.IF.deregister_custom_indicator("rolling:SMA") ``` ### VWAP anchored example ```python import numpy as np from vectorbtpro import _typing as tp from vectorbtpro.base.wrapping import ArrayWrapper from vectorbtpro.utils.template import RepFunc def substitute_anchor(wrapper: ArrayWrapper, anchor: tp.Optional[tp.FrequencyLike]) -> tp.Array1d: """Substitute reset frequency by group lens. It is array of number of elements of each group.""" if anchor is None: return np.array([wrapper.shape[0]]) return wrapper.get_index_grouper(anchor).get_group_lens() @jit(nopython=True) def vwap_cum(high, low, close, volume, group_lens): #anchor based grouping - prepare group indexes group_end_idxs = np.cumsum(group_lens) group_start_idxs = group_end_idxs - group_lens #prepare output out = np.full(volume.shape, np.nan, dtype=np.float_) hlcc4 = (high + low + close + close) / 4 #iterate over groups for group in range(len(group_lens)): from_i = group_start_idxs[group] to_i = group_end_idxs[group] nom_cumsum = 0 denum_cumsum = 0 #for each group do this (it is just np.cumsum(hlcc4 * volume) / np.sum(volume) iteratively) for i in range(from_i, to_i): nom_cumsum += volume[i] * hlcc4[i] denum_cumsum += volume[i] if denum_cumsum == 0: out[i] = np.nan else: out[i] = nom_cumsum / denum_cumsum return out vwap_ind = vbt.IF( class_name='CUVWAP', input_names=['high', 'low', 'close', 'volume'], param_names=['anchor'], output_names=['vwap'] ).with_apply_func(vwap_cum, takes_1d=True, param_settings=dict( anchor=dict(template=RepFunc(substitute_anchor)), ), anchor="D", ) %timeit vwap_cum = vwap_ind.run(s12_data.high, s12_data.low, s12_data.close, s12_data.volume, anchor="min") vbt.IF.register_custom_indicator(vwap_ind) ``` ### Use ttols indicators ```python from ttools.vbtindicators import register_custom_inds register_custom_inds(if_exists="skip") #register all, skip or override when exists #register_custom_inds("CVWAP", "skip") #register one, skip if exists #register_custom_inds() #deregister all vbt.IF.list_indicators("ttools") vwap_cum = vbt.indicator("ttools:CUVWAP").run(s12_data.high, s12_data.low, s12_data.close, s12_data.volume, anchor="D") vwap_cum.vwap div_vwap_cum = vbt.indicator("ttools:DIVERGENCE").run(s12_data.close, vwap_cum_d.vwap, divtype=vbt.Default(valeu="reln"), hide_default=True) #hide default levels ``` # FAV INDICATORS ```python #for TALIB indicator always use skipna=True #TALIB INDICATORS can do realing closing : timeframe=["1T"] mom_multi = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=5, timeframe=["1T","5T"], skipna=True) #returned 5T can be directly compared with 1T #ANCHORED indciators vbt.indicator("talib:MOM") becomes AnchoredIndicator("talib:MOM", anchor="D") - freq of pd.Grouper from ttools import AnchoredIndicator mom_anch_d = AnchoredIndicator("talib:MOM", anchor='30min').run(t1data.data["BAC"].close, timeperiod=10) mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True) t1data.ohlcv.data["BAC"].lw.plot(auto_scale=[mom_anch_d, mom]) #FIBO RETRACEMENT fibo = vbt.indicator("technical:FIBONACCI_RETRACEMENTS").run(t1data.close, skipna=True) #fibo.fibonacci_retracements fibo_plusclose = t1data.close + fibo.fibonacci_retracements fibo_minusclose = t1data.close - fibo.fibonacci_retracements #fibo_plusclose