# lightweight-charts-python
[](https://pypi.org/project/lightweight-charts/)
[](https://python.org "Go to Python homepage")
[](https://github.com/louisnw01/lightweight-charts-python/blob/main/LICENSE)
[](https://lightweight-charts-python.readthedocs.io/en/latest/docs.html)

lightweight-charts-python aims to provide a simple and pythonic way to access and implement [TradingView's Lightweight Charts](https://www.tradingview.com/lightweight-charts/).
## Installation
```
pip install lightweight-charts
```
* White screen? Having issues with pywebview? Click [here](https://github.com/louisnw01/lightweight-charts-python/issues?q=label%3A%22pywebview+issue%22+).
___
## Features
1. Simple and easy to use.
2. Blocking or non-blocking GUI.
3. Streamlined for live data, with methods for updating directly from tick data.
4. Supports:
* PyQt
* wxPython
* Streamlit
* asyncio
* Jupyter Notebooks using the [`JupyterChart`](https://lightweight-charts-python.readthedocs.io/en/latest/docs.html#jupyterchart)
5. [Callbacks](https://lightweight-charts-python.readthedocs.io/en/latest/docs.html#callbacks) allowing for timeframe (1min, 5min, 30min etc.) selectors, searching, and more.
6. Multi-Pane Charts using the [`SubChart`](https://lightweight-charts-python.readthedocs.io/en/latest/docs.html#subchart).
___
### 1. Display data from a csv:
```python
import pandas as pd
from lightweight_charts import Chart
if __name__ == '__main__':
chart = Chart()
# Columns: | time | open | high | low | close | volume (if volume is enabled) |
df = pd.read_csv('ohlcv.csv')
chart.set(df)
chart.show(block=True)
```

___
### 2. Updating bars in real-time:
```python
import pandas as pd
from time import sleep
from lightweight_charts import Chart
if __name__ == '__main__':
chart = Chart()
df1 = pd.read_csv('ohlcv.csv')
df2 = pd.read_csv('next_ohlcv.csv')
chart.set(df1)
chart.show()
last_close = df1.iloc[-1]
for i, series in df2.iterrows():
chart.update(series)
if series['close'] > 20 and last_close < 20:
chart.marker(text='The price crossed $20!')
last_close = series['close']
sleep(0.1)
```

___
### 3. Updating bars from tick data in real-time:
```python
import pandas as pd
from time import sleep
from lightweight_charts import Chart
if __name__ == '__main__':
df1 = pd.read_csv('ohlc.csv')
# Columns: | time | price | volume (if volume is enabled) |
df2 = pd.read_csv('ticks.csv')
chart = Chart(volume_enabled=False)
chart.set(df1)
chart.show()
for i, tick in df2.iterrows():
chart.update_from_tick(tick)
sleep(0.3)
```

___
### 4. Line Indicators:
```python
import pandas as pd
from lightweight_charts import Chart
def calculate_sma(data: pd.DataFrame, period: int = 50):
def avg(d: pd.DataFrame):
return d['close'].mean()
result = []
for i in range(period - 1, len(data)):
val = avg(data.iloc[i - period + 1:i])
result.append({'time': data.iloc[i]['date'], 'value': val})
return pd.DataFrame(result)
if __name__ == '__main__':
chart = Chart()
df = pd.read_csv('ohlcv.csv')
chart.set(df)
line = chart.create_line()
sma_data = calculate_sma(df)
line._set(sma_data)
chart.show(block=True)
```

___
### 5. Styling:
```python
import pandas as pd
from lightweight_charts import Chart
if __name__ == '__main__':
chart = Chart(debug=True)
df = pd.read_csv('ohlcv.csv')
chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
font_family='Helvetica')
chart.candle_style(up_color='#00ff55', down_color='#ed4807',
border_up_color='#FFFFFF', border_down_color='#FFFFFF',
wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')
chart.volume_config(up_color='#00ff55', down_color='#ed4807')
chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')
chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
horz_color='#FFFFFF', horz_style='dotted')
chart.legend(visible=True, font_size=14)
chart.set(df)
chart.show(block=True)
```

___
### 6. Callbacks:
```python
import asyncio
import pandas as pd
from lightweight_charts import Chart
def get_bar_data(symbol, timeframe):
if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
print(f'No data for "{symbol}"')
return pd.DataFrame()
return pd.read_csv(f'bar_data/{symbol}_{timeframe}.csv')
class API:
def __init__(self):
self.chart = None # Changes after each callback.
async def on_search(self, searched_string): # Called when the user searches.
new_data = get_bar_data(searched_string, self.chart.topbar['timeframe'].value)
if new_data.empty:
return
self.chart.topbar['corner'].set(searched_string)
self.chart.set(new_data)
async def on_timeframe_selection(self): # Called when the user changes the timeframe.
new_data = get_bar_data(self.chart.topbar['corner'].value, self.chart.topbar['timeframe'].value)
if new_data.empty:
return
self.chart.set(new_data)
async def main():
api = API()
chart = Chart(api=api, topbar=True, searchbox=True)
chart.legend(True)
chart.topbar.textbox('corner', 'TSLA')
chart.topbar.switcher('timeframe', api.on_timeframe_selection, '1min', '5min', '30min', default='5min')
df = get_bar_data('TSLA', '5min')
chart.set(df)
await chart.show_async(block=True)
if __name__ == '__main__':
asyncio.run(main())
```

___
[](https://lightweight-charts-python.readthedocs.io/en/latest/docs.html)
___
_This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView._