auto scale support
This commit is contained in:
@ -245,9 +245,12 @@ class SeriesCommon(Pane):
|
|||||||
if format_cols:
|
if format_cols:
|
||||||
df = self._df_datetime_format(df, exclude_lowercase=self.name)
|
df = self._df_datetime_format(df, exclude_lowercase=self.name)
|
||||||
if self.name:
|
if self.name:
|
||||||
if self.name not in df:
|
if self.name and len(df.columns) == 1: #if only one col rename it
|
||||||
|
df.columns = ['value']
|
||||||
|
elif self.name not in df:
|
||||||
raise NameError(f'No column named "{self.name}".')
|
raise NameError(f'No column named "{self.name}".')
|
||||||
df = df.rename(columns={self.name: 'value'})
|
else:
|
||||||
|
df = df.rename(columns={self.name: 'value'})
|
||||||
self.data = df.copy()
|
self.data = df.copy()
|
||||||
self._last_bar = df.iloc[-1]
|
self._last_bar = df.iloc[-1]
|
||||||
self.run_script(f'{self.id}.series.setData({js_data(df)}); ')
|
self.run_script(f'{self.id}.series.setData({js_data(df)}); ')
|
||||||
|
|||||||
@ -1,16 +1,46 @@
|
|||||||
|
from ast import parse
|
||||||
from .widgets import JupyterChart
|
from .widgets import JupyterChart
|
||||||
from .util import (
|
from .util import (
|
||||||
is_vbt_indicator, get_next_color
|
is_vbt_indicator, get_next_color
|
||||||
)
|
)
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
#default settings for each pricescale
|
||||||
|
ohlcv_cols = ['close', 'volume', 'open', 'high', 'low']
|
||||||
|
right_cols = ['vwap']
|
||||||
|
left_cols = ['rsi', 'cci', 'macd', 'macdsignal']
|
||||||
|
middle1_cols = ["mom"]
|
||||||
|
middle2_cols = ["updated"]
|
||||||
|
histogram_cols = ['buyvolume', 'sellvolume', 'trades', 'macdhist']
|
||||||
|
|
||||||
|
def append_scales(df, right, histogram, left, middle1, middle2, name = ""):
|
||||||
|
if isinstance(df, pd.DataFrame):
|
||||||
|
for col in df.columns:
|
||||||
|
match col:
|
||||||
|
case c if c.lower() in ohlcv_cols:
|
||||||
|
continue
|
||||||
|
case c if c.lower() in right_cols:
|
||||||
|
right.append((df[c],name+c,))
|
||||||
|
case c if c.lower() in histogram_cols:
|
||||||
|
histogram.append((df[c],name+c,))
|
||||||
|
case c if c.lower() in left_cols:
|
||||||
|
left.append((df[c],name+c,))
|
||||||
|
case c if c.lower() in middle1_cols:
|
||||||
|
middle1.append((df[c],name+c,))
|
||||||
|
case c if c.lower() in middle2_cols:
|
||||||
|
middle2.append((df[c],name+c,))
|
||||||
|
case _:
|
||||||
|
right.append((df[c],name+c,))
|
||||||
|
else: #it is series (as df multiindex can be just envelope for series)
|
||||||
|
right.append((df,str(df.name),))
|
||||||
|
|
||||||
def append_or_extend(target_list, value):
|
def append_or_extend(target_list, value):
|
||||||
if isinstance(value, list):
|
if isinstance(value, list):
|
||||||
target_list.extend(value) # Extend if it's a list
|
target_list.extend(value) # Extend if it's a list
|
||||||
else:
|
else:
|
||||||
target_list.append(value) # Append if it's a single value
|
target_list.append(value) # Append if it's a single value
|
||||||
|
|
||||||
def extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, kwargs):
|
def extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, auto_scale, kwargs):
|
||||||
"""
|
"""
|
||||||
Mutate lists based on kwargs for accessor.
|
Mutate lists based on kwargs for accessor.
|
||||||
Used when user added additional series to kwargs when using accessor.
|
Used when user added additional series to kwargs when using accessor.
