This commit is contained in:
David Brazda
2024-10-10 10:53:20 +02:00
parent 94f4f8a3eb
commit ac61467a6a
6 changed files with 254 additions and 0 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
/.venv/
.venv

49
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,49 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Python: Attach",
"type": "python",
"request": "attach",
"port": 5678, // or the port used by your Jupyter server
"justMyCode": false
},
{
"name": "Python: Aktuální soubor",
"type": "python",
"request": "launch",
"program": "${file}",
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}:${workspaceFolder}/bld"
},
"console": "integratedTerminal",
"justMyCode": false,
"python": "${command:python.interpreterPath}",
"internalConsoleOptions": "openOnSessionStart"
},
{
"name": "Python: Main",
"type": "python",
"request": "launch",
"program": "v2realbot/main.py",
"justMyCode": false
},
{
"name": "Python: File",
"type": "python",
"request": "launch",
"program": "${file}",
"justMyCode": false
},
{
"name": "Python: Attach",
"type": "python",
"request": "attach",
"connect": {
"host": "localhost",
"port": 5678
}
}
]
}

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"git.ignoreLimitWarning": true
}

61
requirements.txt Normal file
View File

@ -0,0 +1,61 @@
appnope==0.1.4
asttokens==2.4.1
attrs==24.2.0
certifi==2024.8.30
charset-normalizer==3.4.0
comm==0.2.2
dateparser==1.2.0
debugpy==1.8.6
decorator==5.1.1
exceptiongroup==1.2.2
executing==2.1.0
humanize==4.11.0
idna==3.10
imageio==2.35.1
ipykernel==6.29.5
ipython==8.28.0
jedi==0.19.1
joblib==1.4.2
jupyter_client==8.6.3
jupyter_core==5.7.2
llvmlite==0.39.1
matplotlib-inline==0.1.7
mypy-extensions==1.0.0
nest-asyncio==1.6.0
numba==0.56.4
numpy==1.23.5
packaging==24.1
pandas==2.2.3
parso==0.8.4
pexpect==4.9.0
pillow==10.4.0
platformdirs==4.3.6
prompt_toolkit==3.0.48
psutil==6.0.0
ptyprocess==0.7.0
pure_eval==0.2.3
Pygments==2.18.0
python-dateutil==2.9.0.post0
pytz==2024.2
pyzmq==26.2.0
regex==2024.9.11
requests==2.32.3
schedule==1.2.2
scikit-learn==1.5.2
scipy==1.14.1
six==1.16.0
stack-data==0.6.3
TA-Lib==0.4.32
threadpoolctl==3.5.0
tomli==2.0.2
tornado==6.4.1
tqdm==4.66.5
traitlets==5.14.3
ttools @ git+https://github.com/drew2323/ttools.git@6833710e66967948c711614108f8f5b3c7f16294
typing_extensions==4.12.2
tzdata==2024.2
tzlocal==5.2
urllib3==2.2.3
vectorbtpro @ file:///Users/davidbrazda/Downloads/vectorbtpro-2024.6.19-py3-none-any.whl#sha256=5e202f62aeb7697bb1411302e1c062d1df4fed5de5e1c2e8867eac07263c2d4a
wcwidth==0.2.13
websocket-client==1.8.0

