# Common Methods The methods below can be used within all chart objects. ___ ## `set` `data: pd.DataFrame` `render_drawings: bool` Sets the initial data for the chart. The data must be given as a DataFrame, with the columns: `time | open | high | low | close | volume` The `time` column can also be named `date` or be the index, and the `volume` column can be omitted if volume is not enabled. Column names are not case sensitive. If `render_drawings` is `True`, any drawings made using the `toolbox` will be redrawn with the new data. This is designed to be used when switching to a different timeframe of the same symbol. ```{important} the `time` column must have rows all of the same timezone and locale. This is particularly noticeable for data which crosses over daylight saving hours on data with intervals of less than 1 day. Errors are likely to be raised if they are not converted beforehand. ``` An empty `DataFrame` object or `None` can also be given to this method, which will erase all candle and volume data displayed on the chart. ___ ## `update` `series: pd.Series` Updates the chart data from a `pd.Series` object. The bar should contain values with labels akin to `set`. ___ ## `update_from_tick` `series: pd.Series` | `cumulative_volume: bool` Updates the chart from a tick. The series should use the labels: `time | price | volume` As before, the `time` can also be named `date`, and the `volume` can be omitted if volume is not enabled. The `time` column can also be the name of the Series object. ```{information} The provided ticks do not need to be rounded to an interval (1 min, 5 min etc.), as the library handles this automatically. ``` If `cumulative_volume` is used, the volume data given will be added onto the latest bar of volume data. ___ ## `create_line` (Line) `color: str` | `width: int` | `price_line: bool` | `price_label: bool` | `-> Line` Creates and returns a `Line` object, representing a `LineSeries` object in Lightweight Charts and can be used to create indicators. As well as the methods described below, the `Line` object also has access to: [`title`](#title), [`marker`](#marker), [`horizontal_line`](#horizontal-line) [`hide_data`](#hide-data), [`show_data`](#show-data) and[`price_line`](#price-line). Its instance should only be accessed from this method. ### `set` `data: pd.DataFrame` `name: str` Sets the data for the line. When not using the `name` parameter, the columns should be named: `time | value` (Not case sensitive). Otherwise, the method will use the column named after the string given in `name`. This name will also be used within the legend of the chart. For example: ```python line = chart.create_line() # DataFrame with columns: date | SMA 50 df = pd.read_csv('sma50.csv') line.set(df, name='SMA 50') ``` ### `update` `series: pd.Series` Updates the data for the line. This should be given as a Series object, with labels akin to the `line.set()` function. ### `delete` Irreversibly deletes the line. ___ ## `lines` `-> List[Line]` Returns a list of all lines for the chart or subchart. ___ ## `trend_line` `start_time: str/datetime` | `start_value: float/int` | `end_time: str/datetime` | `end_value: float/int` | `color: str` | `width: int` | `-> Line` Creates a trend line, drawn from the first point (`start_time`, `start_value`) to the last point (`end_time`, `end_value`). ___ ## `ray_line` `start_time: str/datetime` | `value: float/int` | `color: str` | `width: int` | `-> Line` Creates a ray line, drawn from the first point (`start_time`, `value`) and onwards. ___ ## `marker` `time: datetime` | `position: 'above'/'below'/'inside'` | `shape: 'arrow_up'/'arrow_down'/'circle'/'square'` | `color: str` | `text: str` | `-> str` Adds a marker to the chart, and returns its id. If the `time` parameter is not given, the marker will be placed at the latest bar. When using multiple markers, they should be placed in chronological order or display bugs may be present. ___ ## `remove_marker` `marker_id: str` Removes the marker with the given id. Usage: ```python marker = chart.marker(text='hello_world') chart.remove_marker(marker) ``` ___ ## `horizontal_line` (HorizontalLine) `price: float/int` | `color: str` | `width: int` | `style: 'solid'/'dotted'/'dashed'/'large_dashed'/'sparse_dotted'` | `text: str` | `axis_label_visible: bool` | `interactive: bool` | `-> HorizontalLine` Places a horizontal line at the given price, and returns a `HorizontalLine` object, representing a `PriceLine` in Lightweight Charts. If `interactive` is set to `True`, this horizontal line can be edited on the chart. Upon its movement a callback will also be emitted to an `on_horizontal_line_move` method, containing its ID and price. The toolbox should be enabled during its usage. It is designed to be used to update an order (limit, stop, etc.) directly on the chart. ### `update` `price: float/int` Updates the price of the horizontal line. ### `label` `text: str` Updates the label of the horizontal line. ### `delete` Irreversibly deletes the horizontal line. ___ ## `remove_horizontal_line` `price: float/int` Removes a horizontal line at the given price. ___ ## `clear_markers` Clears the markers displayed on the data. ___ ## `clear_horizontal_lines` Clears the horizontal lines displayed on the data. ___ ## `precision` `precision: int` Sets the precision of the chart based on the given number of decimal places. ___ ## `price_scale` `mode: 'normal'/'logarithmic'/'percentage'/'index100'` | `align_labels: bool` | `border_visible: bool` | `border_color: str` | `text_color: str` | `entire_text_only: bool` | `ticks_visible: bool` | `scale_margin_top: float` | `scale_margin_bottom: float` Price scale options for the chart. ___ ## `time_scale` `right_offset: int` | `min_bar_spacing: float` | `visible: bool` | `time_visible: bool` | `seconds_visible: bool` | `border_visible: bool` | `border_color: str` Timescale options for the chart. ___ ## `layout` `background_color: str` | `text_color: str` | `font_size: int` | `font_family: str` Global layout options for the chart. ___ ## `grid` `vert_enabled: bool` | `horz_enabled: bool` | `color: str` | `style: 'solid'/'dotted'/'dashed'/'large_dashed'/'sparse_dotted'` Grid options for the chart. ___ ## `candle_style` `up_color: str` | `down_color: str` | `wick_enabled: bool` | `border_enabled: bool` | `border_up_color: str` | `border_down_color: str` | `wick_up_color: str` | `wick_down_color: str` Candle styling for each of the candle's parts (border, wick). ```{admonition} Color Formats :class: note Throughout the library, colors should be given as either: * rgb: `rgb(100, 100, 100)` * rgba: `rgba(100, 100, 100, 0.7)` * hex: `#32a852` ``` ___ ## `volume_config` `scale_margin_top: float` | `scale_margin_bottom: float` | `up_color: str` | `down_color: str` Volume config options. ```{important} The float values given to scale the margins must be greater than 0 and less than 1. ``` ___ ## `crosshair` `mode` | `vert_visible: bool` | `vert_width: int` | `vert_color: str` | `vert_style: str` | `vert_label_background_color: str` | `horz_visible: bool` | `horz_width: int` | `horz_color: str` | `horz_style: str` | `horz_label_background_color: str` Crosshair formatting for its vertical and horizontal axes. `vert_style` and `horz_style` should be given as one of: `'solid'/'dotted'/'dashed'/'large_dashed'/'sparse_dotted'` ___ ## `watermark` `text: str` | `font_size: int` | `color: str` Overlays a watermark on top of the chart. ___ ## `legend` `visible: bool` | `ohlc: bool` | `percent: bool` | `lines: bool` | `color: str` | `font_size: int` | `font_family: str` Configures the legend of the chart. ___ ## `spinner` `visible: bool` Shows a loading spinner on the chart, which can be used to visualise the loading of large datasets, API calls, etc. ___ ## `price_line` `label_visible: bool` | `line_visible: bool` | `title: str` Configures the visibility of the last value price line and its label. ___ ## `fit` Attempts to fit all data displayed on the chart within the viewport (`fitContent()`). ___ ## `hide_data` Hides the candles on the chart. ___ ## `show_data` Shows the hidden candles on the chart. ___ ## `add_hotkey` `modifier: 'ctrl'/'shift'/'alt'/'meta'` | `key: str/int/tuple` | `method: object` Adds a global hotkey to the chart window, which will execute the method or function given. When using a number in `key`, it should be given as an integer. If multiple key commands are needed for the same function, you can pass a tuple to `key`. For example: ```python def place_buy_order(key): print(f'Buy {key} shares.') def place_sell_order(key): print(f'Sell all shares, because I pressed {key}.') chart.add_hotkey('shift', (1, 2, 3), place_buy_order) chart.add_hotkey('shift', 'X', place_sell_order) ``` ___ ## `create_table` `width: int/float` | `height: int/float` | `headings: tuple[str]` | `widths: tuple[float]` | `alignments: tuple[str]` | `position: 'left'/'right'/'top'/'bottom'` | `draggable: bool` | `method: object` Creates and returns a [`Table`](https://lightweight-charts-python.readthedocs.io/en/latest/tables.html) object. ___ ## `create_subchart` (SubChart) `volume_enabled: bool` | `position: 'left'/'right'/'top'/'bottom'`, `width: float` | `height: float` | `sync: bool/str` | `-> SubChart` Creates and returns a `SubChart` object, placing it adjacent to the previous `Chart` or `SubChart`. This allows for the use of multiple chart panels within the same `Chart` window. Its instance should only be accessed by using this method. `position`: specifies how the Subchart will float. `height` | `width`: Specifies the size of the Subchart, where `1` is the width/height of the window (100%) `sync`: If given as `True`, the Subchart's timescale and crosshair will follow that of the declaring `Chart` or `SubChart`. If a `str` is passed, the `SubChart` will follow the panel with the given id. Chart ids can be accessed from the`chart.id` and `subchart.id` attributes. ```{important} `width` and `height` should be given as a number between 0 and 1. ``` `SubCharts` are arranged horizontally from left to right. When the available space is no longer sufficient, the subsequent `SubChart` will be positioned on a new row, starting from the left side. ### Grid of 4 Example: ```python import pandas as pd from lightweight_charts import Chart if __name__ == '__main__': chart = Chart(inner_width=0.5, inner_height=0.5) chart2 = chart.create_subchart(position='right', width=0.5, height=0.5) chart3 = chart.create_subchart(position='left', width=0.5, height=0.5) chart4 = chart.create_subchart(position='right', width=0.5, height=0.5) chart.watermark('1') chart2.watermark('2') chart3.watermark('3') chart4.watermark('4') df = pd.read_csv('ohlcv.csv') chart.set(df) chart2.set(df) chart3.set(df) chart4.set(df) chart.show(block=True) ``` ### Synced Line Chart Example: ```python import pandas as pd from lightweight_charts import Chart if __name__ == '__main__': chart = Chart(inner_width=1, inner_height=0.8) chart.time_scale(visible=False) chart2 = chart.create_subchart(width=1, height=0.2, sync=True, volume_enabled=False) df = pd.read_csv('ohlcv.csv') df2 = pd.read_csv('rsi.csv') chart.set(df) line = chart2.create_line() line.set(df2) chart.show(block=True) ```