|
||||||
@ -26,7 +56,9 @@ def extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, kwargs):
|
|||||||
if 'middle1' in kwargs:
|
if 'middle1' in kwargs:
|
||||||
append_or_extend(middle1, kwargs['middle1'])
|
append_or_extend(middle1, kwargs['middle1'])
|
||||||
if 'middle2' in kwargs:
|
if 'middle2' in kwargs:
|
||||||
append_or_extend(middle1, kwargs['middle2'])
|
append_or_extend(middle2, kwargs['middle2'])
|
||||||
|
if 'auto_scale' in kwargs:
|
||||||
|
append_or_extend(auto_scale, kwargs['auto_scale'])
|
||||||
|
|
||||||
return ohlcv #as tuple is immutable
|
return ohlcv #as tuple is immutable
|
||||||
|
|
||||||
@ -67,14 +99,16 @@ class PlotSRAccessor:
|
|||||||
middle1 = []
|
middle1 = []
|
||||||
middle2 = []
|
middle2 = []
|
||||||
histogram = []
|
histogram = []
|
||||||
|
auto_scale = []
|
||||||
|
|
||||||
#if there are additional series in kwargs add them too
|
#if there are additional series in kwargs add them too
|
||||||
#ohlcv is returned as it is tuple thus immutable
|
#ohlcv is returned as it is tuple thus immutable
|
||||||
ohlcv = extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, kwargs)
|
ohlcv = extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, auto_scale, kwargs)
|
||||||
|
|
||||||
right.append((self._obj,name))
|
right.append((self._obj,name))
|
||||||
|
|
||||||
pane1 = Panel(
|
pane1 = Panel(
|
||||||
|
auto_scale=auto_scale,
|
||||||
ohlcv=ohlcv,
|
ohlcv=ohlcv,
|
||||||
histogram=histogram,
|
histogram=histogram,
|
||||||
right=right,
|
right=right,
|
||||||
@ -125,39 +159,36 @@ class PlotDFAccessor:
|
|||||||
if "size" not in kwargs:
|
if "size" not in kwargs:
|
||||||
kwargs["size"] = "xs"
|
kwargs["size"] = "xs"
|
||||||
|
|
||||||
#default settings for each pricescale
|
|
||||||
ohlcv_cols = ['close', 'volume', 'open', 'high', 'low']
|
|
||||||
right_cols = ['vwap']
|
|
||||||
left_cols = ['rsi']
|
|
||||||
middle1_cols = []
|
|
||||||
middle2_cols = []
|
|
||||||
histogram_cols = ['buyvolume', 'sellvolume', 'trades']
|
|
||||||
|
|
||||||
ohlcv = ()
|
ohlcv = ()
|
||||||
right = []
|
right = []
|
||||||
left = []
|
left = []
|
||||||
middle1 = []
|
middle1 = []
|
||||||
middle2 = []
|
middle2 = []
|
||||||
histogram = []
|
histogram = []
|
||||||
|
auto_scale = []
|
||||||
|
|
||||||
|
if isinstance(self._obj.columns, pd.MultiIndex):
|
||||||
|
for col_tuple in self._obj.columns:
|
||||||
|
# Access the data for each column tuple dynamically
|
||||||
|
df = self._obj.loc[:, col_tuple]
|
||||||
|
name = str(col_tuple)+" "
|
||||||
|
append_scales(df, right, histogram, left, middle1, middle2, name)
|
||||||
|
first_column_df = self._obj.loc[:, self._obj.columns[0]]
|
||||||
|
ohlcv = (first_column_df[ohlcv_cols],) if isinstance(first_column_df, pd.DataFrame) and first_column_df.columns in ohlcv else () #in case of multiindex only the first ohlcv is display only one ohlcv is allowed on the pane
|
||||||
|
|
||||||
for col in self._obj.columns:
|
else:
|
||||||
if col in right_cols:
|
append_scales(self._obj, right, histogram, left, middle1, middle2)
|
||||||
right.append((self._obj[col],col,))
|
#add ohlcv if all columns ohlcv_cols
|
||||||
if col in histogram_cols:
|
#column mapping enables either both lowercase and first upper
|
||||||
histogram.append((self._obj[col],col,))
|
column_mapping = {key: next((col for col in self._obj.columns if col.lower() == key), None) for key in ohlcv_cols}
|
||||||