0
vbt-helper.ipynb Normal file
View File

139
vbt.py Normal file
View File

@ -0,0 +1,139 @@
import vectorbtpro as vbt
import lightweightcharts
#region DATA
#fetching from remote db
from lib.db import Connection
SYMBOL = "BAC"
SCHEMA = "ohlcv_1s" #time based 1s other options ohlcv_vol_200 (volume based ohlcv with resolution of 200), ohlcv_renko_20 (renko with 20 bricks size) ...
DB = "market_data"
con = Connection(db_name=DB, default_schema=SCHEMA, create_db=True)
basic_data = con.pull(symbols=[SYMBOL], schema=SCHEMA,start="2024-08-01", end="2024-08-08", tz_convert='America/New_York')
#endregion
#region DISCOVERY
#get parameters of method
vbt.phelp(vbt.indicator("talib:MOM").run)
vbt.IF.list_indicators("*sma")
#endregion
#region RESAMPLING
from vectorbtpro.utils.config import merge_dicts, Config, HybridConfig
from vectorbtpro import _typing as tp
from vectorbtpro.generic import nb as generic_nb
_feature_config: tp.ClassVar[Config] = HybridConfig(
{
"buyvolume": dict(
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
resampler,
generic_nb.sum_reduce_nb,
)
),
"sellvolume": dict(
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
resampler,
generic_nb.sum_reduce_nb,
)
),
"trades": dict(
resample_func=lambda self, obj, resampler: obj.vbt.resample_apply(
resampler,
generic_nb.sum_reduce_nb,
)
)
}
)
basic_data._feature_config = _feature_config
t1data = basic_data[['open', 'high', 'low', 'close', 'volume','vwap','buyvolume','trades','sellvolume']].resample("1T")
t1data = t1data.transform(lambda df: df.between_time('09:30', '16:00').dropna())
#realign closing
resampler_s = vbt.Resampler(t1data.index, s1data.index, source_freq="1T", target_freq="1s")
t1close_realigned = t1data.data["BAC"].close.vbt.realign_closing(resampler_s)
#endregion
#region ENTRIES/EXITS
# window open/close
#END OF DAY EXITS
# end_of_day_dates = index.to_series().resample("1d").last().values
# exit_signals.loc[end_of_day_dates] = True
end_of_day_dates = open_hours_index.to_series().resample("1d").last()
df['exit'][df['exit'].index.isin(end_of_day_dates)] = True
# This index should be probably open_hours_index
# But also check that end_of_day_dates doesn't have nans (NaT), and if it has, you need to filter them out (edited)
#endregion
#region INDICATORS
#anchored VWAP
t1vwap_h = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="H")
t1vwap_d = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="D")
t1vwap_t = vbt.VWAP.run(t1data.high, t1data.low, t1data.close, t1data.volume, anchor="T")
t1vwap_h_real = t1vwap_h.vwap.vbt.realign_closing(resampler_s)
t1vwap_d_real = t1vwap_d.vwap.vbt.realign_closing(resampler_s)
t1vwap_t_real = t1vwap_t.vwap.vbt.realign_closing(resampler_s)
#SMA - note for TALIB use skipna=True
mom_multi_beztf = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=5, skipna=True)
#TALIB INDICATORS can do realing closing : timeframe=["1T"]
mom_multi = vbt.indicator("talib:MOM").run(t1data.close, timeperiod=5, timeframe=["1T","5T"], skipna=True) #returned 5T can be directly compared with 1T
#ANCHORED indciators vbt.indicator("pandas_ta:BBANDS") is called AnchoredIndicator("pandas_ta:BBANDS")
from ttools import AnchoredIndicator
#BBANDS = vbt.indicator("pandas_ta:BBANDS")
mom_anch_d = AnchoredIndicator("talib:MOM", anchor='30min').run(t1data.data["BAC"].close, timeperiod=10)
mom = vbt.indicator("talib:MOM").run(t1data.data["BAC"].close, timeperiod=10, skipna=True)
#macd = vbt.indicator("talib:MACD").run(t1data.data["BAC"].close) #, timeframe=["1T"]) #,
t1data.ohlcv.data["BAC"].lw.plot(auto_scale=[mom_anch_d, mom])
#endregion
#region CHARTING
#LW df/sr accessor
t1data.ohlcv.data["BAC"].lw.plot(left=[(mom_multi, "mom_multi")]) #OHLCV with indicators on top
t5data.ohlcv.data["BAC"].lw.plot(
left=[(mom_multi.real, "mom"),(mom_multi_beztf, "mom_beztf"), (mom_5t_orig, "mom_5t_orig"), (mom_5t_orig_realigned, "mom_5t_orig_realigned")],
right=[(t1data.data["BAC"].close, "t1 close"),(t5data.data["BAC"].close, "t5 close")],
size="s") #.loc[:,(20,"1T","BAC")]
#PANEL
pane1 = Panel(
#auto_scale=[mom_multi, mom_multi_1t],
#ohlcv=(t1data.data["BAC"],), #(series, entries, exits, other_markers)
#histogram=[(order_imbalance_allvolume, "oivol")], # [(series, name, "rgba(53, 94, 59, 0.6)", opacity)]
right=[(t1data.data["BAC"].close,"close 1T"),(t5data.data["BAC"].close,"close 5T"),(mom_multi_1t.close, "mom multi close")], # [(series, name, entries, exits, other_markers)]
left=[(mom_multi, "mom_multi"), (mom_multi_1t, "mom_multi_1t")],
#middle1=[],
#middle2=[],
#xloc="2024-02-12 09:30",
precision=3
)
ch = chart([pane1], size="s")
#endregion