Panel( auto_scale=[fibo_plusclose["BAC"]], ohlcv=(t1data.ohlcv.data["BAC"],), histogram=[], right=[(fibo_plusclose["BAC"],),(fibo_minusclose["BAC"],)], left=[], middle1=[(fibo.fibonacci_retracements["BAC"],"fibonacci_retracements")], middle2=[] ).chart(size="xs") #CHOPINESS indicator chopiness = vbt.indicator("technical:CHOPINESS").run(s1data.open, s1data.high, s1data.low, s1data.close, t1data.volume, skipna=True) s1data.ohlcv.data["BAC"].lw.plot(auto_scale=[chopiness]) #anchored VWAP t1vwap_h = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="H") t1vwap_h_real = t1vwap_h.vwap.vbt.realign_closing(resampler_s) #BBANDS = vbt.indicator("pandas_ta:BBANDS") mom_anch_d = AnchoredIndicator("talib:MOM", anchor='30min').run(t1data.data["BAC"].close, timeperiod=10) mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True) #macd = vbt.indicator("talib:MACD").run(t1data.data["BAC"].close) #, timeframe=["1T"]) #, t1data.ohlcv.data["BAC"].lw.plot(auto_scale=[mom_anch_d, mom]) ``` # GROUPING Group wrapper index based on freq: ```python #returns array of number of elements in each consec group group_lens = s12_data.wrapper.get_index_grouper("D").get_group_lens() # group_end_idxs = np.cumsum(group_lens) #end indices of each group group_start_idxs = group_end_idxs - group_lens #start indices of each group out = np.full(volume.shape, np.nan, dtype=np.float_) #iterate over groups for group in range(len(group_lens)): from_i = group_start_idxs[group] to_i = group_end_idxs[group] #iterate over elements of the group for i in range(from_i, to_i): out[i] = np.nan return out ``` # SPLITTING ```python #SPLITTER - splitting wrapper based on index #http://5.161.179.223:8000/vbt-doc/tutorials/cross-validation/splitter/index.html#anchored #based on GROUPER daily_splitter = vbt.Splitter.from_grouper(t1data.index, "D", split=None) #DOES contain last DAY daily_splitter = vbt.Splitter.from_ranges( #doesnt contain last DY t1data.index, every="D", split=None ) daily_splitter.stats() daily_splitter.plot() daily_splitter.coverage() daily_splitter.get_bounds(index_bounds=True) #shows the exact times daily_splitter.get_bounds_arr() daily_splitter.get_range_coverage(relative=True) #TAKING and APPLY MANUALLY - run UDF on ALL takes and concatenates taken = daily_splitter.take(t1data) inds = [] for series in taken: mom = vbt.indicator("talib:MOM").run(series.close, timeperiod=10, skipna=True) inds.append(mom) mom_daily = vbt.base.merging.row_stack_merge(inds) #merge mom = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=10, skipna=True) t1data.ohlcv.data["BAC"].lw.plot(left=[(mom_daily, "daily_splitter"),(mom, "original mom")]) #OHLCV with indicators on top #TAKING and APPLY AUTOMATIC daily_splitter = vbt.Splitter.from_grouper(t1data.index, "D", split=None) #DOES contain last DAY def indi_run(sr): return vbt.indicator("talib:MOM").run(sr.close, timeperiod=10, skipna=True) res = daily_splitter.apply(indi_run, vbt.Takeable(t1data), merge_func="row_stack", freq="1T") #use of IDX accessor (docs:http://5.161.179.223:8000/vbt-doc/api/base/accessors/index.html#vectorbtpro.base.accessors.BaseIDXAccessor) daily_grouper = t1data.index.vbt.get_grouper("D") #grouper instance can be iterated over for name, indices in daily_grouper.iter_groups(): print(name, indices) #PANDAS GROUPING - series/df grouping resulting in GroupBySeries placeholder that can be aggregated(sum, mean), transformed iterated over or fitlered for name, group in t1data.data["BAC"].close.groupby(pd.Grouper(freq='D')): print(name, group) ``` # CHARTING