if col in left_cols:
|
mapped_columns = [column_mapping[key] for key in ohlcv_cols if column_mapping[key] is not None]
|
||||||
left.append((self._obj[col],col,))
|
ohlcv = (self._obj[mapped_columns],) if isinstance(self._obj, pd.DataFrame) and all(col in self._obj.columns.str.lower() for col in ohlcv_cols) else ()
|
||||||
if col in middle1_cols:
|
|
||||||
middle1_cols.append((self._obj[col],col,))
|
|
||||||
if col in middle2_cols:
|
|
||||||
middle2_cols.append((self._obj[col],col,))
|
|
||||||
|
|
||||||
ohlcv = (self._obj[ohlcv_cols],)
|
|
||||||
|
|
||||||
#if there are additional series in kwargs add them too
|
#if there are additional series in kwargs add them too
|
||||||
ohlcv = extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, kwargs)
|
ohlcv = extend_kwargs(ohlcv, right, left, middle1, middle2, histogram, auto_scale, kwargs)
|
||||||
|
|
||||||
pane1 = Panel(
|
pane1 = Panel(
|
||||||
|
auto_scale=auto_scale,
|
||||||
ohlcv=ohlcv,
|
ohlcv=ohlcv,
|
||||||
histogram=histogram,
|
histogram=histogram,
|
||||||
right=right,
|
right=right,
|
||||||
@ -196,6 +227,7 @@ class Panel:
|
|||||||
* left : list of tuples, optional
|
* left : list of tuples, optional
|
||||||
* middle1 : list of tuples, optional
|
* middle1 : list of tuples, optional
|
||||||
* middle2 : list of tuples, optional
|
* middle2 : list of tuples, optional
|
||||||
|
* auto_scale: list of objects, optional - external objects (vbt indicators) that can be automatically parsed to given scaleID
|
||||||
* xloc : str or slice, optional. Vectorbt indexing. Default is None.
|
* xloc : str or slice, optional. Vectorbt indexing. Default is None.
|
||||||
* precision: int, optional. The number of digits after the decimal point. Apply to all lines on this pane. Default is None.
|
* precision: int, optional. The number of digits after the decimal point. Apply to all lines on this pane. Default is None.
|
||||||
|
|
||||||
@ -227,6 +259,7 @@ class Panel:
|
|||||||
)
|
)
|
||||||
|
|
||||||
pane2 = Panel(
|
pane2 = Panel(
|
||||||
|
auto_scale=[macd_vbt_ind],
|
||||||
ohlcv=(t1data.data["BAC"],),
|
ohlcv=(t1data.data["BAC"],),
|
||||||
right=[],
|
right=[],
|
||||||
left=[(sma, "sma_below", short_signals, short_exits)],
|
left=[(sma, "sma_below", short_signals, short_exits)],
|
||||||
@ -258,7 +291,8 @@ class Panel:
|
|||||||
ch = chart([pane1], title="Chart with EntryShort/ExitShort (yellow) and EntryLong/ExitLong markers (pink)", sync=True, session=None, size="s")
|
ch = chart([pane1], title="Chart with EntryShort/ExitShort (yellow) and EntryLong/ExitLong markers (pink)", sync=True, session=None, size="s")
|
||||||
```
|
```
|
||||||
"""
|
"""
|
||||||
def __init__(self, ohlcv=None, right=None, left=None, middle1=None, middle2=None, histogram=None, title=None, xloc=None, precision=None):
|
def __init__(self, auto_scale=[],ohlcv=None, right=None, left=None, middle1=None, middle2=None, histogram=None, title=None, xloc=None, precision=None):
|
||||||
|
self.auto_scale = auto_scale
|
||||||
self.ohlcv = ohlcv if ohlcv is not None else ()
|
self.ohlcv = ohlcv if ohlcv is not None else ()
|
||||||
self.right = right if right is not None else []
|
self.right = right if right is not None else []
|
||||||
self.left = left if left is not None else []
|
self.left = left if left is not None else []
|
||||||
@ -382,6 +416,78 @@ def chart(panes: list[Panel], sync=False, title='', size="m", xloc=None, session
|
|||||||
active_chart.markers_set(markers=xloc_me(markers, xloc), type=type, color=color if color is not None else None)
|
active_chart.markers_set(markers=xloc_me(markers, xloc), type=type, color=color if color is not None else None)
|
||||||
|
|
||||||
|
|
||||||
|
def add_to_scale(series, right, histogram, left, middle1, middle2, column,name = None):
|
||||||
|
"""
|
||||||
|
Assigns a series to a scaleId based on its name and pre-defined col names.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
-----
|
||||||
|
series (pd.Series): The series to be added to a scaleId
|
||||||
|
right (list): The right scale to add to
|
||||||
|
histogram (list): The histogram scale to add to
|
||||||
|
left (list): The left scale to add to
|
||||||
|
middle1 (list): The middle1 scale to add to
|
||||||
|
middle2 (list): The middle2 scale to add to
|
||||||
|
name (str): The name of the series
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
-------
|
||||||
|
None
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
-----
|
||||||
|
The function checks if the series name is in the pre-defined column names
|
||||||
|
(e.g. ohlcv_cols, right_cols, histogram_cols, etc.) and assigns the series to
|
||||||
|
the corresponding scaleId. If the name is not found in any of the pre-defined
|
||||||
|
column names, the series is added to the right scale by default.
|
||||||
|
"""
|
||||||
|
if name is None:
|
||||||
|
name = column
|
||||||
|
if column.lower() in ohlcv_cols:
|
||||||
|
return
|
||||||
|
elif column.lower() in right_cols:
|
||||||
|
right.append((series, name,))
|
||||||
|
elif column.lower() in histogram_cols:
|
||||||
|
histogram.append((series, name))
|
||||||
|
elif column.lower() in left_cols:
|
||||||
|
left.append((series, name))
|
||||||
|
elif column.lower() in middle1_cols:
|
||||||
|
middle1.append((series, name))
|
||||||
|
elif column.lower() in middle2_cols:
|
||||||
|
middle2.append((series, name))
|
||||||
|
else:
|
||||||
|
right.append((series, name,))
|
||||||
|
|
||||||
|
# automatic scale assignment
|
||||||
|
if len(pane.auto_scale) > 0:
|
||||||
|
for obj in pane.auto_scale:
|
||||||
|
if is_vbt_indicator(obj): #for vbt indicators
|
||||||
|
for output in obj.output_names:
|
||||||
|
output_series = getattr(obj, output)
|
||||||
|
output_name = obj.short_name + ':' + output
|
||||||
|
output = obj.short_name if output == "real" else output
|
||||||
|
#if output_series is multiindex - add each combination to respective scaleId
|
||||||
|
if isinstance(output_series, pd.DataFrame) and isinstance(output_series.columns, pd.MultiIndex):
|
||||||
|
for col_tuple in output_series.columns:
|
||||||
|
name=output_name + " " + str(col_tuple)
|
||||||
|
series_copy = output_series.loc[:, col_tuple].copy(deep=True)
|
||||||
|
add_to_scale(series_copy, pane.right, pane.histogram, pane.left, pane.middle1, pane.middle2, output, name)
|
||||||
|
elif isinstance(output_series, pd.DataFrame) and len(output_series.columns) > 1: #in case of multicolumns
|
||||||
|
for col in output_series.columns:
|
||||||
|
name=output_name + " " + col
|
||||||
|
series_copy = output_series.loc[:, col].copy(deep=True)
|
||||||
|
add_to_scale(series_copy, pane.right, pane.histogram, pane.left, pane.middle1, pane.middle2, output, name)
|
||||||
|
elif isinstance(output_series, pd.DataFrame) and len(output_series.columns) == 1:
|
||||||
|