Using [custom lightweight-charts-python](https://github.com/drew2323/lightweight-charts-python) ```python #LW df/sr accessor t1data.ohlcv.data["BAC"].lw.plot(left=[(mom_multi, "mom_multi")]) #OHLCV with indicators on top t5data.ohlcv.data["BAC"].lw.plot( left=[(mom_multi.real, "mom"),(mom_multi_beztf, "mom_beztf"), (mom_5t_orig, "mom_5t_orig"), (mom_5t_orig_realigned, "mom_5t_orig_realigned")], right=[(t1data.data["BAC"].close, "t1 close"),(t5data.data["BAC"].close, "t5 close")], size="s") #.loc[:,(20,"1T","BAC")] #SINGLE PANEL Panel( auto_scale=[cdlbreakaway], ohlcv=(t1data.ohlcv.data["BAC"],entries), histogram=[], right=[], left=[], middle1=[], middle2=[] ).chart(size="xs") #MULTI PANEL pane1 = Panel( #auto_scale=[mom_multi, mom_multi_1t], #ohlcv=(t1data.data["BAC"],), #(series, entries, exits, other_markers) #histogram=[(order_imbalance_allvolume, "oivol")], # [(series, name, "rgba(53, 94, 59, 0.6)", opacity)] right=[(t1data.data["BAC"].close,"close 1T"),(t5data.data["BAC"].close,"close 5T"),(mom_multi_1t.close, "mom multi close")], # [(series, name, entries, exits, other_markers)] left=[(mom_multi, "mom_multi"), (mom_multi_1t, "mom_multi_1t")], #middle1=[], #middle2=[], #xloc="2024-02-12 09:30", precision=3 ) pane2 = Panel(....) ch = chart([pane1, pane2], size="s") ``` ## standard vbt plot ```python #skip gaps automatically vbt.settings.plotting.auto_rangebreaks = True vbt.settings.set_theme("dark") data.plot(symbol="SPY", yaxis=dict(type="log")).show() #skip non-business hours and weekends fig = df.vbt.plot() fig.update_xaxes( rangebreaks=[ dict(bounds=['sat', 'mon']), dict(bounds=[16, 9.5], pattern='hour'), ] ) ``` # MULTIACCOUNT Simultaneous LONG and short (hedging) In vbt position requires one column of data, so hedging is possible by using two columns representing the same asset but different directions, then stack both portfolio together [column stacking](http://5.161.179.223:8000/vbt-doc/features/productivity/#column-stacking) pf_join = vbt.PF.column_stack((pf1, pf2), group_by=True) # CUSTOM SIMULATION # ANALYSIS ## ROBUSTNESS ```python pf_stats.sort_values(by='Sharpe Ratio', ascending=False).iloc[::-1].vbt.heatmap().show() #works when there are more metrics ``` #endregion # UTILS ```python #use plotly resampler vbt.settings.plotting["use_resampler"] = True #RELOAD module in ipynb %load_ext autoreload %autoreload 2 #MEMORY sr.info() #peak memory usage, running once with vbt.MemTracer() as tracer: my_pipeline() print(tracer.peak_usage()) #CACHE vbt.print_cache_stats() vbt.print_cache_stats(vbt.PF) vbt.flush() #clear cache and collect garbage vbt.clear_cache(pf) #of specific vbt.clear_pycache() #TIMING #running once with vbt.Timer() as timer: my_pipeline() print(timer.elapsed()) #multiple times print(vbt.timeit(my_pipeline)) #in notebook %timeit function(x) %% time function(x) #NUMBA #numba doesnt return error when indexing out of bound, this raises the error import os os.environ["NUMBA_BOUNDSCHECK"] = "1" ``` # Market calendar ```python from pandas.tseries.offsets import CustomBusinessDay from pandas_market_calendars import get_calendar # Get the NYSE trading calendar nyse = get_calendar('NYSE') # Create a CustomBusinessDay object using the NYSE trading calendar custom_bd = CustomBusinessDay(holidays=nyse.holidays().holidays, weekmask=nyse.weekmask, calendar=nyse) ```