name=output_name + " " + output_series.columns[0]
|
||||||
|
series_copy = output_series.squeeze()
|
||||||
|
add_to_scale(series_copy, pane.right, pane.histogram, pane.left, pane.middle1, pane.middle2, output, name)
|
||||||
|
else: #add output to respective scale
|
||||||
|
series_copy = output_series.copy(deep=True)
|
||||||
|
add_to_scale(series_copy, pane.right, pane.histogram, pane.left, pane.middle1, pane.middle2, output, output_name)
|
||||||
|
|
||||||
|
# zde jsem skoncil
|
||||||
|
#vbt ind
|
||||||
|
|
||||||
if pane.ohlcv != ():
|
if pane.ohlcv != ():
|
||||||
series, entries, exits, markers = (pane.ohlcv + (None,) * 4)[:4]
|
series, entries, exits, markers = (pane.ohlcv + (None,) * 4)[:4]
|
||||||
if series is None:
|
if series is None:
|
||||||
@ -404,8 +510,14 @@ def chart(panes: list[Panel], sync=False, title='', size="m", xloc=None, session
|
|||||||
kwargs['color'] = color
|
kwargs['color'] = color
|
||||||
if opacity is not None:
|
if opacity is not None:
|
||||||
kwargs['opacity'] = opacity
|
kwargs['opacity'] = opacity
|
||||||
tmp = active_chart.create_histogram(**kwargs) #green transparent "rgba(53, 94, 59, 0.6)"
|
if isinstance(series, pd.DataFrame) and isinstance(series.columns, pd.MultiIndex): #multiindex handling
|
||||||
tmp.set(xloc_me(series, xloc))
|
for col_tuple in series.columns:
|
||||||
|
kwargs = {'name': name + str(col_tuple)}
|
||||||
|
tmp = active_chart.create_histogram(**kwargs) #green transparent "rgba(53, 94, 59, 0.6)"
|
||||||
|
tmp.set(xloc_me(series.loc[:, col_tuple], xloc))
|
||||||
|
else:
|
||||||
|
tmp = active_chart.create_histogram(**kwargs) #green transparent "rgba(53, 94, 59, 0.6)"
|
||||||
|
tmp.set(xloc_me(series, xloc))
|
||||||
|
|
||||||
if pane.title is not None:
|
if pane.title is not None:
|
||||||
active_chart.topbar.textbox("title",pane.title)
|
active_chart.topbar.textbox("title",pane.title)
|
||||||
@ -413,7 +525,7 @@ def chart(panes: list[Panel], sync=False, title='', size="m", xloc=None, session
|
|||||||
|
|
||||||
#iterate over keys - they are all priceScaleId except of these
|
#iterate over keys - they are all priceScaleId except of these
|
||||||
for att_name, att_value_tuple in vars(pane).items():
|
for att_name, att_value_tuple in vars(pane).items():
|
||||||
if att_name in ["ohlcv","histogram","title","xloc","precision"]:
|
if att_name in ["ohlcv","histogram","title","xloc","precision", "auto_scale"]:
|
||||||
continue
|
continue
|
||||||
for tup in att_value_tuple:
|
for tup in att_value_tuple:
|
||||||
series, name, entries, exits, markers = (tup + (None, None, None, None, None))[:5]
|
series, name, entries, exits, markers = (tup + (None, None, None, None, None))[:5]
|
||||||
@ -425,9 +537,20 @@ def chart(panes: list[Panel], sync=False, title='', size="m", xloc=None, session
|
|||||||
series = series.xloc[xloc] if xloc is not None else series
|
series = series.xloc[xloc] if xloc is not None else series
|
||||||
for output in series.output_names:
|
for output in series.output_names:
|
||||||
output_series = getattr(series, output)
|
output_series = getattr(series, output)
|
||||||
output = name + ':' + output if name is not None else output
|
output = name + ':' + output if name is not None else series.short_name + ":" + output
|
||||||
tmp = active_chart.create_line(name=output, priceScaleId=att_name)#, color="blue")
|
#if output_series is multiindex - create aline for each combination
|
||||||
tmp.set(output_series)
|
if isinstance(output_series, pd.DataFrame) and isinstance(output_series.columns, pd.MultiIndex):
|
||||||
|
for col_tuple in output_series.columns:
|
||||||
|
tmp = active_chart.create_line(name=output + " " + str(col_tuple), priceScaleId=att_name)#, color="blue")
|
||||||
|
tmp.set(output_series.loc[:, col_tuple])
|
||||||
|
else:
|
||||||
|
tmp = active_chart.create_line(name=output, priceScaleId=att_name)#, color="blue")
|
||||||
|
tmp.set(output_series)
|
||||||
|
#if multiindex then unpack them all with tuple as names
|
||||||
|
elif isinstance(series, pd.DataFrame) and isinstance(series.columns, pd.MultiIndex):
|
||||||
|
for col_tuple in series.columns:
|
||||||
|
tmp = active_chart.create_line(name=str(col_tuple) if name is None else name+" "+str(col_tuple), priceScaleId=att_name)#, color="blue")
|
||||||
|
tmp.set(xloc_me(series.loc[:, col_tuple], xloc))
|
||||||
else:
|
else:
|
||||||
if name is None:
|
if name is None:
|
||||||
name = "no_name" if not hasattr(series, 'name') or series.name is None else str(series.name)
|
name = "no_name" if not hasattr(series, 'name') or series.name is None else str(series.name)
|
||||||
@ -449,13 +572,14 @@ def chart(panes: list[Panel], sync=False, title='', size="m", xloc=None, session
|
|||||||
active_chart.fit()
|
active_chart.fit()
|
||||||
if session is not None and session:
|
if session is not None and session:
|
||||||
try:
|
try:
|
||||||
last_used_series = output_series if is_vbt_indicator(series) else series #pokud byl posledni series vbt, pak pouzijeme jeho outputy
|
last_used_series = output_series.loc[:, col_tuple] if isinstance(output_series, pd.DataFrame) and isinstance(output_series.columns, pd.MultiIndex) else output_series if is_vbt_indicator(series) else series #pokud byl posledni series vbt, pak pouzijeme jeho outputy
|
||||||
|
last_used_series = last_used_series.iloc[:,0] if isinstance(last_used_series, pd.DataFrame) else last_used_series #if df then use just first column
|
||||||
t1 = xloc_me(last_used_series, xloc)
|
t1 = xloc_me(last_used_series, xloc)
|
||||||
t1 = t1.vbt.xloc[session]
|
t1 = t1.vbt.xloc[session]
|
||||||
target_data = t1.obj
|
target_data = t1.obj
|
||||||
#we dont know the exact time of market start +- 3 seconds thus we find mark first row after 9:30
|
#we dont know the exact time of market start +- 3 seconds thus we find mark first row after 9:30
|
||||||
# Resample the data to daily frequency and get the first entry of each day
|
# Resample the data to daily frequency and get the first entry of each day
|
||||||
first_row_indexes = target_data.resample('D').apply(lambda x: x.index[0])
|
first_row_indexes = target_data.resample('D').apply(lambda x: x.index[0] if not x.empty else None).dropna()
|
||||||
|
|
||||||
# Convert the indexes to a list
|
# Convert the indexes to a list
|
||||||
session_starts = first_row_indexes.to_list()
|
session_starts = first_row_indexes.to_list()
|
||||||
|
|||||||
2
setup.py
2
setup.py
@ -5,7 +5,7 @@ with open('README.md', 'r', encoding='utf-8') as f:
|
|||||||
|
|
||||||
setup(
|
setup(
|
||||||
name='lightweight_charts',
|
name='lightweight_charts',
|
||||||
version='2.2.2',
|
version='2.2.3',
|
||||||
packages=find_packages(),
|
packages=find_packages(),
|
||||||
python_requires='>=3.8',
|
python_requires='>=3.8',
|
||||||
install_requires=[
|
install_requires=[
|
||||||
|
|||||||
Reference in New Issue
Block a user